PROJECT MANUAL

Rehabilitation of Taxiways WA & WB

PROJECT No.: 901
CIP No.: A-0656

VOLUME NO. 1 OF 2

Divisions 00 through 16

Bid Documents
February 29, 2016

THIS PROJECT MANUAL WAS ORIGINALLY DEVELOPED AS PART OF A BID DOCUMENT SUBMITTAL IN FEBRUARY 2016, WITH ADDENDUMS ISSUED IN MARCH 2016 AND APRIL 2016.

THIS PROJECT MANUAL IS BEING ISSUED FOR BID ADVERTISEMENT SERVICES ONLY, AND IS NOT TO BE USED FOR CONSTRUCTION.

RS&H, Inc.
11011 Richmond Ave.
Suite 900
Houston, Texas 77042
713.914.4455
TBPE Firm Registration No. 3401
NOTE:
Sections listed "for filing" are to be provided by the Bidder and are not included in this Project Manual, unless indicated for example only. The Section numbers and titles hold places for actual documents to be submitted by the Contractor during the bidding, post-bid, or construction phase of the Project. Specification Sections marked with an asterisk (*) are amended by a supplemental specification, placed in front of the Specification it amends. Sections in the 200, 300 and 400 series of Division 00, except for Section 00410B – Bid Form, Part B, are not part of the Contract.

<table>
<thead>
<tr>
<th>Doc. No.</th>
<th>Document Title</th>
</tr>
</thead>
</table>

VOLUME 1 OF 2
INTRODUCTORY INFORMATION

00010 Table of Contents

BIDDING REQUIREMENTS

BIDDING REQUIREMENT DOCUMENTS HAVE BEEN OMITTED FROM THIS PROJECT MANUAL SUBMITTAL. THESE DOCUMENTS WILL BE ADDED IN A LATER SUBMITTAL AND WILL FOLLOW CITY OF HOUSTON STANDARD BIDDING REQUIREMENT DOCUMENTS FORMS.

CONTRACTING REQUIREMENTS

CONTRACTING REQUIREMENT DOCUMENTS HAVE BEEN OMITTED FROM THIS PROJECT MANUAL SUBMITTAL. THESE DOCUMENTS WILL BE ADDED IN A LATER SUBMITTAL AND WILL FOLLOW CITY OF HOUSTON STANDARD CONTRACTING REQUIREMENT DOCUMENTS FORMS.
TABLE OF CONTENTS

SPECIFICATIONS

DIVISION 1 - GENERAL REQUIREMENTS

01110 Summary of Work
01145 Use of Premises
01210 Cash Allowances
01230 Alternates
01255 Modification Procedures
01270 Measurement and Payment
01290 Payment Procedures
01312 Coordination and Meetings
01321 Construction Photographs
01325 Construction Schedules
01326 Construction Sequencing
01330 Submittal Procedures
01340 Shop Drawings. Product Data and Samples
01410 TPDES Requirements (with Attachments)
01423 Reference
01450 Contractor’s Quality Control
01455 City’s Acceptance Testing
01505 Temporary Facilities
01506 Temporary Controls
01507 Temporary Signs
01550 Public Safety and Contractor’s Safety Staffing
01555 Traffic Control and Regulation
01561 Trench Safety System
01575 Stabilized Construction Exit
01576 Waste Material Disposal
01578 Control of Ground and Surface Water
01579 Temporary Vehicle and Equipment Fueling Area
01610 Basic Product Requirements
01630 Product Options and Substitutions
01725 Field Surveying
01726 Base Facility Survey
01731 Cutting and Patching
01740 Site Restoration
01761 Protection of Existing Services
01770 Contract Closeout
01785 Project Record Documents

00010-2
ver. 7-30-2014
<table>
<thead>
<tr>
<th>Doc. No.</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010-3</td>
<td>ver. 7-30-2014</td>
</tr>
</tbody>
</table>

DIVISION 2 - SITE WORK

FAA SPECIFICATIONS
- G-100 Mobilization & General Conditions
- G-102 Safety and Security
- G-103 Engineer’s Field Office
- G-104 Survey and Stakeout
- G-105 Temporary Construction Items
- G-106 Removal of Painted Pavement Markings
- G-109 Sawcutting
- G-112 Construction Schedules

- P-101 Surface Preparation
- P-152 Excavation, Subgrade and Embankment
- P-153 Controlled Low-Strength Material (CLSM)
- P-156 Temporary Air and Water Pollution, Soil Erosion, and Siltation Control
- P-155 Lime Treated Subgrade
- P-158 Fly Ash Treated Subgrade

- P-219 Recycled Concrete Aggregate Base Course

- P-304 Cement Treated Base
- P-306 Lean Concrete Base

- P-401 Hot Mix Asphalt (HMA) Pavements

- P-501 Portland Cement Concrete (PCC) Pavement

- P-602 Bituminous Prime Coat
- P-603 Bituminous Tack Coat
- P-604 Compression Joint Seals for Concrete Pavement
- P-605 Joint Sealants for Concrete Pavements
- P-606 Adhesive Compounds, Two-Component for Sealing Wire and Lights in Pavement

- P-610 Structural Portland Cement Concrete
- P-620 Runway and Taxiway Marking
- P-621 Saw-Cut Grooves

- D-701 Pipe for Storm Drains and Culverts
- D-705 Pipe Underdrains for Airports
- D-751 Manholes, Catch Basins, Inlets and Inspection Holes
- D-752 Concrete Culverts, Headwalls, and Miscellaneous Drainage Structures
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Doc. No.</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-901</td>
<td>Seeding</td>
</tr>
<tr>
<td>T-904</td>
<td>Sodding</td>
</tr>
<tr>
<td>T-905</td>
<td>Topsoiling</td>
</tr>
</tbody>
</table>

L-100	Basic Electrical Requirements
L-108	Underground Power Cable for Airports
L-110	Airport Underground Electrical Duct Banks and Conduits
L-115	Electrical Manholes and Junction Structures
L-125	Installation of Airport Lighting Systems

VOLUME 2 of 2

APPENDIX A – CONSTRUCTION SAFETY AND PHASING PLAN (CSPP)

APPENDIX B – GEOTECHNICAL REPORT

APPENDIX C – AC 150/5370-2F OPERATIONAL SAFETY ON AIRPORTS DURING CONSTRUCTION

END OF DOCUMENT
SECTION 01110
SUMMARY OF WORK

PART 1 - GENERAL

1.01 SECTION INCLUDES
A. Project description.
B. Work description.
C. City occupancy.
D. Contractor-salvaged products.
E. Separate contracts and work by City.
F. Extra copies of Contract Documents.
G. Permits, fees and notices.

1.02 THE PROJECT
A. The Project is located at the George Bush Intercontinental Airport in Houston, Texas.

1.03 GENERAL DESCRIPTION OF THE WORK
A. Construct the Work under a single general construction contract as follows:
 Rehabilitation of Taxiways WA & WB
B. Construct the Work in multiple stages following Section 01326- Construction Sequencing.
C. The Work is summarized as construction of:
 • Full depth reconstruction of Taxiways WA and WB from Taxiway WG to Taxiway WN
 • Full strength pavement and shoulder pavement widening of connector Taxiways WD, WE, WF, WG, WH, WK, WN, WV as well as General Aviation Taxilanes 3, 4, 5, and 6
 • Demolition and removal of High Speed Taxiways WH, WJ.
 • New airfield electrical including taxiway edge lighting, taxiway centerline lighting, updated airfield signage, installation of elements for the Surface Movement Guidance and Control System (SMGCS) in order to bring this system on-line and operational, and all necessary conduit and cabling.
The work will also include the reconstruction/rehabilitation of existing taxiway/taxilane shoulder pavements adjacent to those full depth reconstruction areas identified above and the installation of a subsurface drainage system for all new pavement sections. The limits of the project area are also identified graphically in the project plan set.

1. Cut and patch existing construction designated or required to remain and to receive new construction, following Section 01731- Cutting and Patching, and Section 01761 – Protection of Existing Services.

D. Contract limit lines are shown diagrammatically in the project plan set.

1.04 CITY OCCUPANCY

A. The City will occupy the premises and remain in operation during the entire period of construction. Closures of various airfield surfaces have been planned in a phased approach. Those closures, their construction areas and respective durations are provided graphically in the project plan set.

1. Cooperate with the City to reduce conflict, and to facilitate the City's operations. Coordinate Contractor's activities with City Operations or Maintenance personnel through City Engineer.

2. Schedule Work to fit these requirements.

1.05 CONTRACTOR-SALVAGED PRODUCTS (CSP)

A. Products intended for salvage and return by the Contractor to City Engineer are scheduled in Part 2 of this Section, and are shown in diagrammatic form or noted on Drawings.

B. Obtain, handle, store and protect CSP following Section 01731- Cutting and Patching. Reinstall items designated for reuse following Section 01731.

C. Provide written receipt or transfer of title to City Engineer.

D. Assume CSP function properly, unless discovered to the contrary and notice given before removal. Correct damages or deficiencies occurring to CSP while in possession of Contractor, without change in Contract Sum or Time.

1.06 SEPARATE CONTRACTS AND WORK BY CITY

A. The following separate construction contracts are known as of 10/14/15 to exist in the general area of the Work, and may affect this Work as indicated:

1. PN 699 TERMINAL A SANITARY SEWER OUTFALL (Work within the same areas)
2. PN 460C AIRFIELD PAVEMENT REHABILITATION (Work within the same areas)
B. Review contract documents and other information furnished by City Engineer to confirm effects of separate contract and City work and to coordinate work of this contract with it.

1. Documents will be on display at Plan Rooms and at Department of Aviation IAH office specified in Document 00210.
2. Documents may be purchased for cost of reproduction, from RS&H, Inc.

C. City Engineer will resolve conflicts and discrepancies between this contract and separate contracts and work by City.

1.07 EXTRA COPIES OF CONTRACT DOCUMENTS

A. Use reproducible documents, furnished by City following Document 00700 Paragraph 2.2.2, to make extra copies of Contract Documents as required by Contractor for construction operations, and for Contractor's records following Sections 01726- Base Facility Survey and 01770- Contract Closeout. Follow Document 00700 Paragraph 1.3.

1.08 PERMITS, FEES AND NOTICES

A. Refer to Document 00700 Paragraph 3.14. Reimburse City for City's payment of fines levied against City or its employees because of Contractor's failure to obtain proper permits, pay proper fees, and make proper notifications. Reimbursement will be by Change Order, deducting from the Contract Price the amount of fines imposed.

PART 2 - PRODUCTS

2.01 SCHEDULE OF CSP

A. Unless indicated otherwise, salvage and return to the City the following CSP existing within the contract limits:

1. Taxiway Edge Light Fixture and Isolation Transformer
2. Runway Centerline Light Fixture and Isolation Transformer

B. Return excess CSP items following Section 01770- Contract Closeout.

PART 3 - EXECUTION (NOT USED)
SECTION 01145

CONTRACTOR’S USE OF PREMISES

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Rights-of-way and access to the Work.
B. Property and Base Facility outside contract limits.
C. General requirements for exterior work.
D. Work in AOA, including electrical lockout/tagout program.
E. Interior work.
F. Control of access into security areas.

1.02 SUBMITTALS

A. Show start dates and duration of closures and impediments on construction schedule following Section 01325- Construction Schedules.
B. Prepare written requests, using Document 00931- Request for Information, and submit requests at least 7 days before access is required, for following:
 1. Roadway, street, driveway, curbside and building main entrance/exit closures or impediments. Do not close or impede emergency exits intended to remain.
 2. Access to property outside contract limits, required to extend or connect work to utilities or environmental system controls in non-contract areas.
C. For work involving electrical energy or other hazardous energy sources, submit a Lockout/Tagout Program.

1.03 RIGHTS-OF-WAY AND ACCESS TO THE WORK

A. Confine access and operations and storage areas to contract limits and other areas provided by City, following Document 00700. Do not trespass on non-City-owned property or on airport occupants' spaces.
B. Airport operates "around the clock." In cases of conflicts with construction operations, airport operations take precedence. Airport roads, streets, drives, curbsides and sidewalks, and ticketing, baggage claim, security check points, concessions, restrooms, aircraft gates and similar passenger-related areas are intended for year-round uninterrupted use and access by the public and airport operations. Maintain uninterrupted traffic movement.
 1. Aircraft and emergency vehicles have right-of-way in AOA.
 2. Private vehicles, public transportation and emergency vehicles have right-of-way on roads, streets, driveways and curbsides.
3. Passengers have right-of-way in public spaces. Occupants have right-of-way in other occupied areas.

C. Follow instructions of the City Engineer, Airport Manager and IAH Operations. Follow FAA procedures.

D. FAA will review Contractor's submittals for compliance with FAA requirements. Attend meetings with FAA to assist the City Engineer in obtaining approvals.

E. Continued violations of or flagrant disregard for policies may be considered default, and individuals disregarding requirements may be determined as objectionable by the City Engineer, following provisions of Document 00700.

1. Do not close or impede rights-of-way without City Engineer approval.

F. City Engineer may approve temporary storage of products, in addition to areas shown on Drawings, and other on-airport areas if storage piles do not interfere with airport operations.

1. No permission will be granted for this type of storage in Terminal roadway areas.
2. Restrict permitted storage along runways, taxiways and aprons to 500 lineal feet, 3 feet high and no closer than 100 feet to pavement.

1.04 PROPERTY AND BASE FACILITY OUTSIDE CONTRACT LIMITS

A. Do not alter condition of property or Base Facility outside contract limits.

B. Means, methods, techniques, sequences, or procedures which may result in damage to property outside of contract limits are not permitted.

C. Repair or replace damage to property outside contract limits to condition existing at start of the Work, or better.

1.05 GENERAL REQUIREMENTS FOR EXTERIOR WORK

A. Obtain permits and City Engineer's approval prior to impeding or closing roadways, streets, driveways, Terminal curbsides and parking areas.

B. Maintain emergency vehicle access to the Work and to fire hydrants, following Section 01505- Temporary Facilities.

C. Do not obstruct drainage ditches or inlets. When obstruction is unavoidable due to requirements of the Work, provide grading and temporary drainage structures to maintain unimpeded flow.

D. Locate by Section 01726- Base Facility Survey and protect by Section 01505- Temporary Facilities communication, data, electrical power, fuel, sanitary sewer, storm sewer lines or other such utility which may exist. Repair or replace damaged systems to condition existing at start of Work, or better.

E. Public, Temporary, and Construction Roads and Ramps:
1. Construct and maintain temporary detours, ramps, and roads to provide for normal public traffic flow when use of public roads or streets is closed by necessities of the Work.

2. Provide mats or other means to prevent overloading or damage to existing roadways from tracked equipment or exceptionally large or heavy trucks or equipment.

3. Construct and maintain access roads and parking areas following Section 01505- Temporary Facilities.

F. Excavation in Streets and Driveways:
 1. Do not hinder or needlessly impede public travel on roadways, streets or driveways for more than two blocks at any one time, except as approved by City Engineer.
 2. Obtain the City Traffic Management and Maintenance Department and City Engineer's approval when the Work requires closing of off-airport roadways, streets or driveways. Do not unnecessarily impede abutting property.
 3. Remove surplus materials and debris and open each block for public use as work in that block is complete. Acceptance of any portion of the Work will not be based on return of street to public use.
 4. Provide temporary crossings, or complete work in one continuous operation. Minimize duration of obstructions and impediments at drives or entrances.

G. Provide barricades and signs following Sections 01505- Temporary Facilities and 01507- Temporary Signs.

H. Traffic Control: Follow Section 01555- Traffic Control and Regulation.

I. Surface Restoration:
 1. Restore site to condition existing before construction, following Section 01731- Cutting and Patching, to satisfaction of City Engineer.
 2. Follow Specification P-501 and/or P-401 for restoring paved areas.
 3. Repair damaged turf areas, following Specification T-901 Seeding or topsoil following Specification T-905 Topsoiling and re-sod following Specification T-904 Sodding. Water and level newly sodded areas with adjoining turf using steel wheel rollers appropriate for sodding. Do not spot sod or sprig.

1.06 WORK IN AOA

A. If construction requires closing of safety areas of runways, taxiways and aprons and those closings are not already indicated on the Drawings, then submit such request in writing on a separate document in accordance with the Construction Safety and Phasing Plan, reference 01506 Airport Temporary Controls, Appendix A Construction Safety and Phasing Plan (CSPP), and Technical Specification G-102 Safety and Security. Closings require NOTAMs (Section 01423-References).

B. Open trenches are generally not permitted in areas of aircraft and GSE movement. Exceptions may be approved by the Airport Manager and by FAA.
1. Barricade, light and mark the edges of permitted open trenches and excavations as directed.

C. Flares are not permitted in the AOA.

D. Do not obliterate runway and taxiway markings, unless required as part of the Work. Repair or replace damaged markings with matching color, material and copy where resulting from work of this contract.

E. Open-flame welding and cutting in the AOA is discouraged. When unavoidable, obtain case-by-case approval. Provide proper fire control equipment, approved by Fire Department / Aviation Section.

F. Hearing protection is recommended for persons in the AOA.

G. Do not store products in safety or object free areas of runways, taxiways or aprons or in runway overruns and clear zones for more than then-active one-day operation. Provide large and long-term storage outside the AOA.

H. Follow lockout/tagout program below.

1. Electrical Lockout/Tagout for HAS Projects:
 a. AOA has underground lighting and control cables. Known cables are shown (charted) on Drawings.
 b. Survey area within contract limits following Section 01726- Base Facility Survey, using proper equipment, to confirm location of charted cables and cables discovered during survey. Stake locations.
 c. Notify City Engineer and Airport Manager in daily briefings (Section 01312- Coordination and Meetings) before excavation in the vicinity of charted or discovered cables. Make written request for deactivation and reactivation of circuits.
 d. Deactivation and reactivation of circuits is the responsibility of the Airport Manager.
 e. Furnish proper personnel, cable locating instruments, tools, splice kits, cable and other products at the time excavation work is underway, for cable repair as required.
 f. Excavate, make cable repairs, cover repairs, and backfill excavation at repaired cables and only in presence of City Engineer and Airport Manager.
 g. Immediately report discovered or detected outages to City Engineer and Airport Manager.
 h. Follow repair details shown on Drawings. If details are not consistent with existing or discovered conditions, or if required repairs cannot be properly made, submit Document 00685 following Section 01255- Modification Procedures.
 i. Record repairs following Section 01770- Contract Closeout.
 j. Test proper operation of circuits, in presence of City Engineer and Airport Manager, before covering repairs. Follow Section 01450- Contractor’s Quality Control. Immediately correct failures.
 k. Airport Manager will perform a daily check of circuits in vicinity of construction at 1500 hours to confirm proper operation. Immediately correct failures.

I. Construction near NAVAIDS and ARFF:
 1. Do not obstruct line of sight from ATCT or interfere with transmissions from NAVAIDS.
 2. Do not obstruct exits or entrances to ARFF.

1.07 GENERAL REQUIREMENTS FOR INTERIOR WORK (Not Used)

A. Obtain City Engineer's approval and permits prior to impeding or closing building entrances, corridors, and areas around passenger service functions (ticketing, baggage check and claim, security screening, waiting, aircraft enplaning and deplaning).

B. Maintain emergency access to the Work and to fire hose and extinguisher cabinets, following Section 01505- Temporary Facilities.

C. Do not obstruct fire exits. When obstruction is unavoidable due to requirements of the Work, provide fire-retardant enclosures to maintain unimpeded flow, following Section 01505- Temporary Facilities.

D. Locate by Section 01726- Cutting and Patching and protect by Section 01505- Temporary Facilities utility and communications or data systems which may exist. Repair or replace damaged systems to condition existing at start of Work, or better.

E. Provide temporary facilities and controls following Section 01505- Temporary Facilities.

F. Provide signs following Section 01507- Temporary Signs.

1.08 CONTROL OF SECURITY AREA ACCESS

A. Install barricades and enclosures to prevent uncontrolled access into security areas, following Section 01505- Temporary Facilities, 01506 – Airport Temporary Controls, Appendix A - CSPP, and Technical Specification G-102 Safety and Security included as a part of these documents. Provide locked access points. Provide duplicate keys to City Engineer.

B. Post one gatekeeper, employed by the Contractor, at each point of access through barricades or enclosures into security areas, during times when access points are not locked. Ensure persons entering are properly badged.

C. Provide signs following Section 01507- Temporary Signs.

PART 2 PRODUCTS (Not Used)

PART 3 EXECUTION (Not Used)
END OF SECTION
SECTION 01210
CASH ALLOWANCES

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. City’s allowances, allocated to the items of work listed or as directed.

B. See Document 00700- General Conditions, Paragraph 3.11 for costs included and excluded from cash allowance values listed in 1.02 below.

C. Follow Section 01255- Modification Procedures for processing allowance expenditures. Cash Allowance sums remaining at Final Completion belong to the City, creditable by Change Order.

1.02 SCHEDULE OF CASH ALLOWANCES (TOTAL $1,780,000 VALUE)

A. Allowance Item 1- Regulatory Agency Permit Fees Allowance Account: For obtaining applicable regulatory agency permits, $150,000.00.

B. Allowance Item 2- Contaminated Material Handling, $100,000.00.

C. Allowance Item 3- Cargo Ramp RCBC/Pavement Widening, $1,500,000.

D. Allowance Item 4- Fuel Line Adjustment, $30,000.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01230

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Descriptions of alternate work.
 1. Unless otherwise stated in the Bid Documents, alternates are intended as additive.

B. Alternates are for complete work, in place and ready for use, following the Contract Documents.

C. Volunteer Alternates, any Alternate not specified in this Section, will not be considered. Submit requests for substitution of products and processes following Document 00700 and Section 01610- Basic Product Requirements.

1.02 ACCEPTANCE OF ALTERNATES AND BID PRICES

A. State in Document 00405- Bid Tabulation Form the Bid Price for each Alternate.

B. Bid Price for each Alternate will be reviewed and work of each Alternate accepted or declined at City's option.

C. Lowest Total Bid Price will be evaluated on the basis of Base Bid Price plus allAlternates.

D. After determination of lowest Bidder, City will determine which, if any, Alternates to accept.

E. After acceptance of Alternates, Total Bid Price will be adjusted accordingly and the appropriate Total Contract Price entered in Document 00520 - Agreement prior to execution.

1.03 SCHEDULE OF ALTERNATES

A. Alternate No. 1: P-501 Additional Cost to Provide Additional Steel in all P-501 Pavements

B. Alternate No. 2: Additional Cost to provide Paving Fabric

C. Alternate No. 2: P-401-8.3 Demo & Bituminous Surface Course (PG 76-22) – Emergency Repairs: Refer to Specifications P-401 Hot Mix Asphalt (HMA) Pavements (Marshall Mix Design); Drawing Numbered C02.55 details 1, including referenced details.

D. Alternate No. 3: P-604-6.1 Additional Cost to Replace Silicone PCC Joint Sealants with Preformed PCC Joint Sealants on all New PCC Paving: Refer to Specifications P-604 Compression Joint Seals for Concrete Pavings and P-
605 Joint Sealants for Concrete Pavements; Drawings Numbered C06.51 and C06.52 details 6 & 7, including referenced details.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01255

MODIFICATION PROCEDURES

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Signatories on behalf of City and Contractor.
B. Contractor's documentation.
C. Change Orders, and supplemental agreements for work funded by AIP grant.
D. Requests for Proposal.
E. Work Change Directives.
F. Execution of Modifications.
G. Resolving discrepancies.
H. Requests for Information or Clarification.
I. Correlation of submittals.

1.02 SIGNATORIES

A. Following are authorized to execute Document 00940- Work Change Directive and Document 00941 – Change Order on behalf of City, within limits indicated:

1. Assistant Director of Infrastructure Construction Division: $0 to $10,000.00 or 3 percent of original Contract Price, whichever is less.
2. Deputy Director of Aviation, Infrastructure: $10,001.00 to $50,000.00 or 4 percent of original Contract Price, whichever is less.
3. Deputy Director of Aviation, Chief Operating Officer: $50,001.00 to $250,000.00 or 5 percent of original Contract Price, whichever is less.
4. Director of Department of Aviation: $250,001.00 and greater up to limit authorized by City Council. City Engineer may sign in absence of Director.

B. Submit at the Preconstruction Conference (Section 01312- Coordination and Meetings) a letter indicating the name and address of Contractor's personnel authorized to execute Modifications, and with responsibility for informing others in Contractor's employ or Subcontractors of same.

1.03 REFERENCES

A. Blue Book: "Dataquest" Rental Rate Blue Book for Construction Equipment.
B. Rental Rate: The full unadjusted base rental rate for the applicable item of equipment.
1.04 CONTRACTOR'S DOCUMENTATION

A. Maintain detailed records of changes in the Work. Provide full information required for identification and evaluation of proposed changes, and to substantiate costs of changes in the Work.

B. Furnish sufficient data to allow City Engineer's evaluation of Contractor's responses to proposed changes.

C. Include with each proposal the following minimum information (as applicable to form of Contract Price):

1. Quantities of original Bid Schedule unit price work items (with additions, reductions, deletions, and substitutions).
2. When work items are not included in Document 00410- Bid Tabulation Form, provide unit prices for the new items, with proper supporting information.
3. For Stipulated Price changes, furnish breakdown of labor, products, taxes, insurance, bonds, temporary facilities and controls as applicable, and overhead and profit.
5. Additional data upon request.

D. Payment for rented equipment will be made to the Contractor by actual invoice cost for the duration of time required to complete additional work. If additional work comprises only a portion of the rental invoice where the equipment would otherwise be on the site, compute the hourly equipment rate by dividing the actual monthly invoice by 176. (One day equals 8 hours and one week equals 40 hours.) Operating costs shall not exceed the estimated operating costs given for the item of equipment in the Blue Book.

E. For changes in the Work performed on a time-and-materials basis using Contractor-owned equipment, compute rates with the Blue Book as follows:

1. Multiply the appropriate Rental Rate (the lowest cost combination of hourly, daily, weekly or monthly rates) by an adjustment factor of 70 percent plus the full rate shown for operating costs. Use 150 percent of the Rental Rate for double shifts (one extra shift per day) and 200 percent of the Rental Rate for more than two shifts per day. No other rate adjustments apply.
2. Standby Rates: 50 percent of the appropriate Rental Rate shown in the Blue Book. Operating costs are allowed.

1.05 CHANGE ORDERS

A. Changes to Contract Price or Time are made only by execution of Document 00941- Change Order.

B. Stipulated Price Change Order: Stipulated Price Change Orders are based on an accepted Proposal/Contract Modification including the Contractor's lump sum price quotation.

C. Unit Price Change Order:
1. Where Unit Prices for the affected items of Work are included in Document 00410- Bid Tabulation Form, Unit Price Change Orders are based on unit prices as originally bid, subject to requirements in Articles 7 and 9 of Document 00700- General Conditions.

2. Where unit prices of Work are not pre-determined in Document 00410- Bid Tabulation Form, Document 00932- Request for Proposal or 00940- Work Change Directive will state the unit prices to use.

D. Time-And-Material Change Order:

 1. Provide an itemized account and supporting data after completion of change, within time limits indicated for claims in Document 00700- General Conditions.

 2. City Engineer will determine the change allowable in Contract Price and Contract Time following Document 00700- General Conditions.

 3. For changes in the Work performed on a time-and-material basis, furnish the following in addition to information specified in Paragraph 1.04.C:
 a. Quantities and description of products and tools.
 b. Taxes, insurance and bonds.
 c. Overhead and profit, following Document 00700- General Conditions Paragraphs 7.3.2.2 or Document 00800- Supplementary Conditions.
 d. Dates and times of work performance, and by whom.
 e. Time records and certified copies of applicable payrolls.
 f. Invoices and receipts for products, rented tools, and Subcontracts, similarly documented.

E. Major Unit Price Change Order:

 1. Definition: Work that would increase or decrease the total amount of the contract, or any major contract item, by more than 25 percent, such increased or decreased work being within the scope of the originally awarded contract; or Work not within the scope of the original contract.

 2. Major Unit Price Change Orders will be processed the same as for "Unit Price Change Orders" above.

1.06 REQUEST FOR PROPOSAL (DOCUMENT 00932-REQUEST FOR PROPOSAL)

 A. City Engineer may issue Document 00932, including a detailed description of proposed changes, supported by revised Drawings and Specifications if applicable. Prepare and submit Contractor's response to Document 00932 within 7 days or as specified in the request.

 B. This document does not authorize work to proceed.

 C. Follow instructions on back of Document 00932.

1.07 WORK CHANGE DIRECTIVE (DOCUMENT 00940- WORK CHANGE DIRECTIVE)

 A. City Engineer may issue Document 00940 instructing the Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.
B. City Engineer may issue minor changes in the Work, not involving an adjustment to Contract Price or Time using Document 00940.

C. The document will describe changes in the Work and will designate a method of determining change, if any, in Contract Price or Time. When properly executed, this document authorizes work to proceed. Follow instructions on back of Document 00940.

D. Promptly execute changes in the Work following Document 00940.

1.08 RESOLVING DISCREPANCIES

A. Complete Base Facility survey following Section 01726- Base Facility Survey prior to preparation of submittal data and commencing main construction operations. Submit survey data of inaccessible concealed conditions as cutting and patching or demolition operations proceed.

B. Prepare and submit one Document 00931- Request for Information for each separate condition with a written statement of substantive discrepancies, including specific scope, location and discrepancy discovered.

C. Based upon the Contractor's knowledge of Base Facility conditions "as-found" and the requirements for the Work, propose graphic or written alternatives to Drawings and Specifications to correct discrepancies. Include as supplementary data to Document 00931- Request for Information.

D. Modifications due to concealed conditions are allowed only for conditions which are accessible only through cutting or demolition operations.

1. No changes in the Contract Sum or Time are permitted for sight-exposed conditions or conditions visible by entry into access doors or panels and above lay-in or concealed spline acoustical ceilings, or by conditions described in Documents 00320- Geotechnical Information or 00330- Existing Conditions.

1.09 REQUESTS FOR INFORMATION OR CLARIFICATION (DOCUMENT 00931)

A. Document 00931 does not authorize work that changes the Contract Price or Time.

B. Request clarification of Contract Documents or other information by using Document 00931.

1. If additional work is required, then response will be by City Engineer's issuance of Document 00932- Request for Proposal or 00940- Work Change Directive.

2. This document does not authorize work to proceed.

C. Changes may be proposed by the Contractor only by submitting Document 00931- Request for Information following Paragraph 1.08.
D. The City Engineer may issue minor changes in the Work, not involving an adjustment to Contract Price or Time using Document 00931- Request for Information and following Document 00700- General Conditions.

E. Follow directions on back of Document 00931- Request for Information.

1.10 CORRELATION OF SUBMITTALS

A. For Stipulated Price Contracts, promptly revise Schedule of Values and Application for Payment forms to record each authorized Change Order as a separate line item and adjust the Contract Price, following Section 01290- Payment Procedures.

B. For Unit Price Contracts, revise the next monthly estimate of work after acceptance of a Change Order to include new items not previously included and the appropriate unit rates.

C. Promptly revise progress schedules to reflect any change in Contract Time, revise schedules to adjust time for other items of work affected by the change, and resubmit for review following Section 01325- Construction Schedules.

D. Promptly record changes on record documents following Section 01770- Contract Closeout.

PART 2- PRODUCTS (NOT USED)

PART 3- EXECUTION (NOT USED)

END OF SECTION
CITY OF HOUSTON
STANDARD GENERAL REQUIREMENT
MEASUREMENT AND PAYMENT

Section 01270

MEASUREMENT AND PAYMENT

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Procedures for measurement and payment plus conditions for nonconformance assessment and nonpayment for rejected Products.

1.02 AUTHORITY

A. Measurement methods delineated in Specification sections are intended to complement criteria of this Section. In event of conflict, requirements of the Specification section shall govern.

B. Project Manager will take all measurements and compute quantities accordingly.

C. Assist by providing necessary equipment, workers, and survey personnel.

D. Measurement and Payment paragraphs are included only in those Specification sections of Division 01 where direct payment will be made. Include costs in the total bid price for those Specification sections in Division 01 that do not contain Measurement and Payment paragraphs.

1.03 UNIT QUANTITIES SPECIFIED

A. Quantity and measurement estimates stated in the Agreement are for contract purposes only. Quantities and measurements supplied or placed in the Work and verified by Project Manager will determine payment as stated in Article 9 of Document 00700 - General Conditions.

B. When actual work requires greater or lesser quantities than those quantities indicated in Document 00410 – Bid Form, provide required quantities at Unit Prices contracted, except as otherwise stated in Article 9 of Document 00700 - General Conditions.

1.04 MEASUREMENT OF QUANTITIES

A. Measurement by Weight: Reinforcing steel, rolled or formed steel or other metal shapes are measured by CRSI or AISC Manual of Steel Construction weights. Welded assemblies are measured by CRSI or AISC Manual of Steel Construction or scale weights.

01270-1
08-01-2003
BID DOCUMENTS

MEASUREMENT AND PAYMENT

CITY OF HOUSTON

STANDARD GENERAL REQUIREMENT

B. Measurement by Volume:

1. Stockpiles: Measured by cubic dimension using mean length, width, and height or thickness.

2. Excavation and Embankment Materials: Measured by cubic dimension using average end area method.

C. Measurement by Area: Measured by square dimension using mean length and width or radius.

D. Linear Measurement: Measured by linear dimension, at item centerline or mean chord.

E. Stipulated Price Measurement: By unit designated in the Agreement.

F. Other: Items measured by weight, volume, area, or linear means or combination, as appropriate, as completed item or unit of the Work.

G. Measurement by Each: Measured by each instance or item provided.

H. Measurement by Lump Sum: Measure includes all associated work.

1.05 PAYMENT

A. Payment includes full compensation for all required supervision, labor, Products, tools, equipment, plant, transportation, services, and incidentals; and erection, application or installation of an item of the Work; and Contractor's overhead and profit.

B. Total compensation for required Unit Price work shall be included in Unit Price bid in Document 00410 – Bid Form. Claims for payment as Unit Price work, but not specifically covered in the list of Unit Prices contained in Document 00410 – Bid Form, will not be accepted.

C. Interim payments for stored materials will be made only for materials to be incorporated under items covered in Unit Prices, unless disallowed in Document 00800 - Supplementary Conditions.

D. Progress payments will be based on Project Manager's observations and evaluations of quantities incorporated in the Work multiplied by Unit Price.

E. Final payment for work governed by Unit Prices will be made on the basis of actual measurements and quantities determined by Project Manager multiplied by the Unit Price for work which is incorporated in or made necessary by the Work.

01270-2
08-01-2003
1.06 NONCONFORMANCE ASSESSMENT

A. Remove and replace work, or portions of the Work, not conforming to the Contract documents.

B. When not practical to remove and replace work, City Engineer will direct one of the following remedies:

1. Nonconforming work will remain as is, but Unit Price will be adjusted lower at discretion of City Engineer.

2. Nonconforming work will be modified as authorized by City Engineer, and the Unit Price will be adjusted lower at the discretion of City Engineer, when modified work is deemed less suitable than specified.

C. Specification sections may modify the above remedies or may identify a specific formula or percentage price reduction.

D. Authority of City Engineer to assess nonconforming work and identify payment adjustment is final.

1.07 NONPAYMENT FOR REJECTED PRODUCTS

A. Payment will not be made for any of the following:

1. Products wasted or disposed of in an unacceptable manner.

2. Products determined as nonconforming before or after placement.

3. Products not completely unloaded from transporting vehicles.

4. Products placed beyond lines and levels of required work.

5. Products remaining on hand after completion of the Work, unless specified otherwise.

PART 2 PRODUCTS - Not Used

PART 3 EXECUTION - Not Used

END OF SECTION

01270-3
08-01-2003
SECTION 01290

PAYMENT PROCEDURES

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Schedule of Values.
B. Billing forecast.
C. Value/time log.
D. Expenditure of Cash Allowances.
E. Applications for Payment.
F. Payment for mobilization work.
G. Final payment.

1.02 DEFINITIONS

A. Schedule of Values: Itemized list, prepared by the Contractor, establishing the value of each part of the Work for a Stipulated Price contract, or for Major Stipulated Price items for a Unit Price contract. The Schedule of Values is the basis for preparing applications for payment. Quantities and unit prices may be included in the schedule when approved or required by City Engineer.

B. Major Stipulated Price Item: Item listed in Document 00410- Bid Tabulation Form which qualifies as Major Unit Price Work following Document 00700-General Conditions Paragraph 9.1.5.

1.03 SUBMITTALS

A. The Contractor must utilize Microsoft SharePoint, a web-based system run by the Houston Airport System, to submit Invoices. Before doing so, the Contractor must attend a brief mandatory SharePoint training session, which will be conducted by a member of HAPMT. The Contractor must contact the designated HAPMT trainer prior to the start of construction to schedule a time for training. Access to SharePoint will not be given to the Contractor’s team until training is completed. All document collaboration will be done using SharePoint.

B. Submit electronic version in native format of preliminary Schedule of Values at the Preconstruction Conference (Section 01312- Coordination and Meetings). Submit electronic copy in native format of final and updated Schedule of Values with each copy of Application for Payment.
C. Submit electronic version in native format of Billing Forecast and Value/Time Log at first Progress Meeting (Section 01312- Coordination and Meetings). Obtain approval before making first application for payment. Coordinate this submittal with Master Schedule specified in Section 01325- Construction Schedules.

D. Produce electronic document for Billing Forecast and Value/Time Log on 8 1/2 by 11 inch white bond paper.

1.04 SCHEDULE OF VALUES

A. Prepare Schedule of Values as follows:

1. Prior to the submission of the initial Application for Payment, Contractor shall obtain Project Manager approval for the format and content of the schedule of values for all invoices including the grouping of costs along the lines of specific equipment, asset or deliverable produced as a result of the work performed.

2. For Stipulated Price contracts, use the Table of Contents of the Project Manual as the outline for listing the value of work by Sections.

3. For Unit Price contracts, use Document 00410 as the outline. Include a proportional share of Contractor's overhead and profit in each Unit Price item so the sum of all items equals the Contract Price.

4. List mobilization, bonds, insurance, accepted Alternates and Cash Allowances as separate items.

B. Round off values for each item to the nearest $100.00, except for the value of one item of the Contractor's choice, if necessary, to make the total of all items in the Schedule of Values equal the Contract Price.

C. At direction of City Engineer revise the Schedule of Values and resubmit for items affected by Modifications, at least 10 days prior to submitting the next Application for Payment. List each Change Order as a separate item.

1.05 BILLING FORECAST

A. Prepare an electronic graphic or tabular Billing Forecast of estimated monthly applications for payment for the Work.

1. This information is not required in the monthly updates, unless significant changes in work require resubmittal of the schedule. Allocate the units indicated in the bid schedule or the schedule of values to Construction Schedule activities (weighted allocations are acceptable, where appropriate). Spread the dollar value associated with each allocated unit across the duration of the activity on a monthly basis. Indicate the total for each month and cumulative total.

2. Billing forecast is only for planning purposes of City Engineer. Monthly payments for actual work completed will be made by City Engineer following Document 00700 - General Conditions.

1.06 VALUE/ TIME LOG
A. Prepare an electronic Value/Time Log as a slope chart, showing:

1.07 EXPENDITURE OF CASH ALLOWANCES

A. Verify with City Engineer that work and payment requested is covered by Cash Allowance.

B. Prepare electronic version of Document 00685- Request for Information following Section 01726- Base Facility Survey, include following minimum data to support Contractor's request for expenditure of Cash Allowances listed in Section 01210- Cash Allowances, and process in a timely manner to allow detailed review by City Engineer:
 1. Statement of fact indicating reason(s) expenditure is required. Include photographs or video following Section 01321- Construction Photographs documenting existing conditions.
 2. Quantity survey, made from on-site measurements, of quantity and type of work required to properly complete work.
 3. Cost of work, including detailed proposals from trade(s) responsible. For work governed by unit prices, applying unit prices following this Section.
 4. Trade(s) responsible for corrective work.
 6. Administrative data, including contract name and number, and Contractor's name.

C. Do not commence affected work without written authorization.

D. Process approved expenditures following Section 01255- Modification Procedures and Application for Payment process below.

1.08 APPLICATIONS FOR PAYMENT

A. Submit each Application for Payment following Document 00700 and as directed via SharePoint which utilizes an electronic version of the American Institute of Architects Document G702 including G703 continuation sheets.

1.09 PAYMENT FOR MOBILIZATION WORK

A. Measurement for mobilization is on a lump sum basis if included as a unit price in Document 00410.

B. Mobilization payments paid upon application by Contractor subject to Specification G-100 Mobilization requirements and the following submittal requirements:
 1. Authorization for payment of 50 percent of the contract price for mobilization will be made upon receipt and Approval by City Engineer of the following submittal items, as applicable:
a) Schedule of values.
b) Trench safety program.
c) Construction schedule.
d) Photographs.
e) Submit QC Program.

C.

D. Mobilization payments are subject to retainage amounts stipulated in the Document 00700.

1.10 FINAL PAYMENT

A. When Contractor considers the Work is complete, submit written certification that:

1. Work is fully inspected by the Contractor for compliance with Contract Documents.
2. Work follows the Contract Documents, and deficiencies noted on the Punch List are corrected.
3. Products are tested, demonstrated and operational.
4. Work is complete and ready for final inspection.

B. In addition to submittals required by Document 00700 and other Sections:

1. Furnish submittals required by governing authorities, such as Certificate of Occupancy and Certificates of Inspection.
2. Submit a final statement of accounting giving total adjusted Contract Price, previous payments, and sum remaining due (final Application for Payment).

C. When the Work is accepted and final submittals are complete, a final Certificate for Payment will be issued.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01312

COORDINATION AND MEETINGS

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. General coordination is required throughout the documents and the Work. Refer to all of the Contract Documents and coordinate as required to maintain communications between Contractor, City and Designer, Subcontractors and Suppliers. Assist City with communications between Contractor and City's separate contractors.

B. Preconstruction conference.

C. Progress meetings.

D. Daily briefings.

1.02 SUBMITTALS

A. In addition to submittals related to meetings and described elsewhere in this Section, see following Sections for submittals prepared under those Sections, but submitted under this Section:

1. Section 01255- Modification Procedures: Individual authorized to execute Modifications.
2. Section 01506- Temporary Controls: “Airport Construction Control Plans”, containing submittals prepared under Section 01506 and other Sections referenced therein.

1.03 RESPONSIBILITIES FOR MEETINGS

A. City Engineer may act directly or through designated representatives identified by name at the Preconstruction Conference, and will schedule, chair, prepare agenda, record and distribute minutes and provide facilities for conferences and meetings.

B. Contractor:

1. Present status information and submittal data for applicable items.
2. Record and distribute Contractor’s corrections to meeting minutes.
3. Provide submittal data for attendees. Prepare, reproduce and issue Contractor’s documents to support conferences and meetings. Issue typically as part of each session unless more frequent publication is necessary. Issue one copy to each conference attendee, and to others as directed by City Engineer and as required by Contractor.
 a. Transmit documents requiring urgent action by facsimile, email or messenger.
 b. Provide electronic and/or hard copies as required to properly document the project or project actions. The Contractor shall coordinate the submittal format with the City Engineer.
4. Initiate and provide facilities for Coordination Meetings as required in 1.04.H.1.
5. Costs for documentation are the Contractor’s responsibility.
1.04 CONTRACTOR COORDINATION

A. Coordinate scheduling, submittals, and work of Sections to achieve efficient and orderly sequence of installation of interdependent construction elements.

B. Verify characteristics of products are compatible with existing or planned construction. Coordinate work of various Sections having interdependent responsibilities for installing, connecting to, and placing products in service.

C. Coordinate space requirements and installation of mechanical and electrical work which are indicated diagrammatically on Drawings. Follow routing shown for pipes, ducts, and conduit, as closely as practicable; place runs parallel with line of building. Utilize spaces efficiently to maximize accessibility for other installations, for maintenance, and for repairs.

D. Conceal pipes, ducts, wiring and fasteners in finished areas, except as otherwise indicated. Coordinate locations of fixtures and outlets with finish elements. Locate work requiring accessibility to coordinate with existing access panels and doors.

E. Coordinate completion and clean up of work for Substantial Completion and for portions of the Work designated for partial occupancy.

F. Coordinate access to site and within the work area(s) for correction of nonconforming work. Minimize disruption of occupants’ activities where work areas are occupied.

G. Do not proceed with affected work until discrepancies in contract requirements are resolved and unsatisfactory substrate and site conditions are corrected.

H. Coordination Drawings: Before materials are fabricated or Work begun, prepare coordination Drawings including plans, elevations, sections, and other details as required to clearly define relationships between sleeves, piping, ductwork, conduit, ceiling grid, lighting, fire sprinkler, HVAC equipment and other mechanical, plumbing and electrical equipment with other components of the construction such as, but not limited to, pavement section elevations and existing utilities to remain in place and protected from damage.

1. Hold Coordination Meetings with trades providing the above Work, to coordinate Work of the trades for each element of construction.
2. Prepare coordination Drawings to scale for general layout, plans and sections as needed or required to successfully complete the work.
3. Resolve conflicts between trades, prepare composite coordination Drawings and obtain signatures on original composite coordination Drawings as needed or required to successfully complete the work.
4. When conflicts cannot be resolved, Contractor shall request clarification prior to proceeding with that portion of the Work affected by such conflicts or discrepancies. Prepare interference Drawings to scale and include plans, elevations, sections, and other details as required to clearly define the conflict between the various systems and other components of the work and to indicate the Contractor's proposed solution.
5. Submit Drawings for approval whenever job measurements and an analysis of the Drawings and Specifications by the Contractor indicate that the various systems
cannot be installed without significant deviation from the intent of the Contract. When such an interference is encountered, cease Work in the general areas of the conflict until a solution to the question has been approved by the project Engineer.

6. Submit original composite coordination Drawings as part of record document submittals specified in Section 01770.

1.05 PRECONSTRUCTION CONFERENCE

A. Attendance Required: City Engineer’s representatives, Construction Manager (when so employed), Designer(s), Contractor, Contractor’s Superintendent, and major Subcontractors.

B. Submittals for review and discussion at this conference:

1. Draft Schedule of Values, following Section 01290- Payment Procedures.
2. Bound draft of Airport Construction Plans, following Sections 01506- Temporary Controls and 01555- Traffic Control and Regulation.
3. Draft construction schedule(s), following Section 01325- Construction Schedules.
4. Draft Submittal Schedule, following Sections 01325- Construction Schedules and 01340- Shop Drawings, Product Data and Samples.

C. Agenda:

1. Status of governing agency permits.
2. Procedures and processing of:
 a. Submittals (Section 01340- Shop Drawings, Product Data and Samples).
 b. Permitted substitutions (Section 01630- Product Options and Substitutions).
 c. Applications for payment (Section 01290- Payment Procedures).
 d. Document 00685- Request for Information.
 e. Modifications Procedures (Section 01255- Modification Procedures).
 f. Contract closeout (Section 01770- Contract Closeout).
3. Scheduling of the Work and coordination with other contractors (Sections 01325- Construction Schedules, 01326- Construction Sequencing and this Section).
4. Agenda items for Site Mobilization Conference, if any, and Progress Meetings.
5. Procedures for Daily Briefings, when applicable.
7. Record documents procedures (Section 01770- Contract Closeout).
8. Finalization of Contractor’s field office and storage locations (Section 01505- Temporary Facilities).
9. Use of premises by City and Contractor (Section 01145- Use of Premises).
10. Status of surveys (Sections 01725- Field Surveying and 01726- Base Facility Survey).
11. Review of temporary controls and traffic control (Sections 01506- Temporary Controls and 01555- Traffic Control and Regulation).
12. Construction controls provided by City.
13. Temporary utilities and environmental systems (Section 01505- Temporary Facilities).
14. Housekeeping procedures (Section 01505- Temporary Facilities).

1.06 PROGRESS MEETINGS

A. City Engineer will hold Progress Meetings weekly, or at other frequency determined by progress of the Work, at Department of Aviation office at
16930 JFK Boulevard (at George Bush Intercontinental Airport/ Houston), Houston, Texas 77032 (281/233-3000).

B. Attendance Required: Contractor’s Superintendent, major Subcontractors’ and Suppliers’ superintendents, City Engineer representatives, and Designer(s), as appropriate to agenda topics for each meeting.

C. Submittals for review and discussion at this conference:
 1. Project schedule (Section 01325- Construction Schedules).
 2. Submittal Log (Section 01340- Shop Drawings, Product Data and Samples).
 3. Log of Document 00685- Request for Information.

D. Agenda:
 1. Review minutes of previous meetings to note corrections and to conclude unfinished topics.
 2. Review of: progress schedule; coordination issues if any; corrective measures if any to regain planned progress; planned progress during succeeding work period; off-site fabrication and product delivery schedules.
 3. Field observations, problems, and decisions.
 4. Identification of problems which impede planned progress and Contractor’s proposals for resolution.
 5. Review of submittals schedule and status of submittals.
 8. Closings and impediments (Section 01145- Use of Premises).
 9. Maintenance of quality and work standards (Sections 01450- Contractor’s Quality Control and 01455- City’s Acceptance Testing).
 10. Effect of proposed changes on progress schedule and coordination.
 11. Other items affecting completion of the Work within contracted cost and time.

1.07 DAILY BRIEFINGS

A. In addition to Progress Meetings, hold briefings as frequently as required, at place designated by the City Engineer, to coordinate details of construction and airport operations. Discuss specific requirements, procedures and schedule changes, and closures and impediments.

B. When required, hold briefing before start of work each day, to confirm that required activities are properly allocated and unchanged.

PART 2- PRODUCTS (NOT USED)

PART 3- EXECUTION (NOT USED)

END OF SECTION
SECTION 01321
CONSTRUCTION PHOTOGRAPHS

PART 1 G E N E R A L

1.01 SECTION INCLUDES
A. Progress photographs to supplement Applications for Payment.
B. Detail photographs and video to supplement Request for Information.

1.02 MEASUREMENT AND PAYMENT
A. Cost of photographs is incidental to the Contract Price. No additional costs will be paid for other than administrative costs of extra copies and photographs resulting from additional stationpoints.
B. Following work will be paid on a Unit Price basis:
 1. Extra Prints: Per print.
 a. Extra prints provided direct from the photographer to parties authorized by the City Engineer up to date of Substantial Completion, priced at prevailing local commercial rates. Include photographer's costs and Contractor's administrative costs only.
 b. Extra prints provided direct from the photographer to the City Engineer up to 3 years after the date of Substantial Completion, priced at prevailing local commercial rates. Include photographer's costs but not Contractor's costs for this service.
 2. Additional Station Points: Per stationpoint, for photographs made during same trips as Paragraph 2.01.
C. Emergencies: Per trip to site. Take additional photographs or video, as appropriate to conditions, within 24 hours of the City Engineer's request. This applies to professional photography required by conditions stated in Paragraph 8.2.1 in Document 00700, General Conditions.
D. Following photography will be commissioned by Modification: Publicity photographs; special events at site; photographs taken at fabrication locations off-site.

1.03 SUBMITTALS
A. Station point Plan: One copy of the Site Plan, marked to show plan, altitude and cone-of-view of each stationpoint selected by the City Engineer or Designer. Submit at least 10 days prior to taking Preconstruction Photographs.
B. Preconstruction Photographs: Same as Paragraph B., except one-time only, and marked as such.
C. Progress Photographs: 3 prints or digital copies on approved media of each view. Submit 2 prints and 1 color aerial photograph of the project site, per requirements detailed in G-112 Construction Schedules, or digital copies on approved media with each Application for Payment. Retain 1 print or digital copy by the Contractor at the work site and available at all times for reference. Retain photographic negatives or digital files, at the photographer's office, for 3 years after Substantial Completion.

D. Photographs and Video Supporting RFI: Identify following with RFI number and date of photographs:

1. Submit 1 copy of 3x5 inch prints on white card stock in clear plastic sleeves.

2. Submit video on CD's or other approved media. Include video identification number, date of record, approximate location, and brief description of record.

E. Contract Closeout: Follow Section 01770, Contract Closeout to:

1. Return electronic copies of RFI photographs and video on CD's or other approved media device, identified by Project name, Contractor, and date photographs were taken.

2. Return video on CD's or other approved media device, identified with contents, by RFI number, and each CD or other approved media device numbered sequentially and with "Date From/ To" on each CD.

F. Aerial Progress Photographs: Submit 5 prints and 1 CD ROM of 2 consistent oblique views with each Application for Payment. Retain 1 print by the contractor at the work site and available at all times for reference. The photos shall be large format oblique angles taken from a height and viewpoint to be selected by the City Engineer.

1.04 QUALITY ASSURANCE

A. Timely take and produce photographs from proper station points, and provide proper image quality.

B. Cooperate with the photographer's work. Provide reasonable auxiliary services as requested, including access and use of temporary facilities including temporary lighting.

C. Qualifications of Photographer for General Progress Photographs: A firm or individual of established reputation regularly engaged as a professional building or scene photographer for not less than 3 years.

D. Qualifications of Photographer for RFI Photographs and Video: An employee of the Contractor knowledgeable in photography and videotaping technique, including proper use of video pan-zoom, close-ups, lighting, audio control, clear narrative, smooth transition between subjects, and steady camera support.

E. Qualifications of Aerial Photographer: A firm or individual of established reputation, regularly engaged in aerial photography with prior experience at IAH.
PART 2 P R O D U C T S

2.01 MEDIA
A. Fixed-film: 35mm color print film or color slide film, as determined by City Engineer; ASA 100 minimum, higher when required by lighting conditions.

B. Paper Prints:
1. For Progress Photographs: 8x10 inch matte-finish color, in clear plastic envelop with reinforced 3-ring binding.
2. For RFI Photographs: 3x5 inch minimum size, matte-finish color, contact-mounted on flexible white paper card stock in clear plastic envelop with reinforced 3-ring binding.

C. Video: Approved playable PC digital format; record at slowest speed or speed capable of freezing a clear image on "Pause"; date and time stamp as part of recording process. Use audio function for slate data below.
1. Provide color playback equipment at Contractor's site office, with minimum 13-inch (diagonal) screen size.

D. Bitmapped (Digital) Images: BMP, TGA, or TIF format, maximum 1280x480 and minimum 480x480 pixels, digitally date and time stamped.

E. Slate for Fixed-film Photographs: Size as required to show Project number, date and time of photographs, location of the photograph station point and photographer's name.

2.02 PRECONSTRUCTION, PROGRESS AND RFI PHOTOGRAPHHS
A. Preconstruction Photographs: Prior to beginning on-site construction, take five sets of photographs of the project area from approved stationpoints. Show condition of existing site area, and particular features as directed, within contract limits.
1. At exterior views, surrounding situs, showing streets, curbs, esplanades, landscaping, runway, taxiway and apron pavements.
2. At interior views, surrounding situs, showing floors, walls, ceilings and architectural signs.
3. Take pan-view photographs as required to encompass existing conditions.

B. Progress Photographs for Applications for Payment: Take 3 photographs from each of 2 station-points (same station point each time to show a time-lapse sequence), coinciding with the cutoff date associated with each application for payment, and at Substantial Completion of each stage of the Work.

C. Photographs and Video for Request for Information: Take photographs and video as required to support Document 00685, Request for Information:
1. Details of existing conditions before construction begins.
2. Details of construction.

3. Details of damage or deficiencies in existing construction and work of separate contractors.

3. Take number of images as required to fully show conditions.

PART 3 E X E C U T I O N

3.01 GENERAL

A. Do not record over previous video records.

B. Provide clear, sharp, vibration-less video data and clear audio without detrimental background noise.

END OF SECTION
PART 1 - GENERAL

1.01 SECTION INCLUDES
 A. Definitions
 B. Responsibility
 C. Submittals
 D. Scheduling personnel.
 E. Scheduling software.
 F. Master Schedule.
 G. Progress Schedule.
 H. Rolling Schedules.
 I. Submittal Data Schedules.
 J. Updating schedules.
 K. Narrative reports.
 L. Recovery

1.02 DEFINITIONS
 A. CPM: Critical Path Method.
 B. PDM: Precedence Diagramming Method

1.03 RELATED SECTION
 A. Section 01312 – Coordination and Meeting

1.04 RESPONSIBILITY
 A. Acceptance of Schedule Requirements by Contractor
 1. By bidding this job, the Contractor accepts the responsibility to complete the
 project on time as called for in the contract. Contractor will provide a schedule
 showing the necessary resources to complete the project within the time limit
 allowed by the contract.

 B. Schedule
 1. The Contractor is responsible for developing his own schedule logic with
 appropriate durations, resource loading and cost data, however all information
must be acceptable and compatible with the City Engineer’s Master Schedule, and all target, completion and milestone data generated must be acceptable to the City Engineer.

2. The City Engineer reserves the right to reject any schedule or report that fails to reflect completion of the Project or any intermediate milestone on their required dates, does not provide a logical sequence of operation for each activity (predecessors and successors), or otherwise indicates unrealistic performance. Failure of the Contractor to deliver satisfactory schedules or reports as required in the Contract Documents may result in actions by the City Engineer as detailed in 9.8 of Document 00700 General Conditions.

1.05 SUBMITTALS

A. The Contractor shall utilize a web-based application run by the Houston Airport System, to electronically submit RFIs, Submittals and Invoices. Access to the portal and required training will be coordinated through the Project Manager. All submittals will be made at their required time and in the required format. The Contractor will provide the number of copies specified for each document. In addition to the hard copies specified, each submittal shall be accompanied by an electronic copy in its native format.

B. Master Schedule: Submit the preliminary version in its native format at Preconstruction Conference (Section 01325- Construction Schedules). Submit the final version at first Progress Meeting (Section 01325-- Construction Schedules), and attached to each copy of first Application for Payment (Section 01290- Payment Procedures).

C. Progress Schedules: Submit 1 copy for each attendee at Progress Meetings and email 1 copy to the project manager (Section 01312- Coordination and Meetings), and 1 copy attached to each Application for Payment (Section 01290- Payment Procedures).

D. Submittal Schedule: Submit 1 copy for each attendee at Progress Meetings and email 1 copy to the project manager (Section 01312- Coordination and Meetings). See Section 01340- Shop Drawings, Product Data and Samples for statement giving permission to include this schedule as part of the Master Schedule.

1.06 SCHEDULING PERSONNEL

A. The Contractor shall retain the services of a qualified scheduler to generate the submissions, or provide a qualified designated employee to be the Project Scheduler. In either case, that individual must have had previous scheduling responsibilities on major projects and be experienced with P6. The Contractor
shall submit the resume of the designated scheduler for approval by City Engineer prior to the Notice to Proceed.

1.07 SCHEDULING SOFTWARE

A. The Network Diagramming Method to be utilized shall be the Precedence Diagram Method (PDM).

B. P6 version 7.0 is the required scheduling software for all Contractors & projects governed by these provisions. The Contractor shall make his own arrangements to produce his schedule using the same or approved compatible software.

C. Format Requirements

1. Activities
 a. Activities shall include in addition to the construction activities, the submittal, review and approval of samples, manufacturers' data, and shop drawings, the procurement of materials and equipment, installation and testing. Any impact resulting from the operations of other Contractors or from operating restraints imposed by the City shall be identified in the network schedule. The selection and number of activities shall be subject to the City Engineer's approval. The level of detail of each activity shall be such that the durations, in days, will range from one to five days. Schedule logic shall be derived such that activities do not have more than 30 days of total float. No more than 3% of the activities shall exceed these limits. Activity descriptions shall be concise and meaningful. Float belongs to the project, neither the City nor the Contractor will file a claim against the other for use of float. Both parties will be judicious in their use of float.

 c. The general contractor is welcome to use the activity ID field to organize the activities within the schedule in addition to establishing a comprehensive and structured WBS in place. However, the activity ID structure is not a requirement in P6.

1.) RESOURCE CODES:

 a.) Contractor will identify all resources required to complete the project and will resource load the schedule.

 b.) Calendar ID's:

 1. Each contractor will be provided with a block of Calendar ID's sufficient to accommodate their varying holiday & other work calendar requirements. These Calendar ID's will be reserved in advance by request to the City Engineer.

2.) COST LOADING
a.) An appropriate monetary value is to be assigned to each work activity or group activity by the Contractor and approved by the City Engineer. These costs will be presented in cost reports at each schedule update and cost loading shall be associated with materials (bid items) rather than labor or equipment so that production rates times the cost factor will equal progress payment amounts. These reports will be the basis for approving the Contractor’s application for payment.

3.) RESOURCE LOADING

a.) Each activity shall be resource loaded with manpower (by trade), material, equipment, subcontractor(s) and all other resources required to complete each of the activities. The schedule will be leveled by available resources in order to verify the scheduled activity durations and total project duration. Each resource and the availability thereof shall be defined. The leveling of the schedule shall not be considered to take the place of appropriate schedule logic.

8.) PDM SCHEDULES: activity listings and bar charts with the following information for each activity in the schedule:
 a.) Activity ID
 b.) Activity Description
 c.) Estimated (Original) Duration
 d.) Remaining Duration
 e.) Actual Duration
 f.) Early Start Date
 g.) Late Start Date
 h.) Early Finish Date
 i.) Late Finish Date
 j.) Free Float
 k.) Total Float
 l.) Activity Codes (such as Work Type)

1.08 MASTER SCHEDULE

A. Not later than 10 days after notice of contract award, prepare and submit the Preliminary Schedule confirming construction stages following Section 01326-Construction Sequencing, and showing:
 1. Capability of software to produce required schedules in proper form and content.
 2. Proposed date of Notice to Proceed (NTP).
 3. Single-line bar for each stage including start dates (milestones), duration of work by month, date (milestone) of Substantial Completion.
4. Activities affecting or affected by Separate Contractors.
5. No constraints will be used except for NTP, Project Milestones and external relationships.
6. Major material purchase and delivery of long lead items must be shown on the schedule.
7. Duplicate activity descriptions must have an additional identifier (by area/phase etc.) to distinguish between the activities when recording progress.
8. Use “task dependent” activities for all tasks, with the exception of milestones, and let the program summarize the schedule at a WBS level or activity codes level depending on the summarization requirements.
9. Confirm that all WBS levels are fully defined and not blank. CAUTION: missing WBS definitions will lead to confusion and possibly a failure to correctly account for work or costs properly.
10. All construction activities that are part of the capital costs must be completed prior to substantial completion milestone.

B. Designer and City Engineer will review the Proposed Schedule and will note unacceptable deviations noted thereon and return comments to Contractor.

C. Correct Preliminary Schedule and resubmit until approved.

D. Not later than the date of the NTP prepare and submit Master Schedule based on applicable revisions to Preliminary Schedule showing the entire project:
 1. Date of NTP.
 2. Single-line bar for each activity in each Stage including start dates (milestones), duration of work by week, date (milestone) of completion of each stage, and date (milestone) of Substantial Completion.
 4. Activities affecting or affected by Separate Contractors.

E. Baseline Data: Information shown on the Master Project Construction Schedule is the baseline against which actual and forecasted progress is tracked.

F. Publish schedules monthly at minimum frequency with Monday-starts. Include calendar-specific dates based on date of NTP and contract duration. Number contract days.

1.09 PROGRESS SCHEDULES

A. For each progress conference (Section 01312- Coordination and Meetings) and for each application for payment (Section 01290- Payment Procedures), prepare and submit the Progress Schedule showing for the entire project:
 1. Master Schedule data specified in Paragraph 1.06.
 2. Immediately below each line of the Master Schedule:
a. Indicate actual progress (percent complete) not earlier than 2 days prior to each progress conference.

b. Indicate forecasted progress through completion of each activity.

3. Make and show revisions since previous submissions for changes in scope of work, sequencing and other identifiable changes, based on Modifications approved or then-in-process of approval.

4. The general contractor shall not reduce activity durations in an attempt to reduce negative float. If the general contractor intends to execute activities quicker than the original duration, this shall be mentioned in the float analysis and will be implemented on schedule revisions not schedule updates.

1.10 SUBMITTAL SCHEDULES

A. Prepare a Submittal Schedule showing:
 1. Dates (milestones) for Contractor’s submittals to Designer.
 2. Durations and dates (milestones) for processing by Designer and other parties, at weekly or daily frequency as required. Indicate submittals requiring special processing such as short-duration reviews.
 3. Dates (milestones) submittals are required from separate contractors and City (for work by City specified in Section 01110- Summary of Work) for review by Contractor.

B. Submit a master Submittal Schedule showing all submittals required. If required to adequately show processing requirements, provide schedules for each Stage.

C. List submittals following Section numbers and headings in the Project Manual. If approved, submittal log data specified in Section 01340- Shop Drawings, Product Data and Samples may be incorporated into this schedule.

D. At the Contractor’s option, Submittal Schedules may be prepared as an integral part of construction schedules specified herein.

1.11 UPDATING SCHEDULES

A. Prepare updates to and issue updated Master Schedule and Progress Schedules to reflect changes in the Work or deviations from original schedule.

B. Update to show actual start and finish dates, percent complete, and remaining duration of each activity. Updating to reflect actual progress to date is not a revision to the contract schedule. Revise only with approval and when one or more of the following conditions occur:
 1. When a change or delay significantly affects any specified intermediate milestone dates or completion dates or the sequence of activities.
2. When the Contractor proposes to change sequence of activities affecting the critical path or to significantly change the previously approved work plan.

3. When, in the opinion of the City Engineer, the status of the work is such that the schedule and supporting analysis are no longer representative for planning and evaluation of the Work.

C. Provide narrative reports as required to clarify information shown on schedules.

D. Instruct recipients to promptly notify Contractor of problems discovered or anticipated in forecasts shown.

E. Participate with City, occupants, separate contractors, City Engineer and Designer in reviews and resolution of schedule conflicts.

1. 3 WEEK LOOKAHEAD - SORT BY WBS
 A bar chart report sorted by WBS showing activities from previous week and upcoming work for the next three (3) weeks:

2. CASH FLOW REPORT

 a. Cash Flow Reports shall be based on agreed completions for each work activity and be formatted to be consistent with the approved schedule of values from the bid documents.

 b. The original cash flow report is to display, either in tabular or graphic format, projections of weekly values of work-in-place. Each schedule of values line item is to be represented within the project. Updated reports are to record the original projection, and actual value of work-in-place, and adjusted projections required to accommodate completion of the project.

3. NARRATIVE REPORT

 a. A narrative description of the Contractor’s management philosophy and construction plan will be provided with each submittal. This description will define clearly each activity or group of activities so there is no doubt as to what is encompassed by an activity and what portion of the work is represents.

 b. A written narrative will be supplied with each submittal:
 1.) To describe or explain logic changes.
 2.) To explain out of sequence progress.
 3.) To detail procurement/delivery problems.
 4.) To describe recovery plans whenever negative float is indicated.
 5.) To explain clearly any new activities (the work they represent).

 c. Schedule performance index shall be reported on monthly basis at CSI spec. level.
4. OTHER REPORTS

 a. Other reports may be required by the City Engineer. This will only be required if the Contractor fails to maintain all approved schedules.

1.12 RECOVERY

 A. The City Engineer may require the Contractor to add to their plant, equipment, or construction forces, as well as increase the working hours, if operations fall behind schedule by 15 Calendar days or more at any time during the construction period. The cost of the above will be the responsibility of the Contractor.

 B. If at any time during the project, any Contractor fails to complete any activity by its latest completion date, he will be required, within fifteen (15) Calendar days, to submit to the City Engineer a Recovery Schedule displayed in time scaled PDM format, at no additional cost to the City. The Recovery Schedule shall depict the Contractor’s plan for regaining the lost time including but not limited to the following actions:

 1. Adjustment of work sequencing, as depicted on the accepted construction schedule.

 2. Increase resources as necessary.

 3. Increase in the number of working hours per day, shifts per day, working days per week, amount of equipment, or any combination thereof.

 C. This work shall not be deemed to be acceleration demanded by the City but shall be recovery time by the Contractor.

 D. Recovery Schedule Preparation

 1. Within three (3) Calendar days after being notified in writing of the late completion of any activity, the Contractor shall prepare and submit a Recovery Schedule incorporating the best available information from subcontractors and others which shall permit return to the approved construction schedule at the earliest possible time, but not exceeding a total duration of seven (7) days from the date of written notification by the City Engineer. The Recovery Schedule shall be prepared to the same level of detail as the Approved Project Target.

 E. Schedule Review

 1. Within three (3) Calendar days after above notifications the Contractor shall participate in a conference with appropriate parties to review and evaluate the Recovery Schedule. The Contractor shall make revisions to his recovery plan
as necessitated by this review. The Contractor shall use the accepted Recovery Schedule in his planning and execution of the work for the planned duration of the Recovery Schedule. The Contractor shall also continue to use as reference the Approved Project baseline Target and milestones completion dates (Original Baseline).

F. Schedule Assessment

1. During the planned duration of the Recovery Schedule, the Contractor shall confer with the City Engineer every seven (7) days to assess the effectiveness of the Recovery Schedule. At the end of the recovery period, if the Contractor is:

a) Behind Schedule. If the Contractor is still behind schedule, the Contractor shall prepare another Recovery Schedule.

b) On Schedule. If the Contractor has recovered the delay, the Project shall again be monitored using only the Approved Project Target Schedule.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01326
CONSTRUCTION SEQUENCING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Work periods.
B. Mobilization and demobilization.
C. Construction sequence.

1.02 WORK PERIODS

A. No work is permitted at IAH during the following periods:

1. Reference the project phasing sheets of the plan set for details and required work hours, by phase.

B. For purposes of on-site construction operations for interior work (not anticipated), work may be accomplished in one or more of the following daily schedules (shifts) and as specified elsewhere herein:

1. “Day (D) Shift”: For work fully confined behind dust-resistant enclosures and where airborne or structure-borne noise is abatable by temporarily ceasing operations, work from 0000 hours through 2400 hours each day of the week, meaning a 24 hour shift is available whether or not all hours are used; however, deliver products and remove debris only during “N Shift.”

2. “Night (N) Shift”: For work that cannot, due to dust or noise-producing operations, be done during “D Shift”, work from 1900 hours through 0600 hours each day of the week (8-hour shift, one-hour lunch break), with the following restrictions on access:
 a. Move products into and remove debris only during “N shift” period.
 b. Complete work of the shift and entirely evacuate the work area by 0600 of the next day, including rubbish removal, leaving enclosures or barricades in place.
 c. Work at the car rental counters at the Baggage Level Public Lobby between 02300 hours to 0500 hours.

1.03 MOBILIZATION AND DEMOBILIZATION

A. Payment for mobilization is specified in Section 01290- Payment Procedures and Specification G-100 Mobilization.

B. General mobilization applicable to the Work, regardless of construction sequencing specified herein includes:

1. Construction and Submittal Schedule processing following Sections 01325-Construction Schedules, and G-112 Construction Schedules and 01340-Shop Drawings, Product Data and Samples.
2. Obtain and pay for permits.
3. Submittal of other documents following Section 01312- Coordination and Meetings.
4. Survey Base Building following Section 01726- Base Facility Survey and process related Document 00685- Request for Information, including accessibility by cutting, following Section 01731- Cutting and Patching, into concealed areas.
6. Approval of construction schedules following Section 01325- Construction Schedules and G-112 Construction Schedules.
7. Product acquisition for other tasks; except products with short lead times may be acquired later as required to maintain schedule performance.
8. Acquisition of major construction equipment and set-up of on-site storage and office space.
9. Other activities necessary to maintain schedule performance.
10. Construction and/or use of exterior and interior barricades and enclosures following Section 01505- Temporary Facilities.

C. Demobilization:

1. Processing of closeout documents, following Section 01770- Contract Closeout, and activities not otherwise completed at the end of previous tasks.
2. Process closeout documents and related activities for asbestos abatement at the end of that task.

1.04 CONSTRUCTION SEQUENCE

A. Sequence of work or tasks indicated in the schedule included in the Drawings is intended only as a guide for Bidding.

B. Prepare and process Contractor’s construction schedule following Section 01325- Construction Schedules and G-112 Construction Schedules.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 CONSTRUCTION SEQUENCE

A. Construct the Work in sequence as shown on Drawings and provided in the Construction Safety and Phasing Plan (CSPP); reference Section 01506 Airport Temporary Controls and 01506 Construction Safety and Phasing Plan.

END OF SECTION
Section 01330

SUBMITTALPROCEDURES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Submittal procedures for:

2. Shop Drawings, Product Data and Samples

3. Manufacturer's Certificates

4. Construction Photographs

5. Project Record Documents and monthly certification.

6. Design Mixes

1.02 SUBMITTAL PROCEDURES A.

Scheduling and Handling:

1. The Contractor must utilize, a web-based system run by the Houston Airport System, to submit RFIs, Submittals and Invoices. Before doing so, the Contractor must attend a brief mandatory training session, which will be conducted by a member of HAS. The Contractor must contact the designated HAS trainer prior to the start of construction to schedule a time for training. Access to SharePoint will not be given to the Contractor’s team until training is completed. All document collaboration will be done using...
SharePoint.

2. Submit Shop Drawings, data and Samples for related components as required by Specifications and Project Manager.

3. Schedule submittals well in advance of need for construction Products. Allow time for delivery of Products after submittal approval.

4. Develop submittal schedule that allows sufficient time for initial review, correction, resubmission and final review of all submittals. Allow a minimum of 30 days for initial review. Project Manager will review and return submittals to Contractor as expeditiously as possible but time required for review will vary depending on complexity and quantity of data submitted.

5. Project Manager’s review of submittals covers only general conformity to Drawings, Specifications and dimensions that affect layout. Contractor is responsible for quantity determination. No quantities will be verified by Project Manager. Contractor is responsible for errors, omissions or deviations from Contract requirements; review of submittals does not relieve Contractor from the obligation to furnish required items in accordance with Drawings and Specifications.

6. Submit five copies of documents unless otherwise specified.

7. Revise and resubmit submittals as required. Identify all changes made since previous submittal.

8. Assume risk for fabricated Products delivered prior to approval. Do not incorporate Products into the Work, or include payment for Products in periodic progress payments, until approved by Project Manager.

B. Transmittal Form and Numbering:

1. Transmit each submittal to Project Manager with Transmittal letter which includes:
 a. Date and submittal number
 b. Project title and number
 c. Names of Contractor, Subcontractor, Supplier and manufacturer
d. Identification of Product being supplied
e. Location of where Product is to be installed
f. Applicable Specification section number

2. Identify deviations from Contract documents clouding submittal drawings. Itemize and detail on separate 8-1/2 by 11-inch sheets entitled "DEVIATIONS FOR __________." When no deviations exist, submit a sheet stating no deviations exist.

3. Have design deviations signed and sealed by an appropriate design professional, registered in the State of Texas.

4. Sequentially number transmittal letters beginning with number one.
Use original number for resubmittals with an alphabetic suffix (i.e., 2A for the first resubmittal of submittal 2, or 15C for third resubmittal of submittal 15, etc.). Show only one type of work or Product on each submittal. Mixed submittals will not be accepted.

C. Contractor's Stamp:

1. Apply Contractor's Stamp certifying that the items have been reviewed in detail by Contractor and that they comply with Contract requirements, except as noted by requested variances.

2. As a minimum, Contractor's Stamp shall include:
a. Contractor's name
b. Job number
c. Submittal number
d. Certification statement Contractor has reviewed submittal and it is in compliance with the Contract
e. Signature line for Contractor

D. Submittals will be returned with one of the following Responses:

1. "REVIEWED AS SUBMITTED" when no response and resubmittal is required.

2. "NO EXCEPTION" when sufficient information has supplied to determine that item described is accepted and that no
resubmittal is required.

3. "MAKE CORRECTIONS AS NOTED WHEN EXCEPTIONS DO NOT REQUIRE FUTURE CHANGES" when sufficient information has been supplied to determine that item will be acceptable subject to changes, or exceptions, which will be clearly stated. When exceptions require additional changes, the changes must be submitted for approval. Resubmittal is not required when exceptions require no further changes.

4. "REVISE AND RESUBMIT" when submittal does not contain sufficient information, or when information provided does not meet Contract requirements. Additional data or details requested by Project Manager must be submitted to obtain approval.

1.03 MANUFACTURER'S CERTIFICATES

A. When required by Specification sections, submit manufacturers' certificate of compliance for review by Project Manager.

B. Place Contractor's Stamp on front of certification.

C. Submit supporting reference data, affidavits, and certifications as appropriate.

D. Product certificates may be recent or from previous test results, but must be acceptable to Project Manager.

1.04 DESIGN MIXES

A. When required by Specification sections, submit design mixes for review.

B. Place Contractor's Stamp, as specified in this section, on the front of each design mix.

C. Mark each mix to identify proportions, gradations, and additives for each class and type of mix submitted. Include applicable test results from samples for each mix. Perform tests and certifications within 12 months of the date of the submittal.

D. Maintain copies of approved mixes at mixing plant.

1.05 CHANGES TO CONTRACT
A. Changes to Contract may be initiated by completing a Request for Information form. Project Manager will provide a response to Contractor by completing the form and returning it to Contractor.

1. If Contractor agrees that the response will result in no increase in cost or time, a Minor Change in the Work will be issued by City Engineer.

2. If Contractor and Project Manager agree that an increase in time or cost is warranted, Project Manager will forward the Request for Proposal for negotiation of a Change Order.

PART 2 PRODUCTS - Not Used

PART 3 EXECUTION - Not Used

END OF SECTION
SECTION 01340

SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

PART 1- GENERAL

1.01 SECTION INCLUDES

A. General procedural requirements for submittal data:
 1. Shop drawings.
 2. Product data.
 3. Samples, including control samples.
 4. Product certifications and compliance statements.
 5. Submittal logging.

B. Submittal quantities specified in other Sections supersedes those specified herein.

C. Product interface control documents.

1.02 GENERAL PROCEDURES

A. Review submittal data and indicate results of review on documents submitted to Designer.

 1. Obtain review and indicate results of Subcontractors' and applicable Separate Contractors' reviews before submittal to Designer.
 2. Include on each shop drawing, sample or product data. Submit the following minimum language, signed (by individuals authorized to make binding agreements on behalf of their respective firms) and dated on behalf of each responsible party:

 "The Subcontractor and the Contractor named below hereby certify this submittal has been checked prior to submission to Designer, and conforms to the requirements of the Contract Documents for work represented hereby. This submittal does not deviate from requirements of the Contract Documents. It has been checked for: field conditions; correlation of dimensions and quantities; safety precautions; construction means, methods, techniques, schedules, sequences, procedures and fabrication processes; for errors and omissions in this submittal; and for coordination of the work of the trades.

 ____________________________________ (Subcontractor Firm)
 ____________________________________ (Authorized Signature)
 ____________________________________ (Date)

 This submittal has also been checked by the following Subcontractors and Separate Contractors for coordination of substrate/superstrate conditions and applicable product interfaces.

 (List company names, place authorized signature and date for each.)

 ____________________________________ (Contractor)
 ____________________________________ (Authorized Signature)
 ____________________________________ (Date)"

SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

01340-1 ver. 12-29-03
B. Transmit submittals under original transmittal to Designer, with a copy of the transmittal only to City Engineer. Number each submittal by specification number, for future reference.

1. Furnish number of copies specified herein or in other Sections, for Designer's and City Engineer's records, plus additional copies as the Contractor requires for construction operations and coordination of the Work.
2. Identify Project, Contractor, Subcontractor, Supplier, and generic name of component or system. Allow space on submittal data to accommodate required stamps by Contractor, applicable Subcontractors, applicable Separate Contractors, Designers, and other reviewers.
3. Indicate applicable Drawing detail and Section number.
4. For submittals using SI (metric) measure as the manufacturer's or fabricator's standard, include corresponding Imperial measure conversions. Follow requirements in Section 01610.

C. After Designer's review, revise and resubmit until resubmittal is no longer required; identify and log changes made to previous submittals.

D. Distribute copies of reviewed submittals to concerned parties, including Separate Contractors. Instruct recipients to promptly report inability to comply with requirements indicated therein.

E. Shop Drawings, Product Data and Samples: Follow Contractor's progress schedule for submittals related to work progress. Coordinate submittal of related items. Partial submittals will be returned unreviewed.

F. Transmit submittals far enough in advance to provide time required for reviews, for securing necessary approvals, for revisions and resubmittals. Allow 14 days after receipt for Designer's review, except where shorter processing time is approved due to extraordinary conditions.

G. Do not submit data where no submittal requirements occur. Unsolicited submittals will be returned unreviewed.

H. Incomplete, uncoordinated, inaccurate and illegible submittals, and submittals without evidence of review by Contractor, applicable Subcontractors and applicable Separate Contractors will be returned unreviewed.

I. Responsibility for costs of Designer's additional reviews resulting from improper submittal data remains with the Contractor, deductible from the Contract Sum or Time by Change Order.

1.03 SHOP DRAWINGS

A. Submit electronic copies and hard copies as required. After Designer's review, reproduce and distribute copies required for the Contractor's use. The Designer will reproduce copies for Designer and City Engineer.

B. Sheet Size: 8-1/2 x 11 inches minimum; 22x34 inches maximum.

C. If CAD is used, prepare documents readable, writable and printable using PC-compatible hardware and software, based on AutoCAD (13 or later versions) or
software translated thereto. Provide AutoCAD data disks following Section 01770- Contract Closeout.

D. Prepare shop drawings by qualified drafters, accurately and distinctly showing:
 1. Field and erection dimensions clearly identified as such.
 2. Arrangement and section views.
 3. Relation to adjacent materials or structure including complete information for making connections between work under this Contract and work under other contracts.
 5. Parts list and descriptions.
 6. Assembly drawings of equipment components and accessories showing their respective positions and relationships to the complete equipment package.
 7. Where necessary for clarity, identify details by reference to drawing sheet and detail numbers, schedule or room numbers as shown on the Contract Drawings.

E. Drawing to scale, and accurately represent specific products furnished.

1.04 PRODUCT DATA/MANUFACTURERS' LITERATURE

A. Submit electronic copy and 4 original hard copies plus additional copies required for Contractor's use. Designer will retain four copies for distribution to City. Distribute remaining copies.

B. Mark each copy to clearly identify applicable products, models, options, and other data; supplement manufacturers' standard data to provide information unique to the Work.

C. When available, submit "SpecData" sheets.

D. Include manufacturers' installation instructions.

E. For products specified only by reference standard, give manufacturer's name, product name, model or catalog number, copy of referenced standard, and manufacturer's descriptive technical literature.

1.05 CONTRACTOR-PREPARED SAMPLES

A. Submit 4 original sets of samples plus additional copies or samples as required for Contractor's use. Designer will retain three copies or samples for distribution to City. Distribute remaining copies or samples.

B. Demonstrate functional and visual characteristics of products, complete with integral parts and attachment devices.

C. Submit a reasonable range of manufacturers' standard colors, textures, sheens, and patterns for selection where specific requirements are not specified, where deviations are proposed, and where the nature of the product may vary in color, vein or "grain," texture, sheen and other visible characteristics.

D. Sample characteristics are specified in individual Sections.
E. Size, unless otherwise specified:

1. Paint and Liquid Coated Products: 8-1/2 x 11 inches; tape edges of samples using gypsum board as the base or substrate.
2. Flat or Sheet Products: 8-1/2 x 11 inches.
3. Linear Products: 11 inches long.
4. Bulk Products: Copy of container label, only where label submittal is specified.

F. Full size or on-site samples or mock-ups may be used in the Work if approved.

1.06 CONTROL SAMPLES

A. Certain Base Facility construction establishes performance, product, workmanship, or aesthetic quality requirements for this contract.

B. Required control samples include, but are not limited to, the following:

1. Paint and other applied decorative coatings at sight-exposed surfaces in public spaces, regardless of substrate types; for matching compatibility, color, texture, sheen, reflectivity and other visual and performance characteristics of analogous new work.

2. Reflective Media (Glass Bead), submitted prior to its use, to verify the quality of the materials and to ensure conformance with the applicable specifications. The submitted sample shall include documentation certifying that the material meets the requirements for TT-B-1325D, Type III, as detailed in Specification P-620. Glass beads shall be treated with all compatible coupling agents recommended by the manufacturers of the paint and reflective media to ensure adhesion and embedment, as required in Specification P-620.

3. Asphalt binder, submitted prior to and during production, to verify the quality of the materials and ensure conformance with the applicable specifications. The submitted sample shall include certifications showing the appropriate ASTM tests, test results and a statement that the material meets the Specification P-401 requirements.

C. Include control samples with submittal to which they apply.

D. For items transmittable by mail or hand, remove one representative sample, following Section 01312- Coordination and Meetings, and nondestructively label as "Control Sample." Process following Paragraph 1.06.

E. Obtain control samples following Section 01731- Cutting and Patching. The control sample will be returned to the Contractor.

F. For items impractical to remove or mail, temporarily and non-destructively tag each item in place and maintain until submittal processing is complete. Request submittal evaluation to occur on-site. Include request with submittal to which it applies.

1. Provide temporary facilities following Section 01505- Temporary Facilities to provide access to and protection of control samples.
2. Handle, store and protect control samples following Section 01610- Basic Product Requirements.
G. Maintain control samples until applicable new work is completed or until directed.

1.07 PRODUCT INTERFACE CONTROL DOCUMENTS

A. Following requirements apply where specified in other Sections.

B. Prepare submittal data as required, to indicate proper interface between work of Subcontractors and Separate Contractors, for products of one Section or Contract required to be supported by, or affixed or connected to products of another Section or Contract. Follow Section Paragraph 1.02 for review and processing requirements.

 1. Fully describe mating surfaces between products.
 2. Fully describe predecessor and successor staging and sequencing of product fabrications and installations.

C. Field corrections to mating surfaces are not permitted, unless field modification is specified in Sections.

1.08 CERTIFICATIONS AND COMPLIANCE STATEMENTS

A. Submit 4 original copies plus additional copies required for Contractor’s use. Designer will retain three copies for distribution to City. Distribute remaining copies. Include original signature and applicable original seal(s) on each copy.

B. Certifications may be in the form of recent test results, research reports, reference data, or affidavits, as applicable to certifications required.

1.9 SUBMITTAL LOG

A. If approved, submittal log may be incorporated into submittal schedules following Section 01325- Construction Schedules.

B. Coordinate shop drawings, samples, product data and certifications schedule in Section 01325- Construction Schedules. Log submittals showing proposed submittal number, and expected processing period for each.

C. Denote submittals requiring special attention, such as requested shorter review time due to extraordinary conditions. Indicate reasons for special attention.

D. Update and distribute following Sections 01312- Coordination and Meetings and 01325- Construction Schedules.

1.10 DESIGNER’S ACTIONS

A. Comments may be added by Designer to submittal data, to inform the Contractor of detected failure of submittal data to follow contract requirements and the design concept expressed therein.

B. Commencing work governed by submittal requirements without proper processing of required submittals is the risk of the Contractor.
1. Cost increases attributable thereto are the sole responsibility of the Contractor without increase in Contract Sum.

2. Time increases attributable thereto are the sole responsibility of the Contractor under provisions of Article 9.13 (Liquidated Damages) in Document 00700- General Conditions.

C. Responsibility for Contractor's errors and omissions or construction of defective or deficient work remains with the Contractor and is not relieved by Designer's review.

D. Following is Designer's submittal review statement, which may be affixed to Contractor's submittal by stamp, label or separate sheet:

RS&H, INC.

Attention: This approval is limited to the requirements of the contract for architect/engineer action on the shop drawing and samples. Review of shop drawings and samples is only for conformance with the design concept of the project and does not relieve the contractor of responsibility for any deviation from the requirements of the contract documents nor from responsibility for errors or omissions in the shop drawings or samples. Contractor shall determine and verify all field measurement, field construction criteria, quantities, material, catalog numbers and similar data. Check and coordinate each shop drawing and sample with the requirements of the work and of the contract documents.

SHOP DRAWING REVIEW DISPOSITION

- [] APPROVED [] RETURNED FOR CORRECTION
- [] APPROVED AS NOTED [] RETURNED WITHOUT ACTION
- [] NOT APPROVED [] SEE TRANSMITTAL LETTER

BY: [] DATE: [] 20__

END OF DESIGNER'S SUBMITTAL REVIEW STATEMENT

PART 2- PRODUCTS (NOT USED)

PART 3- EXECUTION

3.01 CONTROL SAMPLES

A. Reinstall control samples following Section 01731- Cutting and Patching.

END OF SECTION
RS&H, INC.

ATTENTION: This approval is limited to the requirements of the contract for architect/engineer action on the shop drawings and samples. Review of shop drawings and samples is only for conformance with the design concept of the project and does not relieve the contractor of responsibility for any deviation from the requirements of the contract documents nor from responsibility for errors or omissions in the shop drawings or samples. Contractor shall determine and verify all field measurements, field construction criteria, quantities, materials, catalog numbers and similar data. Check and coordinate each shop drawing and sample with the requirements of the work and of the contract documents.

SHOP DRAWING REVIEW DISPOSITION

- APPROVED
- RETURNED FOR CORRECTION
- APPROVED AS NOTED
- RETURNED WITHOUT ACTION
- NOT APPROVED
- SEE TRANSMITTAL LETTER

BY: ______________________ DATE: __________

Project: ______________________ RS&H No. ______________________

Submittal No.: ______________________

END OF RS&H, Inc. SUBMITTAL REVIEW STATEMENT
SECTION 01410
TPDES REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Documentation to be prepared and signed by Contractor before conducting construction operations, in accordance with the Texas Pollutant Discharge Elimination System (TPDES) Construction General Permit Number TXR 150000 issued February 15, 2008 (the Construction General Permit).

B. Implementation, maintenance inspection, and termination of storm water pollution prevention control measures including, but not limited to, erosion and sediment controls, storm water management plans, waste collection and disposal, off-site vehicle tracking, and other appropriate practices shown on the Drawings or specified elsewhere in the Contract.

C. Review of the Storm Water Pollution Prevention Plan (SWP3) implementation in a meeting with Project Manager prior to start of construction.

1.02 DEFINITIONS

A. Commencement of Construction Activities: The exposure of soil resulting from activities such as clearing, grading, and excavating.

B. Large Construction Activity: Project that:
 1. disturbs five acres or more, or
 2. disturbs less than five acres but is part of a larger common plan of development that will disturb five acres or more of land.

C. Small Construction Activity: Project that:
 1. disturbs one or more acres but less than five acres, or
 2. disturbs less than one acre but is part of a larger common plan of development that will ultimately disturb one or more acres but less than five acres.

C. TPDES Operator:
1. The person or persons who have day-to-day operational control of the construction activities which are necessary to ensure compliance with the SWP3 for the site or other Construction General Permit conditions.

PART 2 PRODUCTS - Not Used

PART 3 EXECUTION

3.01 SITE SPECIFIC STORM WATER POLLUTION PREVENTION PLAN (SWP3)

A. Prepare a SWP3 following Part III of the Construction General Permit and the Storm Water Management Handbook for Construction Activities issued under City Ordinance Section 47-695(b). If conflicts exist between the Construction General Permit and the handbook, the more stringent requirements will apply.

B. Update or revise the SWP3 as needed during the construction following Part III, Section E of the Construction General Permit.

C. Submit the SWP3 and any updates or revisions to Project Manager for review and address comments prior to commencing, or continuing, construction activities.

3.02 NOTICE OF INTENT For Large Construction Activity

A. Fill out, sign, and date TCEQ Form 20022 (02/03) Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activity under the TPDES Construction General Permit (TXR 150000), ATTACHMENT 1 of this Section 01410.

B. Transmit the signed Contractor’s copy of TCEQ Form 20022 (02/03), along with a $100.00 check, made out to Texas Commission on Environmental Quality, and the completed Payment Submittal Form to Project Manager.

C. Project Manager will complete a separate TCEQ Form 20022 (02/03) for City’s Notice of Intent, and will submit both Notices, along with checks for application fees, to the TCEQ.

D. Submission of the Notice of Intent form by both the City and Contractor to TCEQ is required a minimum of two days before Commencement of Construction Activities.
3.03 CONSTRUCTION SITE NOTICE FOR SMALL CONSTRUCTION ACTIVITY

A. Fill out, sign, and date the Construction Site Notice”, Attachment 2 to TPDES General Permit TXR 150000, “Construction Site Notice, ATTACHMENT 2 of this Section 01410.

B. Transmit the signed Construction Site Notice to Project Manager at least seven days prior to Commencement of Construction Activity.

3.04 CERTIFICATION REQUIREMENTS

A. Fill out TPDES Operator’s Information form, ATTACHMENT 3 of this Section 01410, including Contractor’s name, address, and telephone number, and the names of persons or firms responsible for maintenance and inspection of erosion and sediment control measures. Use multiple copies as required to document full information.

B. Contractor and Subcontractors shall sign and date the Contractor’s / Subcontractor’s Certification for TPDES Permitting, ATTACHMENT 4 of this Section 01410. Include this certification with other Project certification forms.

C. Submit properly completed certification forms to Project Manager for review before beginning construction operations.

D. Conduct inspections in accordance with TCEQ requirements. Ensure persons or firms responsible for maintenance and inspection of erosion and sediment control measures read, fill out, sign, and date the Erosion Control Contractor’s Certification for Inspection and Maintenance. Use the EPA NPDES Construction Inspection Form, ATTACHMENT 5 of this Section 01410; and the City of Houston Storm Water Pollution Prevention Plan Construction Site Inspection Report, ATTACHMENT 6 of this Section 01410 to record maintenance inspections and repairs.

3.05 RETENTION OF RECORDS

A. Keep a copy of this document and the SWP3 in a readily accessible location at the construction site from Commencement of Construction Activity until submission of the Notice of Termination (NOT) for Storm Water Discharges Associated with Construction Activity under TPDES Construction General Permit (TXR 150000). Contractors with day-to-day operational control over SWP3 implementation shall have a copy of the SWP3 available at a central location, on-site, for the use of all operators and those identified as having responsibilities under the SWP3. Upon submission of the NOT, submit all required forms and a copy of the SWP3 with all revisions to Project Manager.
3.06 REQUIRED NOTICES

A. Post the following notices from effective date of the SWP3 until date of final site stabilization as defined in the Construction General Permit:

1. Post the TPDES permit number for Large Construction Activity, or a signed TCEQ Construction Site Notice for Small Construction Activity. Signed copies of the City’s and Contractor’s NOI must also be posted.

2. Post notices near the main entrance of the construction site in a prominent place for public viewing. Post name and telephone number of Contractor’s local contact person, brief project description and location of the SWP3.
 a. If posting near a main entrance is not feasible due to safety concerns, coordinate posting of notice with Project Manager to conform to requirements of the Construction General Permit.
 b. If Project is a linear construction project (e.g.: road, utilities, etc.), post notice in a publicly accessible location near active construction. Move notice as necessary.

3. Post a notice to equipment and vehicles operators, instructing them to stop, check, and clean tires of debris and mud before driving onto traffic lanes. Post at each stabilized construction exit area.

4. Post a notice of waste disposal procedures in a readily visible location on site.

3.07 ON-SITE WASTE MATERIAL STORAGE

A. On-site waste material storage shall be self-contained and shall satisfy appropriate local, state, and federal rules and regulations.

B. Prepare list of waste material to be stored on-site. Update list as necessary to include up-to-date information. Keep a copy of updated list with the SWP3.

C. Prepare description of controls to reduce pollutants generated from on-site storage. Include storage practices necessary to minimize exposure of materials to storm water, and spill prevention and response measures consistent with best management practices. Keep a copy of the description with the SWP3.

3.08 NOTICE OF TERMINATION

A. Submit, ATTACHMENT 7 of this Section 01410, to Project Manager within 30
days after:

1. Final stabilization has been achieved on all portions of the site that are the responsibility of the Contractor; or

2. Another operator has assumed control over all areas of the site that have not been stabilized; and

3. All silt fences and other temporary erosion controls have either been removed, scheduled to be removed as defined in the SWP3, or transferred to a new operator if the new operator has sought permit coverage.

B. Project Manager will complete City’s NOT and submit Contractor and City’s notices to the TCEQ and MS4 entities.

END OF SECTION
ATTACHMENT 1

Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activity under the TPDES Construction General Permit (TXR150000)

For help completing this application, read the TXR150000 NOI Instructions (TCEQ-20022-Instructions).

A. Construction Site Operator

- **Name:**
- **Mailing Address:**
- **City:**
- **State:**
- **Zip Code:**
- **Country Mailing Information (if outside USA):**
 - **Territory:**
 - **Country Code:**
 - **Postal Code:**
- **Phone Number:**
- **Extension:**
- **Fax Number:**
- **E-mail Address:**
- **Type of Operator:**
 - Individual []
 - Sole Proprietorship - D.B.A. []
 - Partnership []
 - Corporation []
 - Federal Government []
 - State Government []
 - County Government []
 - City Government []
 - Other []
- **Independent Operator:** [] Yes [] No
- **Number of Employees:**
 - 0-20 []
 - 21-100 []
 - 101-250 []
 - 251-500 []
 - 501 or higher []
- **Federal Tax ID:**
- **State Franchise Tax ID:**
- **DUNS Number:**

B. Billing Address

- **Name:**
- **Mailing Address:**
- **City:**
- **State:**
- **Zip Code:**
- **Country Mailing Information (if outside USA):**
 - **Territory:**
 - **Country Code:**
 - **Postal Code:**

C. Project / Site Information

- **Name:**
- **Mailing Address:**
- **City:**
- **State:**
- **Zip Code:**
- **Country:**
- **County:**
- **Location Access Description:**
- **Latitude:**
- **Longitude:**
- **Degrees (°), Minutes (′), and Seconds (″):**
- **Decimal Form:**
- **Standard Industrial Classification (SIC) code:**
- **Also, describe the construction activity at this site (do not repeat the SIC code):**

D. Contact - If the TCEQ needs additional information regarding this application, who should be contacted?

- **Name:**
- **Title:**
- **Phone Number:**
- **Extension:**
- **Fax Number:**
- **E-mail Address:**

E. Payment Information - Check / Money Order Number:

- **Name on Check / Money Order:**

F. Certification

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Construction Site Operator Representative:
- **Prefix:**
- **First:**
- **Last:**
- **Middle:**
- **Suffix:**
- **Title:**
- **Signature:**
- **Date:**

If you have questions on how to fill out this form or about the storm water program, please contact us at (512) 239-4671. Individuals are entitled to request and review their personal information that the agency gathers on its forms. They may also have any errors in their information corrected. To review/reach information, contact us at (512) 239-3020.

The completed NOI must be mailed to the following address. Use the attached document to submit the $100 application fee. Please note that the NOI and application fee are submitted separately to different addresses.

Texas Commission on Environmental Quality
Storm Water & General Permits Team; MC - 228
P.O. Box 13087
Austell, Texas 78711-3087
THIS PAGE INTENTIONALLY LEFT BLANK
Texas Commission on Environmental Quality
Payment Submittal Form

The storm water application fee shall be sent under separate cover to the Texas Commission on Environmental Quality.

This form must be used to submit your Storm Water Application Fee. Please complete the following information, staple your check in the space provided at the bottom of this document, and mail it to:

BY REGULAR U.S. MAIL
Texas Commission on Environmental Quality
Financial Administration Division
Cashier’s Office, MC-214
P.O. Box 13088
Austin, TX 78711-3088

BY OVERNIGHT/EXPRESS MAIL
Texas Commission on Environmental Quality
Financial Administration Division
Cashier’s Office, MC-214
12100 Park 35 Circle
Austin, TX 78753

Fee Code: GPA
Storm Water General Permit: TXR150000
Check / Money Order No: ____________________________________ Amount of Check/Money Order: __________________
Date of Check or Money Order: ____________________________
Name on Check or Money Order: __________________________________
Facility / Site Name: __
Facility / Site Physical Address: ________________________________
City: __________________________ Zip Code: ____________________

Staple Check In This Space
A. Construction Site Operator Information

Check boxes and Customer Reference Number

These boxes designate the operator's status as a TCEQ "customer"—in other words, an individual or business that is involved in an activity that we regulate. We assign each customer a number that begins with "CN," followed by nine digits. This is not a permit number, registration number, or license number. In the remainder of this section, we will use "this customer" to mean the operator for Part A of the form.

- If this customer has not been assigned a Customer Reference Number or if this number is unknown, check "New" and leave the space for the Customer Reference Number blank.
- If this customer has already been assigned this number, enter the operator's Customer Reference Number and:
 - Check "No Change" if all the remaining customer information is the same as previously reported. However, you may still complete the blanks in this form for this notice of intent to be valid.
 - If this customer's information has changed since the last time it was reported to the TCEQ, check the next box and complete the remainder of this notice of intent.

Do not enter a permit number, registration number, or license number in place of the Customer Reference Number.

Type of Operator

Check only one box.

- **Individual** is a person and has not established a business to do whatever causes them to be regulated by us.
- **Sole Proprietor** is a business that is owned by only one person and has not been incorporated. This business may:
 - Have only the person's name
 - Have an owner (doing business as, or dba)
 - Have any number of employees.
- **Partnership** is a business that is established as a partnership as defined by the Texas Secretary of State's Office.
- **Corporation** means all of the following:
 - A legally incorporated entity under the laws of any state or country
 - Is incorporated as a corporation by the Texas Secretary of State.
 - Has proper operating authority to operate in Texas.
- **Federal, state, county, or city government (as appropriate)** is either an agency of one of these levels of government or the governmental body (e.g., a utility district, water district, school district, college district, council of governments, or special authority.
- **Other** fits none of the above descriptions. Enter a short description of the type of customer in the block provided.

Name

Enter the legal name of this customer as authorized to do business in Texas. Include any abbreviations (LLC, Inc., etc.).

Mailing Address

Enter a central and general mailing address for this customer to receive mail from the TCEQ. For example, if this customer is a large company, this address might be the corporate or regional headquarters. On the other hand, for a smaller business, this address could be the same as the site address.

- If this is a street address, please follow US Postal Service standards. In brief, these standards require this information in this order:
 - The house number—for example, the 1401 in 1401 Main St.
 - If there is a direction before the street name, the one- or two-letter abbreviation of that direction (N, S, E, W, NE, SE, SW, or NW)
 - The street name (If a numbered street, do not spell out the number—for example, 5th St. or Sixth St.
 - An appropriate abbreviation of the type of street—for example, St, Ave, Blvd, Pkwy, Expy, Hwy, Dr, Cl, Ln
 - If there is a direction after the street name, the one- or two-letter abbreviation of that direction (N, S, E, W, NE, SE, SW, or NW)
 - If there is a room number, suite number, or company mail code

City, State, and ZIP Code

Enter the name of the city and the two-letter USPS abbreviation for the state (for example, TX), and the ZIP Code. (Enter the full ZIP 4 if you know it.)

Country Mailing Information

If this address is outside the United States, enter the territory name, country code, and any non-USPS mailing codes or other non-USPS Postal Service features here. If this address is inside the United States, leave these spaces blank.

Phone Number and Extension

This number should correspond to this customer's mailing address, given earlier. Enter the area code and phone number here. Leave "extension" blank if this customer's phone system lacks this feature.

Fax Number

This number should correspond to this customer's mailing address, given earlier. Enter the area code and fax number here.

E-mail Address

As with the mailing address, this should be a general address that is appropriate for e-mail to this customer's central or regional headquarters. If applicable:

- If "No Change" was checked for this customer, you may skip the rest of the fields in this part of the form and continue to the next part of the NOI.

B. Billing Address

We will mail the annual fee invoice for this site to the address entered in this section.

Name

Enter the legal name of the person or business to which we should mail the site fee invoice each year.

Mailing Address

Enter the specific mailing address to which we should mail this site's fee invoice each year. If this is a street address, please follow the US Postal Service standards as described under "A. Construction Site Operator Information" on page 1 of these instructions.

City, State, and ZIP Code

Enter the name of the city, the two-letter USPS abbreviation for the state (for example, TX), and the ZIP Code. (Enter the full ZIP 4 if you know it.)

TPDES REQUIREMENTS

01410-11 ver. 4-13-10

ATTACHMENT 1

Completing the Notice of Intent for Storm Water Discharges Associated with Construction Activity under the TPDES Construction General Permit (TXR150000)
TPDES REQUIREMENTS

01410-12 ver. 12-29-03

ATTACHMENT 1

Rehabilitation of Taxiways WA & WB
Project No.: HAS PN 901

TPDES REQUIREMENTS

C. Project / Site Information

Check the box as Registered Entity Reference Number

- If this number is unknown, check “No” and leave the space for the Registered Entity Reference Number blank.
- If this number has been assigned, check the box and fill in the number.

- Also, check the box if you are the person who has completed the form.

D. Contact

Give all the relevant information for the person whom TCEQ can contact if there are questions about any of the information on this form—perhaps the same person who completed the form.

E. Payment Information

Provide the number and name of the check or money order used to pay the $100 application fee.

F. Certification

The operator must sign and date the statement to validate this NOI. Be sure to enter the full legal name of the person signing the form and the relevant titles—for example, “Operator,” “Operator’s attorney,” or “Senior Site Manager” or “President,” “Secretary,” “Manager,” or “Manager’s attorney,” “President,” “Manager,” or “Manager’s attorney,” as desired. Use the “Center” box for such designations as Ph.D., J.D., or M.S., if applicable.

For a corporation, the application shall be signed by a responsible corporate officer. A responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy-related or decision-making functions for the corporation, or the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding $37 million (in one-quarter million dollar figures) or of any person authorized to sign documents or agreements on behalf of the corporation in accordance with corporate procedures. Corporate procedures governing authority to sign permit applications or agreements with corporation or other individuals shall be signed by the general partner or principal officer, as appropriate.

For a partnership or sole proprietorship, the application shall be signed by a general partner or the principal officer, as appropriate.

For a municipality, state, federal, or other public agency, the application shall be signed by either a principal executive officer or a ranking elected official. For purposes of this application, a principal executive officer of a federal agency includes the chief executive officer of the agency, or a senior executive officer having responsibility for the overall operation of a principal geographic unit of the agency (e.g., regional administrator of the United States Environmental Protection Agency).

Questions?

If you have questions about any of the information on this form, contact our Storm Water Program at 512/239-4571 or look for “Storm Water” on our website www.tceq.texas.gov.
CONSTRUCTION SITE NOTICE
FOR THE
Texas Commission on Environmental Quality (TCEQ)
Storm Water Program
TPDES GENERAL PERMIT TXR150000

The following information is posted in compliance with Part II.D.2. of the TCEQ General Permit Number TXR150000 for discharges of storm water runoff from construction sites. Additional information regarding the TCEQ storm water permit program may be found on the internet at: www.tnrc.state.tx.us/permitting/waterperm/wwperm/tpdestorm

<table>
<thead>
<tr>
<th>Contact Name and Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Description:</td>
</tr>
<tr>
<td>(Physical address or description of the site’s location, estimated start date and projected end date, or date that disturbed soils will be stabilized)</td>
</tr>
<tr>
<td>Location of Storm Water Pollution Prevention Plan:</td>
</tr>
</tbody>
</table>

For Construction Sites Authorized Under Part II.D.2. (Obtaining Authorization to Discharge) the following certification must be completed:

I, ____________________________ (Typed or Printed Name Person Completing This Certification) certify under penalty of law that I have read and understand the eligibility requirements for claiming an authorization under Part II.D.2. of TPDES General Permit TXR150000 and agree to comply with the terms of this permit. A storm water pollution prevention plan has been developed and implemented according to permit requirements. A copy of this signed notice is supplied to the operator of the MS4 if discharges enter an MS4 system. I am aware there are significant penalties for providing false information or for conducting unauthorized discharges, including the possibility of fine and imprisonment for knowing violations.

Signature and Title _______________ Date _______________

Page 33
ATTACHMENT 3

TPDES OPERATOR’S INFORMATION

Owner’s Name and Address: City of Houston

Mr. ____________________________
(City Official)

(Department)
P. O. Box 1562
Houston, Texas 77251-1562
(713) 247-1000

Contractors’ Names and Addresses:

General Contractor:

Telephone: __________________________

Site Superintendent:

Telephone: __________________________

Erosion Control and Maintenance Inspection:

Telephone: __________________________

Subcontractors’ Names and Addresses:

Phone: __________________________

Note: Insert name, address, and telephone number of person or firms
ATTACHMENT 4

CONTRACTOR’S / SUBCONTRACTOR’S

CERTIFICATION FOR TPDES PERMITTING

I certify under penalty of law that I understand the terms and conditions of TPDES General Permit No. TXR150000 and the Storm Water Pollution Prevention Plan for the construction site identified as part of this certification.

Signature: __
Name: (printed or typed) __________________________________
Title: __
Company: __
Address: ___
Date: ___

Signature: __
Name: (printed or typed) __________________________________
Title: __
Company: __
Address: ___
Date: ___

Signature: __
Name: (printed or typed) __________________________________
Title: __
Company: __
Address: ___
Date: ___
TPDES REQUIREMENTS
01410-19 ver. 4-13-10

ATTACHMENT 5

EPA NPDES Construction Inspection Form

The following inspection is being performed in compliance with Part IV.D.4 of the NPDES Region 6 Storm Water Construction General Permit [33 Fed. Reg. 36502] and being maintained in accordance with Part V of the Permit. Qualified personnel (provided by the permittee or cooperatively by multiple permittees) shall inspect disturbed areas of the construction site that have not been fully stabilized. Areas used for storage of materials that are exposed to precipitation, placement and effectiveness of structural control measures, and location where vehicles enter or exit the site. Inspections shall be performed at least once every 14 days and within 24 hours of the end of a storm event of 0.5 inches or greater. Where sites have been temporarily stabilized, runoff is unlikely due to seasonal conditions, or during seasonal and periodic and areas (0-10 inches of rainfall annually) and semi-arid areas (10-20 inches annually) such inspections shall be conducted at least once every month. This form is primarily intended for use with construction projects in Texas and New Mexico. Permits on Indian Country lands in Oklahoma, Louisiana, and Arkansas and some oil and gas facilities in Oklahoma may use this form if they are eligible for this permit. Other facilities need to check with their NPDES permit authority before using this form.

If you do not know your NPDES Permit Number, contact the NOx Processing Center at (301) 495-4145. This form was prepared as an example and is not a required form for use with the permit. Alternative forms may be used if they contain all of the required information as set forth in the permit. This form and additional information regarding the NPDES Region 6 storm water program may be found on the Internet at http://www.epa.gov/reg6/npdes. Any person with a complaint about the operation of this facility in regards to its permit should contact EPA Region 6 at (714) 465-7177.

| Permit Number(s) covered by this inspection (e.g. owners, developers, general contractor, builders) |
| Signature and Certification in accordance with Part VI.G of the permit: |

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or these persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

| Date of Inspection |
| Inspector Name |
Is there a copy of the permit language with the SWPPP?	☐ YES ☐ NO
Is the inspector qualified and are the qualifications documented in the SWPPP?	☐ YES ☐ NO
Is an NPDES storm water construction sign posted at the entrance for all permittees?	☐ YES ☐ NO

You may want to use EPA Region 6 construction checklist to assure components of the SWPPP are complete. This form, the construction sign, and the checklist are available on the Region 6 NPDES Storm Water Forms and Documents web page which may be found on the internet at http://www.epa.gov/ebtpubs/enw-forms.htm. In addition to the checklist, you should provide a narrative (see next page) on the existing Best Management Practices and Structural Controls found during each inspection. Any problems identified in an inspection should be corrected within 7 days. The inspection should cover all components of the SWPPP and all potential pollutants. While eroded soil is the primary pollutant of concern, do not forget to inspect for other pollution sources such as fuel tanks, paints, solvents, stabilization materials, concrete hardner, batch plants, and construction debris. The inspector will need to update the SWPPP to reflect findings of the inspection. The site map should be updated after an inspection to show controls that have been added or removed, to ensure the site map is kept current in accordance with Part IV.C of the permit.
Narrative Findings of the inspection:

Observations should include any findings of Best Management Practices or controls that are not in accordance with the SWPPP. If a control is not in place or failed, observe the reason why. A control removed temporarily for work is not necessarily a violation if properly recorded in the SWPPP. If it has been removed, record why it was removed and, if applicable, when it will be reinstalled. If the control has failed, observe the conditions so a conclusion may be made as to whether the control failed for improper maintenance or improper design. The qualified inspector will know when a failed control is inadequate and should be replaced by an improved control mechanism. Qualified inspectors are to have authority to make changes to the SWPPP to assure compliance. Controls that have not been installed should be given a reason why they are not installed and/or a scheduled date for installation if they are designed for a later phase of construction. After the inspection, the SWPPP and its site map should be updated to reflect current conditions of controls and Best Management Practices at the time of the inspection. This includes removing uninstalled controls from the site map or otherwise denoting on the site map if they are no longer installed if the controls have been removed because they are no longer necessary (e.g., stabilization has been achieved in that area).
City of Houston
Storm Water Pollution Prevention Plan
Construction Site Inspection Report

TPDES/ EPA Permit Number __________
COH Storm Water Quality Permit Number __________
DATE __________

No exceptions noted.
The following must be corrected prior to continuing work:
Public Notice improperly posted
Initial Construction Site Inspection Report information requires updating
Copy of NOI not on site
Storm water pollution prevention plan not on site
Erosion and sediment controls improperly installed
Erosion and sediment control devices improperly maintained
Fueling or washout areas not properly protected
Portocan or other sanitary facilities not properly protected
Self-inspection and maintenance records incomplete
Sediment from site outside area of construction
Other (see description below)

Please contact the Storm Water Quality Engineer at
611 Walker, RA-257, Houston TX 77002
713-837-7116 fax 713-837-0570

Once the above items have been corrected, call to arrange for reinspection. No further inspections for any construction related activity shall be made until the above items have been corrected.

Inspector’s Signature Contractor’s Signature

Inspector’s Name Contractor’s Name

Distribution Stormwater Quality Engineer, Code Enforcement, Inspector, Operator (Operator is Contractor)

Form _________ (10-01-01)
Notice of Termination (NOT) for Storm Water Discharges Associated with Construction Activity under the TPDES Construction General Permit (TXR150000)

For help completing this application, read the TXR150000 NOI instructions (TCEQ-20023-Instructions).

<table>
<thead>
<tr>
<th>A. TPDES Permit Number: TXR15__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Construction Site Operator</td>
</tr>
<tr>
<td>Customer Reference Number: CN________</td>
</tr>
<tr>
<td>Name: ________________________________</td>
</tr>
<tr>
<td>Mailing Address: ______________________</td>
</tr>
<tr>
<td>City: __________________ State: ______ State Code: _____ Zip Code: __________</td>
</tr>
<tr>
<td>Country Mailing Information (If outside USA): Territory: __________ Country Code: ______ Postal Code: ______</td>
</tr>
<tr>
<td>Phone Number: ________________________ Extension: __________ Fax Number: __________</td>
</tr>
<tr>
<td>E-mail Address: ______________________</td>
</tr>
</tbody>
</table>

| C. Project / Site Information |
| Regulated Entity Reference Number: RN |
| Name: ________________________________|
| Physical Address: _____________________|
| Location Access Description: __________|
| City: __________________ County: ______ Zip Code: __________ |

<table>
<thead>
<tr>
<th>D. Contact</th>
<th>If the TCEQ needs additional information regarding this termination, who should be contacted?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: _____________________________ Title: ____________________</td>
<td></td>
</tr>
<tr>
<td>Phone Number: _____________________ Extension: __________ Fax Number: __________</td>
<td></td>
</tr>
<tr>
<td>E-mail Address: ____________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I certify under penalty of law that authorization under the TPDES Construction General Permit (TXR150000) is no longer necessary based on the provisions of the general permit. I understand that by submitting this Notice of Termination, I am no longer authorized to discharge storm water associated with construction activity under the general permit TXR150000, and that discharging pollutants in storm water associated with construction activity to waters of the U.S. is unlawful under the Clean Water Act where the discharge is not authorized by a TPDES permit. I also understand that the submittal of this Notice of Termination does not release an operator from liability for any violations of this permit or the Clean Water Act.</td>
</tr>
<tr>
<td>Construction Site Operator Representative:</td>
</tr>
<tr>
<td>Prefix: ______ First: ______ Middle: ______ Last: ______ Suffix: ______</td>
</tr>
<tr>
<td>Title: __________________ Signature: __________________ Date: __________</td>
</tr>
</tbody>
</table>

The completed NOT must be mailed to the following address:

Texas Commission on Environmental Quality
Storm Water & General Permits Team; MC - 228
P.O. Box 13087
Austin, Texas 78711-3087
ATTACHMENT 7

Complying the Notice of Termination for Storm Water Discharges
Associated with Construction Activity
under the TPDES Construction General Permit (TXR150000)

Who May File a Notice of Termination (NOT) Form
Permittees disturbing 5 acres or more (or part of a larger common plan of development or sale disturbing 5 acres or more) who are presently covered under the Texas Pollutant Discharge Elimination System (TPDES) Construction General Permit must submit a Notice of Termination (NOT) when final stabilization has been achieved on all portions of the site that is the responsibility of the permittee, or another permitted operator has assumed control over all areas of the site that have not been finally stabilized and all silt fences and other temporary erosion controls have either been removed, scheduled for removal as defined in the SWP3, or transferred to a new operator if the new operator has sought permit coverage. Erosion controls that are designed to remain in place for an indefinite period, such as mulch and fiber mats, are not required to be removed or scheduled for removal.

Final Stabilization occurs when either of the following conditions are met:

(a) All soil disturbing activities at the site have been completed and a uniform (e.g. evenly distributed, without large bare areas) perennial vegetative cover with a density of 70% of the native background vegetative cover for the area has been established on all unpaved areas and areas not covered by permanent structures, or equivalent permanent stabilization measures (such as the use of riprap, gabions, or geotextiles) have been employed.

(b) For individual lots in a residential construction site by either:

(1) the homebuilder completing final stabilization as specified in condition (a) above; or

(2) the homebuilder establishing temporary stabilization for an individual lot prior to the time of transfer of the ownership of the home to the buyer and after informing the homeowner of the need for, and benefits of, final stabilization.

(c) For construction activities on land used for agricultural purposes (e.g. pipelines across crop or range land), final stabilization may be accomplished by returning the disturbed land to its preconstruction agricultural use. Areas disturbed that were not previously used for agricultural activities, such as buffer strips immediately adjacent to a surface water and areas which are not being returned to their preconstruction agricultural use must meet the final stabilization conditions of condition (a) above.

A. TPDES Permit Number
Provide the TPDES permit number assigned to the operator of the construction site.

B. Construction Site Operator Information

Customer Reference Number
This number designates the operator's status as a TCEQ "customer"—in other words, an individual or business that is involved in an activity that we regulate. We assign each customer a number that begins with 'CN,' followed by nine digits. This is not a permit number, registration number, or license number. In the remainder of this section, we will use this customer number to mean the operator for Part B of the form.

If this customer has not been assigned a Customer Reference Number, leave the space for the Customer Reference Number blank.

If this customer has already been assigned this number, enter the operator's Customer Reference Number.

Do not enter a permit number, registration number, or license number in place of the Customer Reference Number.

Name
Enter the legal name of this customer as authorized to do business in Texas. Include any abbreviations (LLC, Inc., etc.).

Mailing Address
Enter a central and general mailing address for this customer to receive mail from the TCEQ. For example, if this customer is a large company, this address might be the corporate or regional headquarters. On the other hand, for a smaller business, this address could be the same as the site address.

If this is a street address, please follow US Postal Service standards. In brief, these standards require this information in this order:

- the "house" number—for example, the 1401 in 1401 Main St
- if there is a direction before the street name, the one- or two-letter abbreviation of that direction (N, S, E, W, NE, SE, SW, or NW)
- the street name (if a numbered street, do not spell out the number—for example, 8th St, not Eighth St)
- an appropriate abbreviation of the type of street—for example, St, Ave, Blvd, Fwy, Exwy, Hwy, Cr, Cl, Ln
- if there is a direction after the street name, the one- or two-letter abbreviation of that direction (N, S, E, W, NE, SE, SW, or NW)
- if there is a room number, suite number, or company mail code

City, State, and ZIP Code
Enter the name of the city, the two-letter USPS abbreviation for the state (for example, TX), and the ZIP Code. (Enter the full ZIP+4 if you know it.)
ATTACHMENT 7

Country Mailing Information
If this address is outside the United States, enter the territory name, country code, and any non-ZIP mailing codes or other non-U.S. Postal Service features here. If this address is inside the United States, leave these spaces blank.

Phone Number and Extension
This number should correspond to this customer’s mailing address given earlier. Enter the area code and phone number here. Leave “Extension” blank if this customer's phone system lacks this feature.

Fax Number
This number should correspond to this customer’s mailing address given earlier. Enter the area code and fax number here.

E-mail Address
As with the mailing address, this should be a general address that is appropriate for e-mail to this customer’s central or regional headquarters, if applicable.

C. Project / Site Information
Regulated Entity Reference Number
This number designates this site’s status as a TCEQ regulated entity—in other words, a location where an activity that we regulate occurs. We assign each regulated entity a number that begins with “RN” followed by nine digits. This is not a permit number, registration number, or license number.

- If this site has not been assigned a Regulated Entity Reference Number, leave the space for the Regulated Entity Reference Number blank.
- If this site has already been assigned this number, enter the Regulated Entity Reference Number.
- Do not enter a permit number, registration number, or license number in place of the Regulated Entity Reference Number.

Name
Enter the name by which you want this site to be known to the TCEQ.

Physical Address
Enter the physical address of the site itself. TCEQ staff should be able to use this address to find the site.

Location Description
Enter a physical description of the location of the site based on highway intersections and/or permanent landmarks.

City, County, and ZIP Code
Enter the name of the city, the county, and the ZIP Code. (Enter the full ZIP+4 if you know it.)

D. Contact
Give all the relevant information for the person whom TCEQ can contact if there are questions about any of the information on this form—perhaps the same person who completed the form.

E. Certification
The operator must sign and date this statement to validate this NOI. Be sure to enter the full legal name of the person signing the form and the relevant title—for example, “Operator,” “Operator’s attorney,” or “Senior Site Manager.” Use the “Prefix” blank for such titles as Dr., Mr., or Ms., as desired. Use the “Suffix” blank for such designations as Ph.D., Jr., Sr., III, or J.D., if applicable.

For a corporation, the application shall be signed by a responsible corporate officer. A responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding $25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures. Corporate procedures governing authority to sign permit applications may provide for assignment or delegation to applicable corporate positions rather than to specific individuals.

For a partnership or sole proprietorship, the application shall be signed by a general partner or the proprietor, respectively.

For a municipality, state, federal, or other public agency, the application shall be signed by either a principal executive officer or a ranking elected official. For purposes of this application, a principal executive officer of a federal agency includes the chief executive officer of the agency, or a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., regional administrator of the United States Environmental Protection Agency).

Questions?
If you have questions about any of the information on this form, contact our Storm Water Program at 512/239-4671 or look for “Storm Water” on our Web site: www.tceq.state.tx.us
SECTION 01423

REFERENCES

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. General quality assurance related to Reference Standards.
B. List of references.
C. List of definitions.
D. List of phrases.

1.02 QUALITY ASSURANCE

A. For work specified by association, trade, or Federal Standards, follow requirements of the standard, except when more rigid requirements are specified or are required by applicable codes or by Contract Documents.
B. Follow reference standard effective on the date stated in Document 00700- General Conditions.
C. Submit Document 00685- Request for Information before proceeding if specified reference standards conflict with Contract Documents, or if no standards apply.

1.03 PARTIAL LIST OF REFERENCES

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Aluminum Association</td>
<td>202-862-5100</td>
</tr>
<tr>
<td>AASHTO</td>
<td>Amer. Assoc. of State Hwy. Officials</td>
<td>202-624-5800</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
<td>248-848-3700</td>
</tr>
<tr>
<td>AGC</td>
<td>Associated General Contractors of America</td>
<td>703-548-3118</td>
</tr>
<tr>
<td>Al</td>
<td>Asphalt Institute</td>
<td>859-288-4960</td>
</tr>
<tr>
<td>AITC</td>
<td>American Institute of Timber Construction</td>
<td>303-792-9559</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
<td>312-670-2400</td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron & Steel Institute</td>
<td>202-452-7100</td>
</tr>
<tr>
<td>ASME</td>
<td>American Soc. of Mech. Engrs.</td>
<td>212-591-7733</td>
</tr>
<tr>
<td>ANSI</td>
<td>American Natl. Std. Institute</td>
<td>212-642-4900</td>
</tr>
<tr>
<td>APA</td>
<td>The Engineered Wood Assoc.</td>
<td>7011 So. 19th,</td>
</tr>
<tr>
<td>Reference</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| API | American Petroleum Institute
1220 L Street, N.W.
Washington, DC 20005-4070
Ph: 202-862-8000 | |
| AREA | Amer. Railway Engrg. Assoc.
8201 Corporate Dr., #1125
Landover, MD 20785
Ph: 301-459-3200 | |
| ASTM | American Soc. for Testing & Materials
100 Barr Harbor Dr., PO Box C700
West Conshohocken, PA 19428-2959
Ph: 610-832-9585 | |
| AWPA | American Wood-Preservers' Association
PO Box 388
Selma, AL 36702-0388
Ph: 334-874-9800 | |
| AWS | American Welding Society
550 N.W. LeJeune Rd.
Miami, FL 33126
Ph: 800-443-9353 | |
| AWWA | Amer. Water Works Assoc.
6666 West Quincy Avenue
Denver, CO 80235
Ph: 303-794-7711 | |
8610 Hidden River Pkwy.
Tampa, FL 33637-1000
Ph: 800-242-7405 | |
| COH | City of Houston
900 Bagby Street (Box 1562)
Houston, TX 77251-1562
Ph: 713-837-0311 | |
| CLFMI | Chain Link Fence Mfrs Inst.
10015 Old Columbia Rd., #B-215
Columbia, MD 21046
Ph: 301-596-2583 | |
| CRSI | Conc. Reinf. Steel Institute
933 N. Plum Grove Road
Schaumberg, IL 60173-4758
Ph: 847-517-1200 | |
| EJMA | Expansion Joint Mfrs. Assoc.
25 N. Broadway
Tarrytown, NY 10591
Ph: 914-332-0040 | |
| FS | Federal Standardization Documents
Gen. Svcs. Admin. Speciftns. Unit (WFSIS)
7th and D Streets, S.W. #6039
Washington, DC 20407
Ph: 202-472-2205 | |
| HAS | (City of) Houston Airport System
P.O. Box 60106 (16930 JFK Blvd., 77032)
Houston, TX 77205-0106
Ph: 281-233-3000 | |
| HOU | William P. Hobby Airport (Airport Manager)
7800 Airport Blvd.
Houston, Texas 77061
Ph: 713-640-3000 | |
| IAH | George Bush Intercontinental Airport
(1Airport Manager)
2800 N. Terminal Road
Houston, TX 77032
Ph: 281-230-3100 | |
| ICEA | Insulated Cable Engineer Association
P.O. Box 1568
Carrollton, GA 30112 | |
| IEEE | Institute of Electrical and Electronics Engineers
445 Hoes Lane, or P.O. Box 1331
Piscataway, NJ 08854-1331
Ph: 732-981-0060 | |
| MIL | Military Specifications (see "FS" for address) | |
| NACE | National Association of Corrosion Engineers
440 1st St. N.W.
Washington, DC 20001
Ph: 202-393-6226 | |
| NARTE | National Association of Radio and Telecommunications Engineers, Inc.
167 Village Street
P.O. Box 678
Medway, MA 02053
Ph: 508-533-8333, 800-896-2783 | |
| NEMA | National Electrical Manufacturers' Association
1300 North 17th Street, Suite 1847
Rosslyn, VA 22209
Ph: 703-841-3200 | |
| NFPA | National Fire Protection Association
1 Batterymarch Park, P.O. Box 9101
Quincy, MA 02169-7471
Ph: 617-770-3000 | |
| OSHA | Occupational Safety Health Administration
200 Constitution Avenue, NW
Washington, DC 20210
Ph: 866-487-2365 |
1.04 PARTIAL LIST OF DEFINITIONS

Addenda (or Addendum): Written or graphic instruments issued prior to the opening of Bids which clarify, correct or change the bidding documents or the Contract Documents.

Airport: Area of land or water used or intended to be used for landing and takeoff of aircraft, and includes buildings and facilities. Airports under control of City are certificated by FAA under FAR Part 139, and operate under specific safety requirements applicable to maintenance and construction activities.

Airport Manager: Individual delegated by Director of Department of Aviation, with absolute responsibility and authority for overall airport operation and compliance with FAR Part 139. Airport Manager shall communicate with Contractor through City Engineer except in case of emergency when City Engineer is not present. The Airport Manager may delegate responsibilities to other persons, such as airport electricians to coordinate lockouts/tagouts.

Air Operations Area (AOA): Any area of Airport used or intended to be used for landing, takeoff, or surface maneuvering of aircraft, including paved or unpaved areas used or intended to be used for unobstructed movement of aircraft in addition to associated runway, taxiway, or apron. The AOA includes any adjacent areas (such as general aviation areas) that are not separated by adequate security systems, measures, or procedures.

Airport Security Officers: 1) Uniformed City of Houston Police (HPD) officers enforcing airport regulations and apprehension of unauthorized personnel in security areas; 2) Non-uniformed federal or local government personnel authorized to test for compliance with existing regulations.

Air Traffic Control Tower (ATCT): Person responsible for positive control of aircraft and vehicle traffic, including Contractor's, on and around runways, taxiways, and aprons.

Base Facility: Existing structure upon and within which the Work is constructed. "Existing construction" and "existing" mean the same as Base Facility.
1. By way of general description, Base Facility includes sidewalks and pavement; foundations; superstructure columns, beams and floors; exterior and interior walls, partitions and doors; mechanical and electrical systems; conveying systems; interior finish materials.
 a. Underground structures include: sewer, water, gas, fuel and other piping, and manholes, chambers, electrical and signal conduits, ducts, tunnels, manholes and other means of access, foundations and below-ground extensions of surface structures and other existing subsurface Work located within or adjacent to the limits of the Work.
 b. Surface structures include: existing buildings, tanks, masts and poles, navigational aids, walls, bridges, roads, dams, channels, open drainage, piping, wires, posts, signs, markers, curbs, walks, pavements and surfaces for wheeled vehicles (including aircraft), guard cables, fencing, lighting and similar constructs above the ground surface or visible without excavation, demolition or cutting.

Construction Safety and Phasing Plan (CSPP): The overall plan for safety and phasing of a construction project developed by the airport operator, or developed by the airport operator’s consultant and approved by the airport operator. It is included in the bid documents and included as a part of the project specifications.

Day: Unless otherwise defined shall mean “Calendar” day.

DOT: Acronym for U.S. Department of Transportation.

Emergency Medical Service: Operational division of Houston Fire Department.

Emergency Vehicles: ARFF, HPD and EMS vehicles operating in emergency mode.

Federal Aviation Administration (FAA): Agency of U.S. Department of Transportation. FAA also means FAA’s Administrator or Administrator’s duly authorized representative.

Ground Support Equipment (GSE): Mobile and stationary vehicles and equipment for servicing aircraft.

Navigation Aids (NAVAIDS): Equipment used to locate aircraft and direct movement while airborne.

Public areas: Areas where no accessibility restrictions are imposed, generally including roadways, streets, parking lots and structures, and building interiors up to but not including baggage and passenger checkpoints at concourses.

Secured Area: Any portion of the airport where aircraft operators (and foreign air carriers that have a security program under part 1544 or 1546) enplane and deplane passengers, sort and load baggage, and any adjacent areas not separated by adequate security measures.

Security Areas, Security Identification Areas (SIDAs): 1.) AOA; 2) Secured Areas: Exterior or interior areas the access to which is controlled by authorized security personnel or by keyed or electronic locks, and which may have posted notice of restricted access.
Substantial Completion: When the work is sufficiently complete so it may be safely, conveniently and beneficially utilized by the Owner for all of the purposes for which it was intended.

Traffic Activity: In-the-air or on-the-ground aircraft and emergency vehicle activity that, determined by ATCT, Airport Manager or City Engineer because of safety reasons, prohibits the start, continuation or completion of construction operations.

Transportation Security Administration (TSA): Agency of U.S. Department of Transportation charged with implementing and enforcing federal airport security rules and regulations. TSA also means TSA’s Undersecretary or the Undersecretary’s duly authorized representative(s).

TSR: an acronym for Transportation Security Regulation.

1.05 PARTIAL LIST OF PHRASES

A. Read "includes" and "including" as having the phrase "but not necessarily limited to" immediately following the words, if not otherwise written out.

B. "Required" means products, labor and services provided by the Contractor to properly complete the Work following the Contract Documents and the design concept expressed therein, such required work being determined and governed by field or shop conditions.

1.06 PARTIAL LIST OF ABBREVIATIONS AND ACRONYMS

A. Following abbreviations and acronyms may appear on Drawings and in other Sections:

1. CFP: City-furnished product(s).
2. CSP: Contractor-salvaged product(s).
3. CSPP: Construction Safety and Phasing Plan
4. NIC or N.I.C.: Not in contract.
5. NOTAM: Notice to Airman.
6. PDC: Department of Aviation Planning Design Construction Group.
7. RFI: Request for Information/Clarification.
8. RFP: Request for Proposal.
9. ROFA: Runway Object Free Area
10. RSA: Runway Safety Area
11. TOFA: Taxiway Object Free Area
12. TSA: Taxiway Safety Area

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)
SECTION 01450

CONTRACTOR’S QUALITY CONTROL

PART 1- GENERAL

1.01 SECTION INCLUDES

A. General requirements for Contractor’s quality control services.

B. Contractor’s responsibilities related to City’s testing are specified in Section 01455- City’s Acceptance Testing.

1.02 GENERAL

A. Maintain source and on-site quality control over suppliers, manufacturers, products, services, site conditions, quality assurance programs, and workmanship, to provide work of required quality at no additional cost to the City.

B. Follow manufacturers’ installation instructions, including each step in sequence.

C. Request clarification from City Engineer before proceeding should manufacturers' instructions conflict with Contract Documents.

D. Follow specified standards as minimum requirements for the Work except when more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.

E. Perform work by persons qualified to produce the specified level of workmanship.

F. Observe, inspect, collect samples and test samples of the Work as it progresses and as required for compliance with Document 00700- General Conditions Paragraph 3.2.

1. At Contractor's discretion, retain a testing laboratory to supplement manufacturers' own product testing programs, except do not retain the same testing laboratory retained by City under Section 01455- City's Acceptance Testing.

2. Additional responsibilities of Contractor related to testing are specified in Section 01455- City’s Acceptance Testing.

1.03. CONTRACTOR’S QUALITY ASSURANCE PROGRAM (QAP)

A. Implement and maintain a QAP of inspection, sampling, testing, and observation and test results reporting for the Work, applicable to product source, fabrication, mixing, and through final installation, to provide proper work.

B. Submit required submittals and requests for information (RFIs) into the HAS’s web-based application, Microsoft SharePoint. Access to the SharePoint portal and required training will be coordinated through the Project Manager. Submit Contractor's Quality Assurance Program (QAP), following Section 01340- Shop
Drawings, Product Data and Samples. The submitted QAP shall address and meet those requirements detailed in Section 00701 FAA AC 150/5370-10 General Provisions, Subsections 50 Control of Work, 60 Control of Materials, and 100 Contractor Quality Control Program and shall also include the following minimum information:

1. Organization chart indicating Contractor's QAP personnel.
2. Inspection, Sampling and Testing Matrix/ Schedule: Overlaid with requirements of Section 01325- Construction Schedules and Section 01455-City's Acceptance Testing.
3. Sample QAP reporting forms.
4. Procedures for action to correct defective work.
5. Procedures to implement and manage the QAP.
6. Submit one copy of Contractor's written QAP Inspection, Test, and Daily Reports to City and one copy to ITL, on a daily basis, indicating:
 a. Project Name, Number, CIP Number.
 b. Date/time of inspection/sampling/test, and quantity of product involved.
 c. Product or installation batch, mill number, or production run number, and method used to assure statistically based random sampling following ASTM D3665.
 d. Environmental conditions where applicable to results.
 e. Name and signature of observer or tester, certifying as follows:
 "The above work was inspected/sampled and tested in the manner described, and the result(s) are hereby certified by the undersigned as complete and accurate."
 f. Product or installation inspected, by Section number, and location of inspection (such as product source, fabrication shop, or on site), and quantity of product tested.
 g. Location in the Work, by Drawing/detail number, floor number, range/station number, or other specific identifier traceable to the Drawings.
 h. Type of inspection or test (such as visual; non-destructive X-ray), and type of test by referenced standard test number.
 i. Type of inspection, sample or test products used.
 j. Performance standard required.
 k. Factual evidence and results of inspections, measurements or tests stated as "pass" or "fail."
 l. Factual evidence and record of observations and tests. Include nature and type of failure, and comments as applicable.

C. Contractor's QAP Personnel for Sitework:

1. Quality Control Manager: Sole responsibility for management, implementation and control of the QAP; an employee of Contractor and specialist in type of applicable construction. If not an officer of firm, this person shall report to an officer.
 a. Duties and Responsibilities: Plan, organize, staff, direct and control the QC Program; supervise QCTs (below); collate and review detail reports of QC activities for accuracy and completeness before publication, and prepare factual summary reports. The QCM may work
projects other than this project, except QCM shall be present at times of sampling, testing or observation, within 2 hours of notice.

b. Demonstrated experience in parking garage paving construction and quality assurance compliance equivalent in scope and complexity to work of this contract, plus one of the following minimums:
 1) Registered civil engineer, with 1 year above experience.
 2) Engineer-in-Training, with 2 years above experience.
 3) Graduate Bachelor of Science degree in Civil Engineering, Civil Engineering Technology or Construction, with 3 years above experience.
 4) National Institute for Certification in Engineering Technologies (NICET), Level III, certified Construction Materials Technician, Highway Materials Technician, or Highway Construction Technician, with 4 years above experience.
 5) NICET-certified Civil Engineering Technician, with 5 years above experience, and approved by the City Engineer.

2. Quality Control Technicians (QCT): Responsibility for processing this QC Program; report to the QCM.
 a. Duties and Responsibilities: Inspect work, collect samples, take measurements, test work, collate test and measurement data, and prepare factual, accurate and complete reports. Use as many QCTs as required. QCTs may be Contractor's employees or personnel of a qualified ITL subcontracted to the Contractor, except do not use City's ITL to fulfill Contractor's testing requirements.
 b. Demonstrated experience in same construction as QCM, and quality assurance compliance equivalent in scope and complexity to work of this contract, plus one of the following minimums:
 1) Engineer or Engineering Technician, with 1 year above experience.
 2) NICET Level II or higher certification as Construction Materials Technician, Highway Materials Technician, or Highway Construction Technician, with 2 years above experience.

3. Equivalent certifications by authorities other than NICET may be substituted following Section 01630.

D. Contractor's QAP Personnel for Buildings:

1. Quality Control Manager: Sole responsibility for management, implementation and control of the QAP; an employee of the Contractor and specialist in type of applicable construction. If not an officer of firm, this person shall report to an officer.
 a. Duties and Responsibilities: Plan, organize, staff, direct and control the QC Program; supervise QCT staff (below); collate and review detail reports of QC activities for accuracy and completeness before publication, and prepare factual summary reports. The QCM may work projects other than this project, except QCM shall be present at times of sampling, testing or observation, within 2 hours of notice.
b. Demonstrated experience in building Structural construction and quality assurance compliance equivalent in scope and complexity to work of this contract, plus one of the following minimums:
 1) Registered structural engineer, with 1 year above experience.
 2) Engineer-in-Training, with 2 years above experience.
 3) Graduate Bachelor of Science degree in structural engineering, with 3 years above experience.

2. Quality Control Technicians (QCT): Responsibility for processing QAP; report to the QCM.
 a. Duties and Responsibilities: Inspect work, collect samples, take measurements, test work, collate test and measurement data, and prepare factual, accurate and complete reports. Use as many QCTs as required. QCTs may be Contractor's employees or personnel of a qualified ITL subcontracted to the Contractor, except do not use City's ITL to fulfill Contractor's testing requirements.
 b. Engineer or Engineering Technician, with minimum 1 year demonstrated experience in same construction as QCM, and quality assurance compliance equivalent in scope and complexity to work of this contract.

1.03 REFERENCES

 A. Obtain copies of referenced standards and maintain at site when required by other Sections.

1.04 MANUFACTURER'S FIELD SERVICES

 A. When specified in other Sections or when conditions are required to maintain schedule, cost or quality control, provide services of properly qualified manufacturer's or supplier's technical representative(s) to observe field conditions, conditions of substrates and installation, quality of workmanship, startup, testing, adjusting, balancing, demonstration and City-personnel training as required.

 B. Within 14 days of observation, submit a written report to City Engineer, prepared by manufacturer's representative, documenting their observations, supplementary instructions and instructions at variance with manufacturer's written instructions, and, where applicable, recommendations for corrective action. Costs and time for corrective action is Contractor's responsibility, without increase in Contract Sum or Time.

1.05 SUBCONTRACTS

 A. Coordinate work of subcontractors. Inform subcontractors of relation of their work to that of other subcontractors and Separate Contractors and direct scheduling of work to prevent conflicts or interferences.

 B. Employ subcontractors with documented proof of proper completion of two projects during the past 3 years of work similar in scope, type and quality as that required for this contract.
1.06 EXAMINATION AND PREPARATORY WORK

A. Carefully examine substrates whether Base Facility or provided as part of the Work before commencing work applied to or accommodated by substrates. Proceed after unsatisfactory conditions are corrected, and after substrate work is properly prepared and complete.

B. Take field dimension and establish and maintain lines, dimensions, and benchmarks as required to control proper fabrication and installation of work.

C. Do not proceed with affected work until unsatisfactory site conditions and substrates are correct.
 1. Make written notification of scope and type of corrections required of separate contracts.

D. Repair remaining substrates following Section 01731- Cutting and Patching.

1.07 CONTRACTOR'S TESTING

A. Follow Document 00700- General Conditions Paragraphs 3.9.2 and this Section 01450.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 INSPECTIONS BY BUILDING OFFICIALS AND OTHER AGENCIES

A. Immediately notify City Engineer of the date of inspections by governing authorities, in order for City Engineer to attend.

END OF SECTION
SECTION 01455

CITY’S ACCEPTANCE TESTING

PART 1- GENERAL

1.01 SECTION INCLUDES

A. City has retained Aviles Engineering Corp. an Independent Testing Laboratory (ITL) for following services:
 1. Collect product samples at source, site of fabrication, or project site as required by referenced test procedure, as specified herein, in other Sections, and as indicated in the Technical Specifications contained in Division 2.
 2. Test product samples at source, site of fabrication, project site or in ITL’s laboratory as required by referenced test procedure, as specified herein or in other Sections.
 3. Inspect execution of work at source, site of fabrication, or project site, as applicable, as specified herein or in other Sections.
 4. Record and distribute observations of work during inspections, indicating “pass” or “fail.”
 5. Record and distribute results of tests, indicating “pass” or “fail.”
 6. ITL does not have authority to:
 a. Release, revoke, alter, or enlarge requirements of Contract Documents.
 b. Approve or accept work.
 c. Assume duties of Contractor.
 d. Stop the Work or a part thereof.

B. Where requirements for acceptance testing appear in other Sections, without reference to this Section 01455, inspect and test that work following requirements in those Sections and this Section 01455 and Section 01457- Estimating Percentage of Product Within Specification Limits.

1.02 CONTRACTOR’S RESPONSIBILITIES

A. Notify City Engineer, ITL and Designer minimum 24 hours prior to expected time for inspections or sample collections. Schedule ITL’s, City Engineer’s, and Designer’s presence for timely inspections, observations, and sample collection without delay to the Work.

B. Provide access to the Work and cooperate with ITL for inspection and sample collection.

C. Furnish samples of manufactured products to ITL for inspection and testing.
D. Provide incidental labor, products, services and facilities for sample collection and for transportation and handling of samples to ITL’s vehicle or to ITL’s on-site test facility.

E. Reimburse City by Modification (Section 01255- Modification Procedures) for costs of retesting previously “failed” work, including time expended by City’s personnel related thereto.

F. Time delays and costs resulting from ill-timed QC work are the Contractor’s responsibility, without increase in Contract Time or Price.

G. Follow Document 00700- General Conditions Paragraph 3.2, and Section 01450- Contractor’s Quality Control and Document 00701 – FAA AC 150/5370-10G General Provisions, Subsections 50 Control of Work, 60 Control of Materials, and 100 Contractor Quality Control Program.

H. Perform work following requirements of Contract Documents.

I. Read reports of failed tests or measurements. Implement corrective actions to prevent defective work from proceeding farther.

J. Stop affected work when corrective action fails to bring work to required standards.

K. Remove defective work following Section 01731 and replace with proper work.

L. Inspect, sample and test Base Facility (Section 01726- Base Facility Survey) as required to determine and confirm acceptability of existing construction as substrate for new construction.

M. If Contractor employs a testing laboratory, follow ASTM D3740 and ASTM E329, plus other test standards specified in other Sections.

N. Provide QAP following Section 01450- Contractor’s Quality Control.

O. Keep one copy of ITL’s reports at field office for duration of the Work.

P. Contractor shall not:
 1. Employ for Contractor’s quality assurance testing the same ITL employed by the City for this Project.
 2. Retain possession of ITL’s samples.

1.03 SUBMITTALS BY ITL

A. Submit 3 copies of following to City:
 1. Written certification of compliance with following:
a. ASTM D3740 - Practice for Evaluation of Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction.
b. ASTM E329 - Recommended Practice for Inspection and Testing Agencies for Concrete, Steel, and Bituminous Materials as Used in Construction.

2. Copy of latest inspection report by Materials Reference Laboratory/National Bureau of Standards (NBS) or inspection traceable thereto, with statement of remedies of deficiencies.

3. Invoice for retesting previously “failed” work.

B. Submit 5 copies of following, 3 to City, 2 to Contractor. Immediately transmit “fail” reports by facsimile directly to City and to Contractor.

1. Project Name, Number, CIP Number.

2. Identify ITL, Contractor, Subcontractor or Supplier, Section number and name, generic and manufacturer's name of product, numerical sequence when more than one inspection, sample or test of the same product is made, date and time of each inspection, sample collection or test, and applicable Drawing detail number.

3. Date/time of inspection/sampling/test, and quantity of product involved.

4. Product or installation batch, mill number, or production run number, and method used to assure statistically based random sampling following ASTM D3665.

5. Environmental conditions where applicable to results.

6. Name and signature of observer or tester, certifying as follows:

 “The above work was inspected/sampled and tested in the manner described, and the result(s) are hereby certified by the undersigned as complete and accurate.”

7. Product or installation inspected, by Section number, and location of inspection (such as product source, fabrication shop, or on site), and quantity of product tested.

8. Location in the Work, by Drawing/detail number, floor number, range/station number, or other specific identifier traceable to the Drawings.

9. Type of inspection or test (such as visual; non-destructive X-ray), and type of test by ASTM or other reference standard test number.

10. Type of inspection, sample or test equipment used.

11. Performance standard required

12. Factual evidence and results of inspections, measurements or tests stated as “pass” or “fail.”

13. Factual evidence and record of observations and tests. Include nature and type of failure, and comments as applicable. Furnish graphic or narrative data, or both, indicating nominal requirements and actual test values. Indicate type and numerical value of deviations from specified
requirements.

14. For submittals using SI (metric) measure as the ITL’s standard, include corresponding Imperial measure conversions. Follow Section 01610- Basic Product Requirements.

C. Print and distribute copies of records.

D. Transmit reports within 7 days of observations, inspections or test completion, except where shorter processing time is required due to possibility of Contractor continuing installation of “failing” work.

E. For data in the form of drawings:
 1. Submit electronic and hard copies, as required, to City Engineer. Submit electronic and hard copies, as required, to Contractor.
 2. Sheet Size: 8-1/2 x 11 inches minimum; 22x 34 inches maximum.
 3. If CAD is used, prepare documents readable, writable and printable using PC-compatible hardware and software, based on AutoCAD (13 or later versions) or software translated thereto. Provide copy of AutoCAD data disks to City Engineer.
 4. Prepare drawings by qualified drafters.
 5. Draw to scale, and accurately represent products.

F. For statistical records in the form of spreadsheets or graphs:
 1. Submit electronic files and hard copies as required.
 2. Sheet Size: 8-1/2 x 11 inches minimum; 11 x 17 inches maximum.
 3. Provide copy of data disks to City Engineer at completion of the Work.

PART 2- PRODUCTS

2.01 SAMPLING AND TEST EQUIPMENT

A. Provide and maintain in proper function sampling and test equipment of type and quantity required, with calibration and accuracy traceable to NBS.

PART 3 EXECUTION

3.01 GENERAL PROCEDURES

A. Follow requirements of individual Sections.

B. Follow Section 01457- Estimating Percentage of Product Within Specification Limits for determining percentage of product within specified limits.

C. Coordinate inspections, sampling and testing with construction progress and Contractor’s schedule specified in Section 01325- Construction Schedules.
D. At least once per shift inspect mixing, fabrication and installation of soil, cementitious and petroleum-based products for proper operation or tolerances. Confirm installers and tool operators are qualified, and tools are properly functioning.

E. Sample at frequencies following requirements of applicable Sections or as specified herein, and test each sample.

F. Take quantity, linear, volume and bulk measurements as frequently as necessary to control mixing, fabrication and installation.

G. Properly calibrate test equipment and measuring tools before use.

H. Immediately report failed tests or measurements.

I. Test work for proper function and performance as specified herein and in other Sections.

J. Test and balance final HVAC system by AABC-certified contractor as part of the Work.

3.02 INSPECTION AND OBSERVATION

A. Inspect work by properly experienced personnel. Observe mixing, fabrication and installation procedures. Record observations.

B. Inspect at frequency indicated, using visual observation and measuring tools appropriate to the work. If not otherwise required in other Sections, inspect product source at the site of origin.

3.03 SAMPLING

A. Unless otherwise indicated in Sections or otherwise required by test standard, randomly collect 3 samples and maintain possession until observation and testing is complete and results documented.

B. Collect and handle samples following test standard.

C. Coordinate operations with Contractor.

3.04 TESTING

A. Test products in situ as approved by City Engineer or in laboratory where destructive tests are required, test to product failure. Note factual observations, test results, and measuring equipment setup, typed or legibly handwritten. For
graph illustrations, use computerized database or spreadsheets.

B. Store and cure samples following test standards or as required to maintain samples in pristine condition until tested.

C. Test samples for conformance with requirements.

D. Follow test standards specified herein and in other Sections.

E. Follow Section 01457- Estimating Percentage of Product Within Specification Limits for estimation of percent of products within limits.

3.05 SCHEDULE OF INSPECTIONS, SAMPLES AND TESTS

A. Observe mixing, fabrication and installation, and inspect, collect samples and test, as indicated in applicable Sections.

END OF SECTION
SECTION 01505
TEMPORARY FACILITIES

PART 1- GENERAL

1.01 SECTION INCLUDES

A. General temporary facilities:
 1. Utilities and environmental systems.
 2. Sanitary facilities.
 3. Field office.
 4. Storage sheds, buildings and lay-down areas.
 5. General-purpose radios. ATCT radios are specified in Section 01640- City-Furnished Products.
 6. Fire protection.
 7. Protection of the Work and property.
 8. Interim cleaning.

B. Temporary facilities for exterior work:
 1. Barricades.
 2. Hazard lighting.
 3. Access roads and parking.
 4. Environmental controls.
 5. Disposal of excavated material.
 6. Control of erosion and water runoff.

C. Temporary facilities for interior work:
 1. Barricades and enclosures, including those for accessways and exitways.
 2. Hazard lighting.
 3. Environmental controls.
 4. Existing electrical power, water, and HVAC are available at interior construction projects for Contractor’s use at no charge by City Engineer.

D. Provide temporary product handling facilities and construction aids, such as scaffolds, staging, ladders and stairs, protective railings, hoists, chutes and other facilities, as required for construction operations and to protect persons, property and products. Follow governing agency requirements for scope, type and location if not otherwise specified.

E. Follow Section 01326- Construction Sequencing and Specification G-100 Mobilization and General Conditions for mobilization and demobilization requirements.

F. Temporary facilities specified herein are minimum standards. Provide additional facilities as required for proper execution of the Work and to meet responsibilities for protection of persons and property.

G. Properly install temporary facilities.
H. Maintain in proper operating condition until use is no longer required or as otherwise approved.

I. Modify and extend temporary facilities as required by Work progress.

J. Restore existing facilities used temporarily, to specified or original condition following Section 01731- Cutting and Patching.

K. Provide weather protection and environmental controls as required to prevent damage to remaining Base Facility, the Work, and to other property.

L.

M. Follow regulatory agency requirements for required temporary facilities not specified herein.

N. Where disposal of spoil and waste products, whether or not they are contaminated, is required under this or other Sections, make legal dispositions off site following governing authorities' requirements, unless on-site disposition is allowed under this or other Sections.

1.02 SUBMITTALS

A. Follow Section 01340- Shop Drawings, Product Data and Samples. The Contractor shall be required to submit a Safety Plan Compliance Document (SPCD) to the airport describing how the Contractor will comply with the requirements set forth in the Construction Safety and Phasing Plan (CSPP). Reference Section 01506 Airport Temporary Controls and Appendix A - CSPP for additional details and requirements.

B. Submit shop drawings and descriptive data showing:
 1. Enclosure and barricade construction.
 2. Enclosure and barricade layout if different from that shown on Drawings, including for each stage if applicable.

C.

1.03 GENERAL REQUIREMENTS FOR UTILITIES AND ENVIRONMENTAL SYSTEMS

A. Make arrangements with utility service companies for temporary services.

B. Follow rules and regulations of utility service companies or authorities having jurisdiction.

C. Maintain utility service until Substantial Completion, including fuel, power, light, heat, and other utility services necessary for execution, completion, testing, and initial operation of the Work.
D. Follow Section 01312- Coordination and Meetings for advance notifications and approvals of shutdowns of existing services and systems.

E. Water: Provide water for construction, at Contractor’s sole cost and expense except as otherwise required below. Coordinate location and type of temporary water service with and obtain approval from City Engineer.
 1. For water obtained direct from water mains or fire hydrants, obtain permit or license from proper authorities, and install temporary meter if applicable.
 2. For water obtained downstream from Department of Aviation meter, City will provide water without cost for construction operations. Obtain approval of tap types, locations, and pipe routing. Provide valves and pipe as required.
 3. For drinking water for personnel, provide potable water in proper dispensing containers, except public drinking fountains close to interior construction projects are available as long as use by Contractor does not impede airport operations or increase airport maintenance.

F. Electrical Power: Provide power for lighting, operation of Contractor’s plant or tools, or other uses by Contractor, at Contractor’s sole cost and expense, except as otherwise required below. Coordinate location and type of temporary power service with and obtain approval from City Engineer.
 1. For power obtained direct from electric mains, obtain permit or license from proper authorities, and install temporary meter if applicable.
 2. For power obtained downstream from Department of Aviation meter, City will provide power, without cost for construction operations, however, this shall be solely at the discretion of the City Engineer. Tap existing electrical panels and circuits at locations and ampacities approved by City Engineer. Obtain approval of tap types, locations, and conduit/wire routing. Provide switches as required.
 3. Provide temporary power service or generators to power construction operations and to power existing facilities during main service shutdowns, and at locations where proper commercial power is not available.

G. Lighting: Provide lighting in construction areas, or other areas used by Contractor, at Contractor’s sole cost and expense, except as otherwise required below. Coordinate location and type of temporary light fixtures with and obtain approval from City Engineer.
 1. Provide explosion-resistant fixtures in areas where fuel is stored, handled or dispensed.
 2. Minimum Lighting Level: 5 foot-candles for open areas; 10-foot-candles for exitways. Provide minimum of one 300W lamp per 20 square feet of work area.

H. Heat and Ventilation: Provide temporary heat and ventilation as required for protection or completion of the Work and to control dust, odors and other environmental contaminants. Provide safe working conditions. Maintain enclosed work areas, including interior work areas, at minimum of 50 degrees F.
1.04 SANITARY FACILITIES

A. Provide one portable self-contained chemical toilet/urinal for each 25 workers for exterior construction projects or construction areas not close to existing public restrooms. Place at reasonably secluded locations conveniently accessible to workers. Follow regulations of State and local departments of health.

1. Public restrooms close to interior construction projects are available as long as use by Contractor does not impede airport operations or increase airport maintenance.

B. Enforce use of sanitary facilities.

C. Supply and service temporary sanitary units at least twice per week. Legally dispose of waste off-site.

1.05 CONTRACTOR’S FIELD OFFICE

A. Furnish and maintain portable building(s) for Contractor’s field office, located on-site as shown on Drawings or in a place approved by City Engineer. Include furnishings and equipment as required by Contractor for proper construction operations and with following minimums when used by City Engineer or Designer:

1. Structurally sound foundation and superstructure.
2. Completely weathertight with insulated roof and walls.
3. Exterior finish acceptable to City Engineer.
4. Slip-resistant entry ramp sloped 1:12 maximum, with handrail platform (5x5 feet) with mud scraper at door. Supplemental and railings and slip-resistant stairs as required. Follow requirements of Americans with Disabilities Act.
5. Interior finishes acceptable to City Engineer.
6. Screened windows sufficient for light, view, and ventilation.
7. Minimum Parking: 2 all weather hard surfaced parking spaces, all-weather paving, for use by City Engineer and Designer, connected to office by walkway.

B. For projects where interior space becomes available as a result of construction operations, Contractor may, if approved by City Engineer, install field office facilities inside the building, following Paragraphs C, D, E and F below, and then decommission and remove portable-type-building(s)

C. Field Office Using Existing Interior Facilities:

1. For interior projects where open unfinished space is available within the contract limits, install non-combustible gypsum drywall and metal or noncombustible (noncom) wood stud partitions with noncom wood doors in metal or noncom wood frames. Provide services, furnishings and office equipment following Paragraphs C, D and E below.

D. Minimum Services for Contractor’s Field Office:

1. Interior lighting of 50 foot-candles at desktop height.
2. Exterior light at entrance.
3. Automatic HVAC to maintain 65 degrees F in winter, 70 degrees F in summer.
4. Electric power service.
5. Two telephone lines:
 a. One for voice, with telephone instrument.
 b. One for facsimile, with facsimile instrument.
 c. For use by Contractor's personnel and others performing work or services.
 Pay for cost of local calls. Directly bill applicable parties for cost of long
 distance, without cost to the contract.
6. Minimum one cellular telephone, in possession of Superintendent at all
 times.
7. One digital pager per shift supervisor.
8. Base station for general-purpose radios, if radios are used.
9. Chilled drinking water.
 a. Existing drinking fountains within the contract limits may be used.
10. Unisex restroom with plumbing facilities and sewers as required, one water
 closet, one urinal, one lavatory, one mirror. Protect from freezing.
 a. Existing toilet facilities within the contract limits may be used for personal
 hygiene only.
11. Conference table and chairs to accommodate 12 persons.

E. Maintenance for Field Office:
 1. Continuous maintenance of office, accessways, and services; clean not less
 than once per week;
 2. Provide soap, paper towels, cleansers, janitorial service and appurtenances;
 3. Immediately repair damage, leaks or defective service.

1.06 STORAGE SHED, BUILDINGS AND LAY-DOWN AREAS

A. Store products neatly and orderly onsite, arranged to allow inspection,
 identification and inventory, at locations approved by City Engineer.

B. When lack of or ill-timed environmental control systems could damage products,
 store in bonded off-site facilities approved by manufacturer, supplier or fabricator.

C. Provide suitable and substantial storage sheds, rooms, covers, or other facilities,
 for storage of material subject to contamination or damage from other
 construction operations. Provide environmental control to maintain products
 within manufacturers’ required limits, when required. Storage of materials not
 susceptible to weather damage may be on blocks off the ground.

D. Do not overload Base Facility structure. Provide temporary shoring or bracing as
 required to prevent damage to structures.

1.07. GENERAL-PURPOSE RADIOS

A. Furnish type and number of radios as required by Contractor, for the limited
 purpose of Contractor's internal communications, on FCC-approved frequencies
 provided those frequencies do not interfere with ATCT communications.

B. Provide proper FCC licenses for operators.

1.08 FIRE PROTECTION
A. Follow fire protection and prevention requirements specified herein and those established by Federal, State, or local governmental agencies.

C. Provide portable fire extinguishers, rated not less than 2A or 5B following NFPA Standard No. 10, Portable Fire Extinguishers, for field office and for every 3000 square feet of floor area of facilities under construction, located within 50 feet maximum from any point in the protection area.

D. Prohibit smoking in hazardous areas. Post suitable warning signs in areas which are continuously or intermittently hazardous.

E. Use metal safety containers for storage and handling of flammable and combustible liquids.

F. Do not store flammable or combustible products inside occupied buildings or near stairways or exits.

G. Maintain clear exits from all points in the Work.

1.09 PROTECTION OF THE WORK AND PROPERTY

A. Take precautions, provide programs, and take actions necessary to protect the Work and public and private property from damage.

B. Prevent damage to existing public and private utilities and systems during construction. Utilities are shown on Drawings at approximate locations, but this information is not warranted as complete or accurate. Give City Engineer at least 48 hours notice before commencing work in the area, for locating the utilities during construction, and for making adjustments or relocation of the utilities when they conflict the Work.
 1. Utilize the Utility Coordinating Committee One Call System, telephone number, (713) 223-4567, called 48 hours in advance. The toll free telephone number is 1-800-245-4545, Texas One Call System.
 2. Follow Section 01726 – Base Facility Survey, to determine existing utilities and systems.
 3. Follow Section 01761 – Protection of Existing Services, to make coordination efforts for each existing Service that requires protection.

C. Provide safe barricades and guard rails around openings, for scaffolding, for temporary stairs and ramps, around excavations, accessways, and hazardous areas. Reference Section 01506 Airport Temporary Controls and the project Construction Safety and Phasing Plan (CSPP) for additional details and requirements.

D. Obtain written consent from proper parties, before entering or occupying with workers, tools, or products on privately-owned land, except on easements required by the Contract Documents.
E. Assume full responsibility for preservation of public and private property on or adjacent to the site. If direct or indirect damage is done by or on account of any act, omission, neglect, or misconduct in execution of the Work by Contractor, restore by Contractor, at no cost or time increase, to a condition equivalent to or better than that existing before the damage was done.

F. Where work is performed on or adjacent to roadways, rights-of-way, or public places, provide barricades, fences, lights, warning signs, and danger signals sufficient to prevent vehicles from being driven on or into Work under construction.
 1. Paint barricades to be visible from sunset to sunrise
 2. Install at least one flashing hazard light at each barricade section.
 3. Furnish watchmen in sufficient numbers to protect the Work.
 4. Other measures for protection of persons or property and protection of the Work.

G. Protect existing trees, shrubs, and plants on or adjacent to the site against unnecessary cutting, breaking or skinning of branches, bark, or roots.
 1. Do not store products or park vehicles within drip lines.
 2. Install temporary fences or barricades in areas subject to damage from traffic.
 3. Water trees and plants to maintain their health during construction operations.
 4. Cover exposed roots with burlap and keep continuously wet. Cover exposed roots with earth as soon as possible. Protect root systems from physical damage and damage by erosion, flooding, run-off, or noxious materials contamination.
 5. Repair branches or trunks if damaged, prune branches immediately and protect the cut or damaged areas with emulsified asphalt compounded specifically for horticultural use in a manner approved by City Engineer.
 6. Remove and replace damaged trees and plants that die or suffer permanent injury. Replace with product of equivalent size and in good health.
 7. Coordinate this work with Division 2 requirements for clearing and landscaping.

H. Protection of Existing Structures:
 1. Fully sustain and support in place and protect from direct or indirect injury underground and surface structures located within or adjacent to the limits of the Work.
 a. Before proceeding with sustaining and supporting work on property of others, satisfy City Engineer that the owner of the property approves the methods and procedures proposed.
 2. Do not move or in any way change the property of public utilities or private service corporations without prior written consent of a responsible official of that service or public utility. Representatives of these utilities reserve the right to enter within the limits of the Work for the purpose of maintaining their properties, or of making changes or repairs to their property considered necessary by performance of the Work.
 a. Notify the owners and/or operators of utilities and pipelines of the nature of construction operations proposed and the date or dates on which those operations will be performed. When construction operations are required in the immediate vicinity of existing structures, pipelines, or utilities, give
minimum 5 working days advance notice. Probe and securely flag locations of underground utilities prior to beginning excavation.

3. Assume all risks attending presence or proximity of existing construction within or adjacent to the limits to the Work including but not limited to damage and expense for direct or indirect injury caused by the Work to existing construction. Immediately repair damage caused, following Section 01731.

I. Protect installed products to prevent damage from subsequent operations. Remove protection facilities when no longer needed.
 1. Control traffic to prevent damage to products and surfaces.
 2. Provide coverings to protect products from damage. Cover projections, wall corners, jambs, sills, and off-site of openings in areas used for traffic and for passage of product in subsequent work.

1.10 ACCESS ROADS AND PARKING

A. Follow Section 01575- Stabilized Construction Exit for construction exits.

B. Provide temporary stable construction roads, walks, and parking areas of a load bearing capacity required during construction connecting to public thoroughfares and for use of emergency vehicles. Design and maintain temporary roads and parking areas for full use in all weather conditions.
 1. Locate temporary roads and parking areas as approved by City Engineer.
 2. Prevent interference with traffic, City and airport operations on existing roads. Indemnify and save harmless the City from expense caused by Contractor's operations over these roads.
 3. Provide temporary parking areas to accommodate construction personnel. When site space is not adequate, provide additional off-site parking. If not shown on the Drawings, locate as directed by City Engineer.
 4. Minimize use of construction traffic on existing on-site streets and driveways. For tracked vehicles, use street plugs. Do not load paving beyond design capacity.
 5. Do not allow heavy vehicles or construction equipment in existing parking areas.
 6. Construction personnel may use designated areas of existing parking facilities.
 7. Remove temporary roads, walks and parking areas prior to final acceptance. Return to its original condition, unless otherwise required by the Contract Documents.

C. Public, Temporary, and Construction Roads and Ramps:
 1. Public Roads: Follow laws and regulations of governing authorities when using public roads. If Contractor's work requires public roads be temporarily impeded or closed, obtain approvals from governing authorities and pay for permits before starting work. Coordinate activities with City Engineer following Section 01312- Coordination and Meetings.
 2. On-Site Roads: Prepare temporary roads, construction roads, ramps, and areas on the site to be accessible for trucking and equipment.
 3. Construct temporary bridges and culverts to span low areas and allow unimpeded drainage. Extend and relocate as approved by City Engineer as Work progress requires, provide detours as necessary for unimpeded traffic.
flow. Maintain 12-foot width access road with turning space between and around combustible materials. Provide and maintain access for fire trucks to fire hydrants free of obstructions.

a. Do not use limestone for paving.

4. Obtain approval of special requirements covering handling exceptionally large or heavy trucks, cranes, or other heavy equipment. Provide mats or other means, so roadways are not overloaded or otherwise damaged.

D. Submit access road and parking locations to City Engineer for approval.

PART 2- PRODUCTS

2.01 GENERAL

A. Provide products for temporary construction using equivalent type as required for permanent construction, except “construction grade” quality may be used (such as for wood framing, enclosures and barricades, and construction locks).

B. Where materials for use in this Section are not specified or detailed, propose products in writing and obtain approval from City Engineer before commencing work.

2.02 TEMPORARY EXTERIOR ENCLOSURES AND BARRICADES

A. Repair damaged existing barricades following Paragraph B. Reuse existing to maximum practical extent. Match new work to existing sightlines, profiles, and color.

B. Provide temporary fencing as required to enclose exterior storage/staging and demolition areas, during on-site operations, chain link fence at remote areas (away from Terminal buildings), and chain link fence with plywood overlay at on-site areas (adjacent to or near Terminal buildings and AOA).

1. Chain Link: Minimum 6 foot high commercial quality galvanized fabric, galvanized steel or minimum 4 x 4 treated wood posts at 8 feet on center maximum, gate frames as required, with barbed wire at top if required by Contractor. For natural earth areas, provided minimum 8-inch diameter by 3-foot deep hole for posts. Fill annular space with pea gravel or crushed stone. For paved areas, provide welded base plate on each post and attach to paving with drill-in or powder actuated fasteners of size and quantity required to resist imposed loads. Provide corner bracing and struts as required to maintain erect fencing and taut fabric. Provide gate locks of Contractor’s choice. Provide one set of keys to City Engineer.

2. Plywood Overlay: Exterior grade, minimum 3/4 inch thick, 8 feet high. Tie plywood with wire to public side of chain link fence and gates. Paint exterior (public) face with flat latex-based paint to match “Nevamar Pepperdust” plastic laminate.

C. Barricades In Safety Areas of Taxiways and Aprons at AOA: Reference Section 01506 Temporary Facilities, Appendix A for the project Safety and Phasing Plan (CSPP), Technical Specification G-102 Safety and Security and the project plan set for details on barricades, barricade use and requirements for use within the AOA.
D. Barricades at Roadways and Outside Safety Areas: Standard 13 foot 6 inch long traffic guard rail type or precast concrete “Jersey” barriers, with 1 hazard light for each section.

2.03 TEMPORARY INTERIOR ENCLOSURES AND BARRICADES – Not Applicable

A. Provide temporary partitions and ceilings or reuse existing partitions as required to separate work areas during on-site finishing operations, to prevent penetration of dust, odors, gases and moisture into occupied areas and to prevent damage to remaining Base Facility and to Contractor's work. Remove new and existing barricades upon completion of work or as directed by City.

B. Rigid Barricades and Enclosures: Provide wood or metal framing and gypsum board or plywood sheet materials with closed joints; flame spread rating of 25 or less following ASTM E84.
 1. Paint faces exposed to public areas to match “Nevamar Pepperdust” plastic laminate, as required by City Engineer.
 2. Sandbag or foam-tape floor track to existing terrazzo or tile flooring. Do not fasten to existing finished walls or ceiling tiles.

C. Membrane Enclosures: Provide same framing as above. Cover with minimum 12 mil black plastic sheet, with taped joints and edges. Seal punctures as they occur.

D. Perimeter Tape: Manufactured plastic tape, with printed “Construction Area” or equivalent message. Fasten to saw horses, “trees” or equivalent moveable posts. Repair breaks as they occur. Install around areas where quick changeability of barrier limits is required.

2.04 HAZARD LIGHTS

A. Provide battery-powered flashing yellow lights on barricades and enclosures around perimeter of exterior areas adjacent to AOA, roadways, and parking aisles or spaces. Install on posts set in striped barrels and anchored with sand, or attach to fencing, as applicable and as ground space permits where barricades or enclosures do not occur.

2.05 TEMPORARY UTILITY AND ENVIRONMENTAL SYSTEMS WORK

A. Furnish temporary HVAC, plumbing and electrical products as required to provide continued Base Facility operation, including systems by-pass dampers, ductwork, valves, pipe and fittings, conduit, wiring, junction boxes, and other items.

B. Coordinate these products with products of Sections 01731- Cutting and Patching and the project Technical Specifications.
3.01 CONTRACTOR’S FIELD OFFICE

A. Install field office ready for occupancy, 10 days after date fixed in Notice to Proceed.

B. Reference Division 2, Technical Specification G-103 Engineer’s Field Office for additional information and requirements.

3.02 ENCLOSURE AND BARRICADE, SIGN, AND HAZARD LIGHT INSTALLATION

A. Fill and grade site for temporary structures to provide drainage away from buildings. Follow Section 01506- Temporary Controls and 01572- Erosion and Sedimentation Control for erosion and sedimentation control.

B. Follow Section 01507- Temporary Signs.

C. Install and maintain enclosures and barricades, passageways, signs and lights at locations shown on Drawings, or as directed by City Engineer, or as required to safely divert unauthorized parties away from or around construction operations.
 1. Maintain minimum 3 foot candles of illumination at exitways, including those remaining adjacent to permanent barricades.
 2. Reinforce barricades at AOA as required to withstand jet blast loads.

3.03 TEMPORARY UTILITY AND ENVIRONMENTAL SYSTEMS

A. Install temporary HVAC, plumbing and electrical products as required to maintain adequate environmental conditions to facilitate progress of Work, to meet specified minimum conditions for installation of materials, to protect materials and finishes from damage due to temperature or humidity beyond specified or otherwise required ranges, and to maintain proper Base Facility systems operation outside contract limits.

B. Provide ventilation of enclosed areas for proper curing of installed products, to disperse or control humidity, and to prevent hazardous accumulations of dust, fumes, vapors or gases inside or outside of enclosures.

3.04 CONSTRUCTION EQUIPMENT

A. See Document 00646- Affidavit for FAA Form 7460-1 for filing of information related to height of construction equipment. When not in use, store equipment in designated location outside safety areas.

3.05 BRIDGING OF TRENCHES AND EXCAVATIONS AT ROADS

A. Install steel plates of thickness required to support TMUTCD H-20 loading, truck or lane, which produces maximum stress. Install with camber in direction proper to reduce tire impact noise.

B. Extend plates minimum 12 inches beyond all edges of trenches and excavations. Install pre-mix pavement patch widely feathered out from edge of plate onto road surface.
C. Properly barricade around trenches or excavations and remove bridging plates for access to trenches or excavations during construction operations. Properly install bridging and remove barricades during non-working periods. Maintain feathered pavement.

D. See also Section 01555- Traffic Control and Regulation.

3.06 REMOVAL OF TEMPORARY FACILITIES

A. Maintain temporary facilities until Substantial Completion inspection, or when use is no longer required, or as directed by City Engineer.

B. Clean and repair damage caused by installation or use of temporary facilities.

C. Restore existing facilities used during construction to specified or original condition following Section 01731- Cutting and Patching.

3.07 DISPOSAL OF DEBRIS AND EXCAVATED MATERIAL

A. Legally dispose of waste and excess products off site. Do not burn or bury on site.
 1. Prepare and file with Texas Department of Health (TDH) “TDH Demolition/Renovation Notification” related to compliance with National Emissions Standards for Hazardous Air Pollutants. Obtain form from TDH, 10500 Forum Place Drive, Suite 300, Houston, TX 77036-8599, 713/ 414-6125, or 800/ 572-5548.

B. Place excavation material and salvageable products on site at locations and to profiles shown on Drawings or as directed by City Engineer.
 1. Load, haul, and deposit excavated material.
 2. Base, surface, and bedding material: Load shell, gravel, bituminous, or other base and surfacing material into City of Houston trucks.
 3. Pipe culvert: Load culverts designated for salvage into City of Houston trucks.
 4. Other salvageable materials: Follow individual Sections.
 5. Coordinate loading of salvageable material on City's trucks with City Engineer.

B. Dispose of excavated material off site. Do not make disposition within the City in an area designated as being within the 100-Year Flood Hazard Area unless a “Special Development Permit” as defined by City Ordinance No. 81-914 and Number 85-1705 has been issued. Verify the floodplain status of proposed disposal site.
 1. For floodplain information, contact the City of Houston Storm Sewer Engineering Section at (713) 837-0989.
 2. Immediately remove and properly dispose of excavated material placed in the 100-Year Flood Hazard Area without a ‘Special Development Permit” at no cost or time increase to the contract.

C. Do not dispose of debris in sewers. Repair sewer lines to proper function within contract limits as a result of permitted use.
D. Remove and legally dispose of excess and other products not designated for salvage.

3.08 INTERIM CLEANING

A. Temporarily store debris in areas concealed from public, occupants’ and AOA view. Prevent migration of debris and dust following Section 01506- Temporary Controls.

B. Clean-up dirt and debris in vicinity of construction entrances each day. Clean up debris, scrap materials, and other disposable items before completion of each day's work. Keep streets, driveways, and sidewalks clean of dirt, debris and scrap materials.
 1. Failure on the Contractor’s part to maintain a clean site is the basis for City Engineer take action following Section 2.5 in Document 00700- General Conditions.

C. Remove debris daily unless otherwise approved by City Engineer.

D. Prevent hazardous conditions due to product or debris storage in work areas and storage areas.

E. Keep streets used for entering or leaving the job area free of excavated material, debris, and foreign material, including carryout dust and mud, resulting from construction operations. Follow Section 01575- Stabilized Construction Exit for vehicle wash areas. Follow City of Houston Ordinance No. 5705, Construction or Demolishing Privileges.

3.09 ACCESS THROUGH JETWAYS OR EXTERIOR WALL (NOT APPLICABLE)

A. Obtain City Engineer’s approval to use City-owned jetways for bringing material into and out of flight station areas. Do not use privately owned or leased jetways.

B. Where approved by City Engineer, remove and salvage curtainwall glazing at one light, provide temporary enclosure and building protection, and reinstall salvaged products upon completion of required accessibility.

END OF SECTION
PAGE INTENTIONALLY LEFT BLANK
SECTION 01506

AIRPORT TEMPORARY CONTROLS

PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Dust control.
B. Noise control.
C. Pest and rodent control.
D. Pollution and environmental control.
E. Security controls, security plan and procedures. Work in AOA or the airport’s secured area is not intended as part of this Contract; however, TSA may be involved in reviews of Contractor’s construction plans to verify no TSA requirements or restrictions apply.
F. Safety requirements and safety plan.
G. Emergency procedures.
H. Construction Safety and Phasing Plan (CSPP)

1.02 REFERENCES

A. U.S. Department of Transportation Federal Aviation Administration Advisory Circular AC 150/5370-2F.

1.03 SUBMITTALS

A. Make following submittals in 3-ring "D" binders, with clear spine and cover pockets and label "Construction Safety and Phasing Plan (CSPP) / Safety Plan Compliance Document (SPCD)" on white card-stock inserts. Prepare submittals as work of this and other Sections, but submit following Section 01312- Coordination and Meetings.
B. Preliminary "Safety Plan Compliance Document (SPCD)" : Submit, under provisions of Section 01325, 3 copies in draft form meeting the requirements of the SPCD as required in the CSPP which has been provided as a part of the Project manual at the end of this section, Section 01506 – Airport Temporary Controls. The SPCD shall include, with section dividers labeled as and containing, the items below and shall also address the section for section of Section C. Plans Requirements in the CSPP:
 1. Construction Traffic Control Plan, prepared under Section 01555- Traffic Control and Regulation.
 2. Emergency Response Plan listing Safety Officers (Paragraph 1.09) with names, positions, office and home telephone numbers, and pager and portable telephone numbers.
5. Dust Control Plan.
6. Ground Water and Surface Water Control Plan prepared under Section 01578- Control of Ground and Surface Water.
7. Revise as required and submit 5 final copies, in same form as preliminary copies under Section 01312- Coordination and Meetings.

C. Pesticides and Poisons: Submit following Section 01340- Shop Drawings, Product Data and Samples. Include Material Safety Data Sheets and manufacturers' recommendations for use and application. Include copy of applicator's certification from manufacturer.

1.04 DUST CONTROL
A. Prevent uncontrolled dust creation and movement. Prevent airborne particulates from reaching receiving streams or storm water conveyance systems, building interiors and AOA.
B. Use spray-on adhesives or plastic covers on exposed soil piles.
C. Follow Section 01505- Temporary Facilities for interior enclosures.
D. Implement dust control methods immediately whenever dust migration is observed.

1.05 NOISE CONTROL
A. Provide vehicles and tools with noise suppressors and use methods and products that minimize noise to the greatest degree practicable. Follow OSHA standards and City Ordinances regarding noise. Do not create noise levels which interfere with the Work, with work by City, with airport operations, or which create a nuisance in surrounding areas.
B. Do not use impact-type or powder-actuated-type tools adjacent to occupied office-type areas.

1.06 PEST AND RODENT CONTROL
A. Provide pest and rodent control as required to prevent infestation of construction or storage areas using legal chemicals applied by a licensed applicator.
B. Provide methods and products with no adverse effect on the Work or adjoining properties.
C. Use and store chemicals following manufacturers' recommendations and with local, state, and federal regulations. Avoid overuse of pesticides that produce contaminated runoff. Prevent spillage. Do not wash pesticide containers in or near flowing streams or storm water conveyance systems, or inside buildings.

1.07 POLLUTION AND ENVIRONMENTAL CONTROL
A. Prevent contamination of soil, water or atmosphere by discharge of noxious substances from construction operations.
B. Contain spillage, and remove contaminated soils or liquids. Excavate and dispose of contaminated earth off-site, and replace with suitable compacted fill and topsoil.
C. Prevent harmful substances from entering public waters. Prevent disposal of wastes, effluents, chemicals, or other such substances adjacent to streams, or in sanitary or storm sewers.

D. Provide systems for control of atmospheric pollutants. Prevent toxic concentrations of chemicals. Prevent harmful dispersal of pollutants into the atmosphere.

E. Use equipment during construction following Federal, State, and local laws and regulations.

F. Follow statutes, regulations, and ordinances governing prevention of environmental pollution and preservation of natural resources, including but not limited to the National Environmental Policy Act of 1969, PL 91-190, Executive Order 11514.

G. Undeveloped areas on the airport site have considerable natural value. Do not cause unnecessary excavation or filling of terrain, unauthorized destruction of vegetation, air or stream pollution, nor harassment or destruction of wildlife.

H. Follow environmental requirements. Limit disturbed areas to boundaries established by the Contract Documents. Do not pollute on-site streams, sewers, wells, or other water sources.

1.08 SECURITY CONTROLS, PLAN AND PROCEDURES

A. Reference the Construction Safety and Phasing Plan provided for project specific safety, security and phasing requirements. Additionally, the following general requirements shall apply and are required to be addressed in the Contractor's submitted Safety Plan Compliance Document (SPCD):

B. Protect products and property from loss, theft, damage, and vandalism. Protect City property and other private property from injury or loss in connection with the Work.

C. Employ watchmen as needed to provide required security and prevent unauthorized entry.

D. Repair damage or replace property vandalized.

E. If existing fencing or barriers are breached or removed for purposes of construction, provide an appropriate (as determined by the airport manager or designee) number of guards and/or maintain temporary security fencing equivalent to existing and approved by City Engineer.

F. Maintain security program through construction until City's acceptance and occupancy precludes need for Contractor's security program. The Contractor's Security program will follow the guidelines listed herein and those contained in the CSPP and will be implemented as a part of the Safety Plan Compliance Document (SPCD). The security program implemented by the Contractor is a subsidiary obligation of Contractor compensated through Technical Specification G-102 Safety and Security.

G. Provide chain link fence Terminal area staging areas, following Section 01505-Temporary Facilities.

H. Airport Security Requirements:
1. Airport Manager and TSA monitor effectiveness of airport security by attempting to gain unauthorized entry into security areas. When TSA gains unchallenged access to security areas, City and/or the responsible individual may be fined. When unauthorized entry into security areas is made through contract limits or other areas under the Contractor’s control:
 a. Reimburse the City, without increase in contract price, the amount of imposed fines levied against the City, accomplished by Change Order following Section 01255- Modification Procedures.
 b. Cease work in breached areas until proper security measures are in place, without change in contract price or time.

2. Immediately notify HPD of discovered presence of unbadged or unknown persons, vehicles or animals in security areas. Dial (IAH) 281-231-3100.

3. Obtain permitted AOA gate and other security area access locations from Airport Manager. Assign personnel to control passage through entry points not staffed by airport personnel.

4. Badges:
 a. After contract award and before preparation of the Safety Plan (Paragraph 1.09E) and construction schedule (Section 01325), obtain permitted security badges.
 b. Security identification badges are required for access into AOA/Secured areas. Badges are valid for one year or for the period of the contract, whichever is shorter.
 c. TSA TSR Part 1542.209 applies to personnel engaged in work of this contract occurring within the AOA or secured area, and reads in part as follows:
 "...each airport operator must ensure that no individual is granted unescorted access authority unless the individual has undergone a fingerprint-based criminal history records check (CHRC) that does not disclose that he or she has a disqualifying criminal offense."
 d. Obtain from City Engineer and fill out one security badge application package (application form and all associated paperwork) per person (including subcontractors’ personnel) needing unescorted access in security areas.
 e. Contact the airport ID badging office to arrange for collection and submittal of fingerprints. Prepare and maintain a file for each applicant, including a copy of the completed application. Keep in Contractor’s main office until expiration of the warranty period.
 (1) Short-term or temporary personnel are permitted in security areas but only under constant escort by a properly badged escort, who shall have no duty other than to escort short-term or temporary personnel.
 (2) Badged and escorted personnel are limited to access to and from work areas and shall remain in the work area.
 (3) Personnel under constant escort shall be continuously observed by and in the immediate company of badged personnel.
 (4) City Engineer may limit the number of badged personnel and personnel under constant escort.
 f. Submit completed applications to City Engineer for further review.
g. Attend required security training sessions.
h. Pick up completed badges and pay badging fees (as of December 2000, $50.00 per badge for a 1-year period--verify fee and duration with Airport Manager).

5. Do not leave fence breaks unattended. Restore fence or erect equivalent secure temporary fencing before departing the work area.

6. Provide proper identification on Contractor’s vehicles permitted in AOA.

7. Submit draft SPCD at the Preconstruction Conference, following Section 01312- Coordination and Meetings.

1.09 SAFETY REQUIREMENTS

A. Reference the Construction Safety and Phasing Plan provided for project specific safety, security and phasing requirements. Additionally, the following general requirements shall apply and are required to be addressed as a part of the Contractor’s submitted Safety Plan Compliance Document (SPCD):

B. Contractor and not City, City Engineer or Designer is solely and without qualification responsible for observation and compliance with safety regulations without reliance or superintendence of or direction by City, City Engineer or Designer.

C. Safety measures, including but not limited to safety of personnel, provision of first-aid equipment, installation, operation and removal of temporary ventilation and safety equipment, in the Contract Documents are a subsidiary obligation of Contractor compensated through Technical Specification G-102 Safety and Security.

D. Follow Document 00700- General Conditions Paragraph 10.1 and this Section for safety plan and procedures.

E. Prepare a written detailed Safety Plan for the Work, SPCD, describing:
1. Specific methods used to maintain airport safety procedures, based on requirements of the Contract Documents, airport procedures, FAA/TSA requirements and Contractor's own safety and security program.
2. Contractor's emergency procedures in event of following minimum set of circumstances: airport's-, tenants'- or Contractor's on-site property damage; accidents; fire emergency; medical emergency; Airport Manager's intervention in construction operations; detention or arrest of unauthorized Contractor's employees and subcontractors in Security areas; discovery of hazardous materials.
3. Provisions for temporary removal of security fencing (including culvert and drainway grates). Include proposed actions to prevent entry of people or animals into security areas when security fence is breached. Do not breach fencing without approval.
4. Requirements for closing safety areas.
5. Submit draft SPCD at the Preconstruction Conference, following Section 01312- Coordination and Meetings.

F. City Engineer will review the SPCD with FAA and ATCT for compliance with applicable regulations. If the plan fails to demonstrate compliance, modify it until approval is obtained.
G. Contractor's Safety Officers: Refer to Section 01550 – Public Safety & Contractor Safety Staffing, Paragraph 1.05, Contractor's Safety Staffing Requirements.

H. Submit final SPCD at the first Progress Meeting following Section 01312-Coordination and Meetings.
 1. Include in the SPCD Contractor's response to trench safety requirements following Section 01561- Trench Safety System.

I. Follow applicable Federal, State and local safety codes and statutes and with proper construction practice. Establish and maintain procedures for safety of work, personnel and products involved in the Work.

J. Follow Texas Occupational Safety Act (Art. 5182a, V.C.S.) and promulgations of Secretary of Labor under Section 107 of Contract Work Hours and Standards Act, published in 29 CFR Part 1926 and adopted by Secretary of Labor as occupational safety and health standards under the Williams-Steiger Occupational Safety and Health Act of 1970. Follow other legislation enacted for safety and health of Contractor employees. These safety and health standards apply to Contractor, Subcontractors and Suppliers and their respective employees.

K. Immediately notify City Engineer of investigation or inspection by Federal Safety and Health inspectors of the Work or place of work on the job site, and after such investigation or inspection inform City Engineer of results. Submit 1 copy of accident reports to City Engineer within 10 days of date of inspection.

L. Protect areas occupied by workmen by the best available devices for detection of lethal and combustible gases. Frequently test devices to assure their functional capability. Monitor liquids and gases infiltrating into work areas for visual or odor evidences of contamination. Take immediate appropriate steps to seal off entry of contaminants into to the Work.

M. Maintain coordination with City's Police and Fire Departments during the Work.

1.10 EMERGENCY PROCEDURES

A. If an emergency situation occurs, including involvement in or witness to aircraft or motor vehicle emergencies and emergencies involving other parties or property regardless of fault, or a violation of requirements of this Section, or a violation of FAA/TSA regulations, take one or more of the following minimum actions as appropriate to the situation.

B. Immediately report to City Engineer accident or damage to pavement, buildings, utilities, and vehicles involving or caused by Contractor, Subcontractors, Suppliers, personnel, equipment or others.

C. In general:
 1. Immediately notify HFD or HPD (public areas) as appropriate and applicable to location of emergency.
 2. Notify City Engineer by telephone or in person.
 3. Stop work in the area. Secure site as required to prevent further damage to property and persons.
4. Evacuate non-essential personnel from the scene. Keep involved personnel and witnesses on-site until otherwise directed by City Engineer or security officers.

5. Impound involved vehicles in "as-is condition" until otherwise directed.

6. Do not resume work in the area until released by City Engineer.

D. For discovery of actual or suspected hazardous material contamination, proceed with Paragraph B above while simultaneously initiating Contractor's own hazardous material response program.

E. Follow City Engineer's instructions for emergencies affecting the Work but occurring outside the Contract Limits. Certain situations may require the Work or work to be temporarily stopped under provisions of Document 00700- General Conditions.

1. Maintain a log documenting cost and time impact of the stop-work order.
2. Submit data to the City Engineer in form as instructed at that time.

1.11 CONSTRUCTION SAFETY AND PHASING PLAN (CSPP)

The Construction Safety and Phasing Plan (CSPP) sets forth guidelines and requirements for the project to help ensure the highest levels of safety, security and efficiency at the airport at the time of construction. Guidelines and requirements for the CSPP are developed from FAA Advisory Circular No. 150/5370-2F Operational Safety on Airports During Construction, except as modified herein by those requirements listed above.

The CSPP is a single document to be used by all personnel involved in the project. The CSPP covers the actions of not only the construction personnel and equipment, but also the action of inspection personnel and airport staff.

Additionally, The Contractor shall develop and submit, for review and approval, a draft Safety Plan Compliance Document (SPCD), at the pre-construction meeting and the final SPCD at the first progress meeting following Section 01312 – Coordination and Meetings.

The SPCD shall comply with the provisions and requirements required by IAH, those requirements outlined in the CSPP and with those requirements outlined in FAA Advisory Circular 150/5370-2F Operational Safety on Airports During Construction. The SPCD must also include a certified statement by the Contractor that indicates its understanding of those operational, safety and security requirements. The certified statement must also assert that the Contractor will not deviate from the approved CSPP and SPCD unless written approval is granted by the Airport.

Implementation of the CSPP and SPCD will minimize interruptions to airport operations, reduce construction costs, and maximize the performance and safety of construction activity. Strict adherence to the provisions of the CSPP and SPCD by all personnel assigned to or visiting the construction site is mandatory. In the event Contractor activities are found in non-compliance with the provisions of the CSPP and/or the SPCD, the Airport or its duly authorized representative will direct the Contractor, in writing, to immediately cease operations in violation. In addition a safety meeting will be conducted for the purpose
of reviewing those provisions in the CSPP and/or SPCD which were violated. The Contractor will not be allowed to resume any construction operations until the safety meeting has been conducted and the issue has been addressed and corrected or resolved.

The CSPP is specifically made a part of this contract and has been included following this section under Section 1506A Construction Safety and Phasing Plan.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)

END OF SECTION
SECTION 01507
TEMPORARY SIGNS

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Temporary signs at construction access points.
B. Maintenance.
C. Removal.
D. Project and Contractor identity signs are not permitted.

1.02 QUALITY ASSURANCE

A. Design signs and supporting sign structure to remain in place and withstand 50 miles-per-hour wind velocity.
B. Sign Manufacturer/Maker/Painter: Experienced professional sign company.
C. Finishes, Painting: Withstand weathering, fading, and chipping for duration of construction.
D. Appearance: Fresh, new-looking, legible and neat look during the entire period during which required.

1.03 SUBMITTALS

A. Follow Section 01340- Shop Drawings, Product Data and Samples.
B. Submit shop drawings including:
 1. Signboards and Copy: Show to-scale size, dimensions, content, layout, font style and size, and colors.
 2. Location of each sign during each phase (Section 01326- Construction Sequencing, 1506A Construction Safety and Phasing Plan, project plan sheets).

PART 2- PRODUCTS

2.01 TEMPORARY SIGNS FOR ACCESS POINTS

A. Posts for Exterior Signs: New 4x4 inch moisture-resistant-treated wood or 2-1/2 inch diameter by 12-foot long galvanized steel.
 1. Unpainted.
 2. Fabricate to length required for 3-foot direct-bury plus aboveground length required for proper height of signboard mounting.
 3. Furnish number of posts as required for proper support of signboard
B. Signboards:
1. For Exterior Signs: 3/4 inch thick exterior grade medium density overlay (MDO) plywood, or 3/16 inch sheet aluminum. Paint background white.

C. Color Coating for Signboards and Hashmarks: Flat ultraviolet inhibited acrylic polyurethane or matte vinyl, all visible surfaces.

D. Copy and Borders: Flat color (color as scheduled) vinyl die-cut, Helvetica Medium typeface, size as shown or scheduled.

E. Rough Hardware: For wood, galvanized steel or brass for fasteners and other hardware. For aluminum, cadmium-plated steel or stainless steel.

F. Skid-mounted Signs: Allowed only when approved by the City Engineer. Approval does not release Contractor from responsibility of maintaining temporary signs on site and does not make City responsible for security of temporary signs.

2.03 SIGN FABRICATION
 A. Fabricate signboards and install copy in the shop.

PART 3- EXECUTION

3.01 INSTALLATION
 A. Install temporary signs at construction area access points, including within security areas and AOA, at following location:
 1. As scheduled below.
 2. Where shown on Drawings.
 3. Where required by City Engineer.
 4. To denote Haul Routes. Contractor shall use colored cones or reflective tape to denote the limits of the Haul Route. Color to be approved by the Engineer.

 B. Install signs fully visible, legible, level and plumb.

3.02 MAINTENANCE
 A. Maintain signs and supports and markings clean. Repair deterioration and damage.
 B. Relocate signs as work progresses as required at no additional cost to the City.

3.03 REMOVAL
 A. Remove temporary sign work when control is no longer needed or as directed by City Engineer.

3.04 MESSAGE SCHEDULE
 A. Construction Entrance Warning Sign: 3 by 2-foot signboard, white copy and border on black background. Surface-mount on access gates through fences and
on doors through barricades or enclosures; at 50 feet on center unless otherwise required by governing agencies:

NO ENTRANCE (4 inch)
CONSTRUCTION AREA (4 inch)
(45-degree hash marks, full width) (2 inch)
Hard Hat Required (2 inch)
Security Badge Required (2 inch)

B. Emergency Egress Sign: One foot square signboard, white copy and border, with directional arrow, on black background. Surface-mount on fences, barricades or enclosures, or freestanding, spaced 50 feet on center along path of egress, unless otherwise required by governing agencies.

EXIT (4 inch)
(Arrow direction as appropriate to egress path) (6 inch)

C. No Entrance to Closed Parking Area: 8 by 4 foot signboard, white copy and border on black background, free-standing; at each ramp access to floor on which work occurs:

NO ENTRANCE (6 inch)
CONSTRUCTION AREA (6 inch)
(45-degree hash marks, full width) (4 inch)
This Parking Area Closed (4 inch)
Until ______, 2019 (4 inch)

D. Notice of Intent to Close Parking Area: 8 by 4 foot signboard, white copy and border on black background, free-standing; at each ramp access to floor on which work occurs:

WARNING (6 inch)
THIS PARKING LEVEL (6 inch)
WILL BE CLOSED (6 inch)
(45-degree hash marks, full width) (4 inch)
Do Not Park on This Level (4 inch)
From ______, 199_ (4 inch)
Until ______, 199_ (4 inch)

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 – GENERAL

1.01 SECTION INCLUDES
A. Public Safety and Convenience
B. General Requirements
C. Street Markers and Traffic Control Signs
D. Contractor’s Safety Staffing Requirements

1.02 RELATED SECTIONS
A. Section 00700- General Conditions
B. Section 01506 – Airport Temporary Controls
C. Section 01555 – Traffic Control & Regulations
D. Section 01561 – Trench Safety System
E. Technical Specification G-102 Safety and Security
F. Appendix A - Construction Safety and Phasing Plan (CSPP)

1.03 PUBLIC SAFETY AND CONVENIENCE

A. The Work in this Project is to be performed within the Aircraft Operations Area (AOA) of the airport. Construction operations associated with this project have been broken into multiple phases of work. Due to the importance of maintaining airfield operations, safety and security during construction, it is the Contractor’s responsibility to be apprised of and fully implement the guidelines established for each phase of construction as detailed in Section 01506 – Airport Temporary Controls, Technical Specification G-102 Safety and Security, the Construction Safety and Phasing Plan (CSPP), and the project plan set. The Contractor shall furnish and maintain appropriate barricades, and signage, and any other necessary equipment as well implementing all operational procedures required to maintain a safe work environment for the HAS employees, the public and construction staff working at the project site.

B. Contractor shall plan and execute his operations in a manner that will cause a minimum interference with other construction projects. This plan shall be
detailed in the Contractor’s submitted Safety Plan Compliance Document (SPCD).

C. Signs, barricades and warning devices informing public of construction features will be placed and maintained by Contractor, who shall be solely responsible for their maintenance.

D. Contractor shall perform the necessary cleanup and finishing immediately after all or a portion of the Work is completed.

E. All fire hydrants and water control valves shall be kept free from obstruction and available for use at all times.

1.04 GENERAL REQUIREMENTS

A. The Contractor shall observe the rules and regulations of the State of Texas and agencies of the U.S. Government which prohibit the pollution of any lake, stream, river, or wetland by dumping of any refuse, rubbish, dredge material, or debris therein.

B. The Contractor is specifically cautioned that disposal of materials into any water of the State must conform to the requirements of the Texas Natural Resource Conservation Commission (TNRCC), and any applicable permit from the US Army Corps of Engineers.

C. Waste material must be disposed of at sites approved by the Owner’s Representative and permitted by the City.

1.05 CONTRACTOR’S SAFETY STAFFING REQUIREMENTS

A. Refer to Section 00700 – General Conditions, Article 10 – Safety Precautions

B. Refer to Section 01506 – Airport Temporary Controls

C. Refer to Appendix A – Construction Safety and Phasing Plan (CSPP)

D. Refer to Technical Specification – G-102 Safety and Security

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION (NOT USED)

END OF DOCUMENT
SECTION 01555

TRAFFIC CONTROL AND REGULATION

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Signs, signals, lights and control devices.

B. Flagmen.

C. Construction parking control.

D. Designated haul routes.

E. Construction Traffic Control Plan.

F. See also Section 01145- Use of Premises.

G. See also Section 01506 – Airport Temporary Controls

H. See also Appendix A – Construction Safety and Phasing Plan

I. Technical Specification G-102 Safety and Security

1.02 DEFINITIONS

A. See Section 01312 – Coordination and Meetings for definition of terms related to Aircraft Operations Area (AOA).

B. Flagman Flagger: A person who has successfully fulfilled the “Certified Flagman” requirements set forth by the Texas Department of Transportation. Flagman certification may be achieved either through the Texas Department of Transportation, Texas Engineering Extension Services (TEEX), the City of Houston’s E.B Cape Training Center, or by a trained and certified flagman instructor, employed by the Contractor. The certified flagman must carry proof of certification while performing flagman duties. The certified flagman will be required to wear a distinctive, bright colored vest and be equipped with appropriate flagging and communication devices. He/she must be fluent in English (speaking, reading, writing), with Spanish an advantageous, but not required, primary or secondary language.

C. Peace Officer: A licensed police officer actively employed in a full time capacity as a peace officer, working on average, minimum 32 paid hours per week, at a rate not less than the prevailing minimum rate following the Federal Wage and Hour Act, and entitled to full benefits as a peace officer, and who receives compensation for private employment as an individual employee or independent contractor. Private employment may be either in employee-employer relationship or on an individual
contractual basis. He/she must be fluent in English (speaking, reading, writing) with Spanish an advantageous, but not required, primary or secondary language.

D. Uniformed Flagman: A peace officer trained in traffic control and familiar with George Bush Intercontinental Airport roadway traffic patterns and airport operation procedures. A uniformed flagman may not be a reserve peace officer.

1.03 SUBMITTALS

A. For Contractor-proposed changes to Traffic Control and Regulation shown on Drawings, permitted only in order to reduce construction time and cost through re-sequencing the Work, prepare plan drawings and supplement with product literature, narrative description, and construction schedule.

1.04 MEASUREMENT AND PAYMENT

A. Traffic Control and Regulation, excluding Flagmen: Measurement is on a lump sum basis, including submittal of Contractor-proposed changes. Payment will be made based on schedule of values and percent of work complete under Technical Specification G-102 Safety and Security.

B. Flagmen: Measurement is on a lump sum basis as required for the Work. Payment will be made based on schedule of values and percent of work complete under Technical Specification G-102 Safety and Security.

C. Follow Section 01290- Payment Procedures.

1.05 CONSTRUCTION TRAFFIC CONTROL PLAN AND PROCEDURES

A. Develop a written and graphic detailed Construction Traffic Control plan. The Construction Traffic Control plan shall be considered incidental to the pay items described under Technical Specification G-102 Safety and Security. The plan shall at a minimum address and describe the following describing:

1. Rerouting of public roadway and AOA roadway traffic (outside safety areas) showing route, duration, and methods for change over from one route to the other and return to normal.
2. Product Deliveries: Location, space required and duration for temporary off-loading along public roadways or curbsides and along AOA roadways and around buildings adjacent to aprons, and route through occupied building interiors.
3. Barricade locations and duration of installation. Submit barricade construction details following Section 01505- Temporary Facilities.
4. Maintain, update and obtain approval for changes.

PART 2- PRODUCTS

2.01 SIGNS, SIGNALS, AND DEVICES
A. Furnish traffic cones, drums, barricades and traffic intersection lights, including control devices in AOA, following TMUTCD.

2.02 FLAGMEN AND OTHER PERSONNEL

A. Provide certified flagmen in number, at assigned, locations, and for durations as required to regulate even flow of vehicular and pedestrian traffic affected by construction activities.

B. Employ other personnel, i.e. uniformed peace officers, to take the additional steps required to protect the Work and public, or when specifically requested by Airport Operations personnel through the City Engineer to assist flagmen in the regulating of airport roadway traffic. The uniformed peace officer will coordinate with City Engineer, contractor, and/or Airport Operations personnel, as appropriate, prior to beginning shift.

C. Use of flagmen or peace officers does not reduce responsibility for damage for which the contractor would otherwise be liable.

PART 3- EXECUTION

3.01 GENERAL

A. Install traffic control devices, including flagmen, at approaches to site and on site, at crossroads, detours, parking areas, at AOA, at construction entrances, and elsewhere as required in the project plan to direct construction and affected public traffic, aircraft and GSE, or where directed by City Engineer and/or Airport operations personnel.

B. As directed by appropriate authority, e.g., City Engineer, employ additional uniformed peace officers to supplement the flagmen when performing a total terminal area road closure, detour, or overnight activity that affects existing traffic patterns. The uniformed peace officer will coordinate with City Engineer, contractor, and/or Airport Operations personnel, as appropriate, prior to beginning shift.

C. Install and operate traffic control signals to direct and maintain orderly flow of traffic in areas under Contractor's control, and areas affected by Contractor's operations.

D. Install warning lights on traffic control devices for use during hours of low visibility to delineate traffic lanes and to guide traffic. Do not use flares or flame pots.

E. Relocate traffic controls as Work progresses, to maintain effective traffic control.

3.02 HAUL ROUTES

A. Confine construction traffic to designated haul routes.
B. Regulate construction traffic along haul routes. Minimize interference with public traffic.

C. Follow Texas State Highway and Public Transportation load limits of roadways.

3.03 PUBLIC ROADS AND TERMINAL AREA ROADS

A. Abide by laws and regulations of governing authorities when using roads.

B. Maintain road lane use as follows, unless otherwise permitted by Airport Manager or Airport Operations personnel, as coordinated through City Engineer.
 1. All Terminal area road lanes available from 0500 to 2200 hours; minimum two lanes in each direction at all times.
 2. All on-airport road lanes (outside Terminal area) available from 0500 to 0900 hours, and from 1600 to 1900 hours; minimum two lanes in each direction at all times.

C. Maintain access at driveways. Do not block any vehicle or pedestrian traffic area without obtaining prior approval from the Houston Airport. Any unusual or otherwise unforeseen activity will require forty-eight (48) hours of notification to the City Engineer as well as Airport Operations personnel. Traffic control meetings are held weekly, on Thursdays, at 2:00 pm at a location to be identified during the pre-construction conference. Contractor shall attend these meetings to coordinate all roadway traffic impacts. Contractor must present detailed traffic control/coordination plan, including drawings, written narrative, etc., with dates, times, and durations of proposed activities. This plan must be presented a minimum of three weeks prior to intended activity.

D. Maintain roads on airport property clean at all times. Broom or wash as required. At Terminal area roads, follow behind haul vehicles and immediately clean up roads and debris and foreign material resulting from construction operations is deposited.

E. Follow City of Houston Ordinance 5705, Construction or Demolishing Privileges

3.04 CONSTRUCTION PARKING CONTROL

A. Control vehicular parking to prevent interference with public traffic and parking, access by emergency vehicles, and airport operations.

B. Prevent construction personnel's vehicles in revenue-producing facilities. Maintain vehicular access to and through construction parking areas.

C. Do not park on or adjacent to roadways or curbsides.

D. Comply with all security directives with regard to parking in the Terminal area
3.05 REMAINING EXISTING CONTROL AND REGULATION DEVICES
 A. Leave existing control and regulation devices in place and properly operating and visible during construction, unless indicated for removal or otherwise permitted.
 B. Repair damage resulting from construction operations.

3.06 REMOVAL OF EXISTING CONTROL AND REGULATION DEVICES
 A. Contact City of Houston Signal Shop Dispatcher at 713-803-3004 before removing or deactivating existing control and regulation devices.
 B. Remove designated or permitted existing control and regulation devices following Section 01731.
 C. Unless otherwise indicated or directed, remove existing lane striping and reflective buttons in conflict with temporary control and regulation devices. Install matching temporary lane striping and reflective buttons, maintain during construction, remove after construction is complete, and install permanent matching lane striping and reflective buttons.

3.07 BRIDGING TRENCHES AND EXCAVATIONS IN ROADS
 A. Follow Section 01505- Temporary Facilities.

3.08 REMOVAL OF TEMPORARY CONTROL AND REGULATION
 A. Remove controls and regulation when no longer required. Repair damage caused by installation.
 B. Remove post settings to a depth of 2 feet.

END OF SECTION
SECTION 01561

TRENCH SAFETY SYSTEM

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Trench safety system for construction of trench excavations.

B. Trench safety system for excavations governed by State and Federal trench safety laws.

1.02 MEASUREMENT AND PAYMENT

A. For Unit-Price-based Contact:

1. Measurement for trench safety systems used on trench excavations is on a linear foot basis measured along the trench centerline, including manholes and other line structures.

2. Payment for trench safety system is on a line-item basis under Technical Specification D-701 Pipe for Storm Drains and Culverts. This line item has been included in Document 00410, the value for trench safety work for each separate trenches requiring trench safety shall be provided by the prospective bidder and submitted with all other line items at time of bid.

B. Follow Section 01255- Modification Procedures.

1.03 DEFINITIONS

A. Trench: A narrow excavation (in relation to its depth) made below the surface of the ground. In general, the depth is greater than the width, but the width of a trench (measured at the bottom) is not greater than 15 feet.

B. Trench safety system requirements will apply to larger open excavations if erection of structures or other installations limits space between the excavation slope and the installation to dimensions equivalent of a trench, as defined.

C. Trench safety systems include both Protective Systems and Shoring Systems but are not limited to sloping, sheeting, trench boxes or trench shields, side rail systems, sheet piling, cribbing, bracing, dewatering or diversion of water to provide adequate drainage.

1. Protective System: A method of protecting employees from cave-ins, from material that could fall or roll from an excavation face or into an excavation, or from the collapse of an adjacent structure.

2. Shoring System: A structure that supports the sides of an excavation and which is designed to prevent cave-ins, or to prevent movement of ground affecting adjacent installations or improvements.

3. Special Shoring: A shoring system meeting Special Shoring requirements for locations shown on Drawings.
1.04 SUBMITTALS

A. Follow Section 01340- Shop Drawings, Product Data and Samples.

B. Submit a safety program specifically for construction of trench excavation. Design the trench safety program following OSHA 29CFR standards governing presence and activities of individuals working in and around trench excavations, and following Special Shoring requirements shown on Drawings.

C. Have construction and shop drawings for trench safety systems sealed as required by OSHA by a licensed professional engineer retained and paid by Contractor.

D. Review of the safety program by City Engineer will only be in regard to compliance with this Section and will not constitute approval by City Engineer nor relieve Contractor of obligations under State and Federal trench safety laws.

1.05 REGULATORY REQUIREMENTS

A. Install and maintain trench safety systems following Excavations, Trenching, and Shoring, Federal Occupation Safety and Health Administration (OSHA) Standards, 29CFR, Part 1926, Subpart P, as amended, including Final Rule, published in Federal Register Vol. 54, No. 209 on Tuesday, October 31, 1989, including Sections 1926-650 through 1926-652, all of which is hereby incorporated, by reference, into this Section.

B. A reproduction of the OSHA standards included in "Subpart P - Excavations" from the Federal Register Vol. 54, No. 209 is available upon request of Bidders and Contractor. City assumes no responsibility for accuracy of the reproduction. Contractor is responsible for obtaining a copy of the referenced section of the Federal Register.

D. Reference materials, if developed for the Work, issued with Bid Documents or available upon request, include:
 1. Document 00830 - Trench Safety Geotechnical Information: Geotechnical information obtained for use in design of the trench safety system.

1.06 Indemnification

A. Indemnify and hold harmless City, its employees, and agents from any and all damages, costs (including, without limitation, legal fees, court costs, and the cost of investigation), judgments or claims by anyone for injury or death of persons resulting from collapse or failure of trenches constructed under this Contract.

B. Contractor acknowledges and agrees this indemnity provision provides indemnity for City in case City is negligent either by act or omission in providing for trench safety, including, but not limited to safety program and design reviews, inspections, failure to issue stop work orders, and the hiring of Contractor.
PART 3- EXECUTION

3.01 INSTALLATION

A. Install and maintain trench safety systems following provisions of OSHA 29CFR.

B. Install specially designed trench safety systems following Contractor's trench excavation safety program for locations and conditions identified in the program. Install Special Shoring at locations shown on Drawings.

C. Obtain verification from a competent person, as identified in Contractor's trench excavation safety program, trench boxes and other pre-manufactured systems are certified for actual installation conditions.

3.02 INSPECTION

A. Conduct daily inspections by Contractor or Contractor's independently retained consultant, of trench safety systems to ensure installed systems and operations meet OSHA 29CFR and other personnel protection regulations requirements.

B. If evidence of possible cave-ins or slides is apparent, immediately stop work in the trench and move personnel to safe locations until necessary precautions are taken by Contractor to safeguard personnel.

C. Maintain permanent record of daily inspections.

3.03 FIELD QUALITY CONTROL

A. Verify specific applicability of selected or specially designed trench safety systems to field conditions encountered at each trench.

END OF SECTION
CITY OF HOUSTON
STORM WATER POLLUTION
STANDARD GENERAL REQUIREMENT
PREVENTION CONTROL

Section 01570

STORM WATER POLLUTION PREVENTION CONTROL

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Implementation of Storm Water Pollution Prevention Plans (SWP3) described in Section 01410 – TPDES Requirement.

B. Installation, maintenance and removal, of storm water pollution prevention structures: diversion dikes, interceptor dikes, diversion swales, interceptor swales, down spout extenders, pipe slope drains, paved flumes and level spreaders. Structures are used during construction and prior to final development of the site.

C. Filter Fabric Barriers:
 1. Type 1: Temporary filter fabric barrier for erosion and sediment control in non-channelized flow areas.
 2. Type 2: Temporary reinforced filter fabric barrier for erosion and sediment control in channelized flow areas.

D. Hay Bale Fence.

E. Drop Inlet Basket

F. Inlet Sediment Traps

G. Brush Berm

H. Sand Bag Barrier

I. Bagged Gravel Barrier

J. Sediment Basin

K. Inlet Protection Barrier

1.02 MEASUREMENT AND PAYMENT

A. UNIT PRICES
 1. Payment for filter fabric barrier is on a linear foot basis measured between limits of beginning and ending of stakes.
2. Payment for reinforced filter fabric barrier is on a linear foot basis measured between limits of beginning and ending of stakes.

3. Payment for drop inlet baskets is on a unit price basis for each drop inlet basket.

4. Payment for storm inlet sediment traps is on a unit price basis for each storm inlet sediment trap.

5. Payment for storm water pollution prevention structures is on a lump sum basis for the project. Earthen structures with outlet and piping include diversion dikes, interceptor dikes, diversion swales, interceptor swales, and excavated earth-outlet sediment trap, embankment earth-outlet sediment trap, down spout extenders, pipe slope drains, paved flumes, stone outlet sediment trap, and level spreaders.

6. Payment for hay bale barrier, if included in Document 00410 - Bid Form, is on a linear foot of accepted bale barriers, if not included in cost of storm water pollution prevention structures.

7. Payment for brush berm, if included in Document 00410 - Bid Form, is on a linear foot of accepted brush berm, if not included in cost of storm water pollution prevention structures.

8. Payment for sandbag barrier, if included in Document 00410 - Bid Form, is on a linear foot basis measured between limits of beginning and ending of sandbags, if not included in cost of storm water pollution prevention structures.

9. Payment for bagged gravel barrier, if included in Document 00410 - Bid Form, is on a linear foot basis measured between limits of beginning and ending of bagged gravel barrier, if not included in cost of storm water pollution prevention structures.

10. Payment for inlet protection barriers, if included in Document 00410 - Bid Form, is on a linear foot basis measured along outside face of inlet protection barrier, if not included in cost of storm water pollution prevention structures.

11. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum) Contract. If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated
1.03 REFERENCE STANDARDS

A. ASTM

2. D698 – Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600kN-m/m³)).

B. Storm Water Management Handbook for Construction Activities prepared by City of Houston, Harris County and Harris County Flood Control District.

1.04 SYSTEM DESCRIPTIONS

A. Filter Fabric Barrier Type 1 and Type 2: Install to allow surface or channel runoff percolation through fabric in sheet-flow manner and to retain and accumulate sediment. Maintain Filter Fabric Barriers to remain in proper position and configuration at all times.

B. Hay Bale Fence: Install to allow surface runoff percolation through hay in sheet-flow manner and to retain and accumulate sediment. Maintain Hay Bale Fence to remain in proper position and configuration at all times.

C. Interceptor Dikes and Swales: Construct to direct surface or channel runoff around the project area or runoff from project area into sediment traps.

D. Drop Inlet Baskets: Install to allow runoff percolation through the basket and to retain and accumulate sediment. Clean accumulation of sediment to prevent clogging and backups.
E. Sediment Traps: Construct to collect surface runoff from construction area to allow sediment to settle onto the bottom of trap.

F. Sand Bags: Are used during construction activities in unstabilized minor swales, ditches, or streambeds when the contributing drainage area is no greater than 2 acres. It is also sediment barrier for stage one Inlet.

G. Bagged Gravel Barrier: Are used during construction activities in unstabilized minor swales, ditches, or streambeds when the contributing drainage area is no greater than 2 acres. It is also sediment barrier for stage two Inlet.

H. Drop Inlet Insert Basket: Is a temporary barrier placed within a storm drain inlet (Lower Portion of Stage I and Upper Portion of Stage II Inlets) consisting of a filter fabric supported by a metal frame work to prevent sediment and other pollutants from entering convey system.

I. Brush Berm: Brush Berm is constructed at the perimeter of a distribute site within the developing area.

1.05 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit manufacturer's literature for product specifications and installation instructions.

C. Submit manufacturer's catalog sheets and other product data on geotextile or filter fabrics, outlet pipe, perforated riser and connectors.

D. Submit proposed methods, equipment, materials, and sequence of operations for storm-water pollution prevention structures.

E. Submit shop drawings for Drop Inlet Baskets.

PART 2 PRODUCTS

2.01 CONCRETE

A. Concrete: Class B in accordance with Section 03315 – Concrete for Utility Construction or as shown on the Drawings.

2.02 AGREGATE MATERIALS

A. Use poorly graded cobbles with diameter greater than 3 inches and less than 5 inches.
B. Provide gravel lining in accordance with Section 2320 – Utility Backfill Materials or as shown on the drawings.

C. Provide clean cobbles and gravel consisting of crushed concrete or stone. Use clean, hard crushed concrete or stone free from adherent coatings, salt, alkali, dirt, clay, loam, shale, soft or flaky materials, or organic matter.

D. Sediment Pump Pit Aggregate: Use nominal 2-inch diameter river gravel.

2.03 PIPE

A. Polyethylene culvert pipe or PVC sewer pipe in accordance with Section 02505- High Density Polyethylene (HDPE) Solid and Profile Wall Pipe and Section 02506 Polyvinyl Chloride Pipe or as shown on the Drawings.

B. Inlet Pipes: Galvanized steel pipe in accordance with Section 02642 Corrugated Metal Pipe or as shown on the Drawings.

C. Standpipe for Sediment Pump Pits: Galvanized round culvert pipe or round PVC pipe, minimum of 12-inch and a maximum of 24-inch diameter, perforate at 6 to 12 inch centers around circumference.

2.04 GEOTEXTILE FILTER FABRIC

A. Woven or nonwoven geotextile filter fabric made of either polypropylene, polyethylene, ethylene, or polyamide material, in continuous rolls of longest practical length.

B. Grab Strength: 100 psi in any principal direction (ASTM D-4632), Mullen burst strength >200 psi (ASTM D-3786), and equivalent opening size between 50 and 140.

C. Furnish ultraviolet inhibitors and stabilizers for minimum 6 months of expected usable construction life at temperature range of 0 degrees F to 120 degrees F.

D. Mirafi, Inc., Synthetic Industries, or equivalent

2.05 BARRIER

A. Wire Barrier: Woven galvanized steel wire, 14 gauge by 6-inch square mesh spacing, minimum 24 inch roll or sheet width of longest practical length.

B. Barrier Stakes: Nominal 2 by 2 inch moisture-resistant treated wood or steel posts (min. of 1.25 lbs. per linear foot and Brinell Hardness greater than 140) with safety caps on top; length as required for minimum 8 inch bury and full
height of filter fabric.

2.06 SANDBAGS

A. Provide woven material made of polypropylene, polyethylene, or polyamide material.

1. Minimum unit weight of four ounces per square yard.

2. Minimum grab strength of 100 lbs in any principal direction (ASTM D4632)

3. Mullen burst strength exceeding 300 lbs (ASTM D4833).

4. Ultraviolet stability exceeding 70 percent. After 500 hours of exposure (ASTM 4355).

5. Size: Length:18 to 24 inches. Width: 12 to 18 inches. Thickness: 6 to 8 inches. Weight: Approximately 40 to 50 pounds not to exceed 75 pounds.

2.07 Bagged gravel Barrier

1. Minimum unit weight of four ounces per square yard.

2. Minimum grab strength of 100 lbs in any principal direction (ASTM D4632)

3. Mullen burst strength exceeding 300 lbs (ASTM D4833).

4. Ultraviolet stability exceeding 70 percent. After 500 hours of exposure (ASTM 4355).

5. Size: Length:18 to 24 inches. Width: 12 to 18 inches. Thickness: 6 to 8 inches. Weight: Approximately 40 to 50 pounds not to exceed 75 pounds.

2.08 DROP INLET BASKET

A. Provide steel frame members in accordance with ASTM A36.

B. Construct top frame of basket with two short sides of 2 inch by 2 inch and single long side of 1 inch by 1 inch, 1/8 inch angle iron. Construct basket hangers of 2 inch by 1/4 inch iron bars. Construct bottom frame of 1 inch by 1/4 inch iron bar or 1/4 inch plate with center 3 inches removed. Use minimum 1/4 inch diameter iron rods or equivalent for sides of inlet basket.
Weld minimum of 14 rods in place between top frame/basket hanger and bottom frame. Exact dimensions for top frame and insert basket will be determined based on dimensions of type of inlet being protected.

2.09 HAY BALE

A. Hay: Standard-baled agricultural hay bound by wire, nylon, or polypropylene rope. Do not use jute or cotton binding.

B. Hay Bale Stakes (applicable where bales are on soil): No. 3 (3/8 diameter) reinforcing bars, deformed or smooth at Contractor's option, length as required for minimum 18 inch bury and full height bales.

PART 3 EXECUTION

3.01 PREPARATION, INSTALLATION AND MAINTENANCE

A. Provide erosion and sediment control structures at locations shown on the Drawings.

B. Do not clear, grub or rough cut until erosion and sediment control systems are in place unless approved by Project Manager to allow installation of erosion and sediment control systems, soil testing and surveying.

C. Maintain existing erosion and sediment control systems located within project site until acceptance of Project or until directed by Project Manager to remove and discard existing system.

D. Regularly inspect and repair or replace damaged components of erosion and sediment control structures. Unless otherwise directed, maintain erosion and sediment control structure until project area stabilization is accepted. Redress and replace granular fill at outlets as needed to replenish depleted granular fill. Remove erosion and sediment control structures promptly when directed by Project Manager. Dispose of materials in accordance with Section 01576 - Waste Material Disposal.

E. Remove and dispose sediment deposits at the designated spoil site for the Project. If a project spoil site is not designated on Drawings, dispose of sediment off site at approved location in accordance with Section 01576 - Waste Material Disposal.

F. Unless otherwise shown on the Drawings, compact embankments, excavations, and trenches in accordance with Section 02315 Roadway

01570-7
01-26-2012
Excavation or Section 2317 Excavation and Backfill for Utilities.

G. Prohibit equipment and vehicles from maneuvering on areas outside of dedicated right of way and easements for construction. Immediately repair damage caused by construction traffic to erosion and sediment control structures.

H. Protect existing trees and plants in accordance with Section 1562 – Tree and Plant Protection.

3.02 SEDIMENT TRAPS

A. Install sediment traps so that surface runoff shall percolate through system in sheet flow fashion and allow retention and accumulation of sediment.

B. Inspect sediment traps after each rainfall, daily during periods of prolonged rainfall, and at a minimum once each week. Repair or replace damaged sections immediately.

C. Use fill material for embankment in accordance with Section 02320 – Utility Backfill Materials.

D. Excavation length and height shall be as specified on Drawings. Use side slopes of 2:1 or flatter.

E. Stone outlet sediment traps:
 1. Maintain minimum of 6 inches between top of core material and top of stone outlet, minimum of 4 inches between bottom of core material and existing ground and minimum of 1 foot between top of stone outlet and top of embankment.
 2. Embed cobbles minimum of 4 inches into existing ground for stone outlet. Core shall be minimum of 1 foot in height and in width and wrapped in triple layer of geotextile filter fabric.

F. Sediment Basin with Pipe Outlet Construction Methods: Install outlet pipe and riser as shown on the Drawings.

G. Remove sediment deposits when design basin volume is reduced by one-third or sediment level is one foot below principal spillway crest, whichever is less.

3.03 FILTER FABRIC BARRIER CONSTRUCTION METHODS

A. Fence Type 1: Filter Fabric: Barrier
1. Install stakes 3 feet on center maximum and firmly embed minimum 8 inches in soil. If filter fabric is factory preassembled with support netting, then maximum support spacing is 8 feet. Install wood stakes at a slight angle toward the source of anticipated runoff.

2. Trench in the toe of the fence lines so the downward face of the trenches is flat and perpendicular to direction of flow. V-trench configuration as shown on Drawings may also be used.

3. Lay fabric along edges of trenches in longest practical continuous runs to minimize joints. Make joints only at a support post. Splice with minimum 6-inch overlap and seal securely.

5. Backfill and compact trench.

B. Barrier Type 2: Reinforced Filter Fabric Barrier

1. Layout barrier same as for Type 1.

2. Install stakes at 6 feet on center maximum and at each joint in wire fence, firmly embedded 1-foot minimum, and inclined it as for Type 1.

3. Tie wire fence to stakes with wire at 6 inches on center maximum. Overlap joints minimum one bay of mesh.

4. Install trench same as for Type 1.

5. Fasten filter fabric wire fence with tie wires at 3 inches on center maximum.

6. Layout fabric same as for Type 1. Fasten to wire fence with wire ties at 3 inches on center maximum and, if applicable, to stakes above top of wire fence it as for Type 1.

7. Backfill and compact trench.

8. Attach filter fabric to wooden fence stakes spaced a maximum of 6 feet apart or steel fence stakes spaced a maximum of 8 feet apart and embedded a minimum of 12 inches. Install stakes at a slight angle toward source of anticipated runoff.

9. Trench in toe of filter fabric barrier with spade or mechanical trencher so that downward face of trench is flat and perpendicular to direction of flow. A V-trench configuration may also be used. Lay filter fabric along edges of trench. Backfill and compact trench upon completion of Construction.

01570-9
01-26-2012
10. Filter fabric fence shall have a minimum height of 18 inches and a maximum height of 36 inches above natural ground.

11. Cut length of fence to minimize use of joints. When joints are necessary, splice fabric together only at support post with minimum 6 inch overlap and seal securely.

12. When used in swales, ditches or diversions, elevation of barrier at top of filter fabric at flow line location in channel shall be lower than bottom elevation of filter fabric at ends of barrier or top of bank, whichever is less, in order to keep storm water discharge in channel from overtopping bank.

C. Triangular Filter Fabric Barrier Construction Methods

2. Secure triangular fabric filter barrier in place using one of the following methods:
 a. Toe-in skirt 6 inches with mechanically compacted material;
 b. Weight down skirt with continuous layer of 3-inch to 5-inch graded rock; or
 c. Trench-in entire structure 4 inches.

3. Anchor triangular fabric filter barrier structure and skirt securely in place using 6-inch wire staples on 2-foot centers on both edges and on skirt, or staked using 18-inch by 3/8-inch diameter re-bar with tee ends.

4. Lap fabric filter material by 6 inches to cover segment joints. Fasten joints with galvanized shoot rings.

3.04 DIKE AND SWALE

A. Unless otherwise indicated, maintain minimum dike height of 18 inches, measured from cleared ground at up slope toe to top of dike. Maintain side slopes of 2:1 or flatter.

B. Dike and Swale Stabilization: When shown on the Drawings, place gravel lining 3 inches thick and compacted into the soil or 6 inches thick if truck crossing is expected. Extend gravel lining across bottom and up both sides of swale minimum height of 8 inches vertically, above bottom. Gravel lining on dike side shall extend up the up slope side of dike a minimum height of 8 inches, measured vertically from interface of existing or graded ground and up slope toe of dike, as shown on Drawings.

01570-10
01-26-2012
C. Divert flow from dikes and swales to sediment basins, stabilized outlets, or sediment trapping devices of types and at locations shown on Drawings. Grade dikes and swales as shown on Drawings, or, if not specified, provide positive drainage with maximum grade of 1 percent to outlet or basin.

D. Clear in accordance with Section 2233 – Clearing and Grubbing Compact embankments in accordance with Section 2315 – Roadway Excavation.

E. Carry out excavation for swale construction so that erosion and water pollution is minimal. Minimum depth shall be 1 foot and bottom width shall be 4 feet, with level swale bottom. Excavation slopes shall be 2:1 or flatter. Clear, grub and strip excavation area of vegetation and root material.

3.05 DOWN SPOUT EXTENDER

A. Down spout extender shall have slope of approximately 1 percent. Use pipe diameter of 4 inches or as shown on the Drawings. Place pipe in accordance with Section 2317 - Bedding and Backfill for Utilities.

3.06 PIPE SLOPE DRAIN

A. Compact soil around and under drain entrance section to top of embankment in lifts appropriately sized for method of compaction utilized.

B. Inlet pipe shall have slope of 1 percent or greater. Use pipe diameter as shown on the Drawings.

C. Top of embankment over inlet pipe and embankments directing water to pipe shall be at least 1 foot higher at all points than top of inlet pipe.

D. Pipe shall be secured with hold-down grommets spaced 10 feet on centers.

E. Place riprap apron with a depth equal to pipe diameter with 2:1 side slopes.

3.07 PAVED FLUME

A. Compact soil around and under the entrance section to top of the embankment in lifts appropriately sized for method of compaction utilized.

B. Construct subgrade to required elevations. Remove and replace soft sections and unsuitable material. Compact subgrade thoroughly and shape to a smooth, uniform surface.

C. Construct permanent paved flumes in accordance with Drawings.
D. Remove sediment from riprap apron when sediment has accumulated to depth of one foot.

3.08 LEVEL SPREADER

A. Construct level spreader on undisturbed soil and not on fill. Ensure that spreader lip is level for uniform spreading of storm runoff.

B. Maintain at required depth, grade, and cross section as specified on Drawings. Remove sediment deposits as well as projections or other irregularities which will impede normal flow.

3.09 INLET PROTECTION BARRIER

A. Place sandbags for Stage I, Bagged gravel for Stage II and filter fabric barriers at locations shown on the SWP3. Maintain to allow minimal inlet in flow restrictions / blockage during storm event.

3.10 DROP INLET BASKET CONSTRUCTION METHODS

A. Fit inlet insert basket into inlet without gaps around insert at locations shown on the SWP3.

B. Support for inlet insert basket shall consist of fabricated metal as shown on Drawings.

C. Push down and form filter fabric to shape of basket. Use sheet of fabric large enough to be supported by basket frame when holding sediment and extend at least 6 inches past frame. Place inlet grates over basket/frame to serve as fabric anchor.

D. Remove sediment deposit after each storm event and whenever accumulation exceeds 1-inch depth during weekly inspections.

3.11 HAY BALE FENCE CONSTRUCTION METHODS

A. Place bales in row with ends tightly abutting adjacent bales. Place bales with bindings parallel to ground surface.

B. Embed bale in soil a minimum of 4 inches.

C. Securely anchor bales in place with Hay Bale Stakes driven through bales a minimum of 18-inches into ground. Angle first stake in each bale toward previously laid bale to force bales together.

D. Fill gaps between bales with straw to prevent water from channeling between bales. Wedge carefully in order not to separate bales.
E. Replace with new hay bale fence every two months or as required by Project Manager.

3.12 BRUSH BERM CONSTRUCTION METHODS

A. Construct brush berm along contour lines by hand placing method. Do not use machine placement of brush berm.

B. Use woody brush and branches having diameter less than 2-inches with 6-inches overlap. Avoid incorporation of annual weeds and soil into brush berm.

C. Use minimum height of 18-inches measured from top of existing ground at upslope toe to top of berm. Top width shall be 24 inches minimum and side slopes shall be 2:1 or flatter.

D. Embed brush berm into soil a minimum of 4-inches and anchor using wire, nylon or polypropylene rope across berm with a minimum tension of 50 pounds. Tie rope securely to 18-inch x 3/8-inch diameter rebar stakes driven into ground on 4-foot centers on both sides of berm.

3.13 STREET AND SIDEWALK CLEANING

A. Keep areas clean of construction debris and mud carried by construction vehicles and equipment. If necessary, install stabilized construction exits at construction, staging, storage, and disposal areas, following Section 01575-Stabilized Construction Exit.

B. In lieu of or in addition to stabilized construction exits, shovel or sweep pavements as required to keep areas clean. Do not waterhose or sweep debris and mud off street into adjacent areas, except, hose sidewalks during off-peak hours, after sweeping.

3.14 WASTE COLLECTION AREAS

A. Prevent water runoff from passing through waste collection areas, and prevent water runoff from waste collection areas migrating outside collection areas.

3.15 EQUIPMENT MAINTENANCE AND REPAIR

A. Confine maintenance and repair of construction machinery and equipment to areas specifically designated for that purpose, so fuels, lubricants, solvents, and other potential pollutants are not washed directly into receiving streams or storm water conveyance systems. Provide these areas with adequate waste disposal receptacles for liquid and solid waste. Clean and inspect maintenance areas daily.
B. Where designated equipment maintenance areas are not feasible, take precautions during each individual repair or maintenance operation to prevent potential pollutants from washing into streams or conveyance systems. Provide temporary waste disposal receptacles.

3.16 VEHICLE/ EQUIPMENT WASHING AREAS

A. Install wash area (stabilized with coarse aggregate) adjacent to stabilized construction access, as required to prevent mud and dirt run-off. Release wash water into drainage swales or inlets protected by erosion and sediment controls. Build wash areas following Section 01575- Stabilized Construction access. Install gravel or rock base beneath wash areas.

B. Wash vehicles only at designated wash areas. Do not wash vehicles such as concrete delivery trucks or dump trucks and other construction equipment at locations where runoff flows directly into waterways or storm water conveyance systems.

C. Locate wash areas to spread out and evaporate or infiltrate wash water directly into ground, or collect runoff in temporary holding or seepage basins.

3.17 WATER RUNOFF AND EROSION CONTROL

A. Control surface water, runoff, subsurface water, and water from excavations and structures to prevent damage to the Work, the site, or adjoining properties. Follow environment requirements.

B. Control fill, grading and ditching to direct water away from excavations, pits, tunnels, and other construction areas, and to direct drainage to proper runoff courses to prevent erosion, sedimentation or damage.

C. Provide, operate, and maintain equipment and facilities of adequate size to control surface water.

D. Retain existing drainage patterns external to the site by constructing temporary earth berms, sedimentation basins, retaining areas, and temporary ground cover as required to control conditions.

E. Plan and execute construction and earth work to control surface drainage from cuts and fills, and from borrow and waste disposal areas, to prevent erosion and sedimentation.

1. Hold area of bare soil exposed at one time to a minimum.

2. Provide temporary controls such as berms, dikes, and drains.

F. Construct fill and waste areas by selective placement to eliminate surface silts or clays which will erode.
G. Inspect earthwork periodically to detect start of erosion. Immediately apply corrective measures as required to control erosion.

H. Dispose of sediments offsite, not in or adjacent to waterways or floodplains, nor allow sediments to flush into streams or drainage ways. Assume responsibility for offsite disposal location.

I. Unless otherwise indicated, compact embankments, excavations, and trenches by mechanically blading, tamping, and rolling soil in maximum of 8-inch layers. Provide compaction density at minimum 90 percent Standard Proctor ASTM D-698-78 density. Make at least one test per 500 cubic yards of embankment.

J. Prohibit equipment and vehicles from maneuver on areas outside of dedicated rights-of-way and easements for construction. Immediately repair damage to erosion and sedimentation control systems caused by construction traffic.

K. Do not damage existing trees intended to remain.

3.18 REMOVAL OF CONTROLS

A. Remove erosion and sediment controls when the site is finally stabilized or as directed by Project Manager.

B. Dispose of sediments and waste products following Section 01505-Temporary Facilities.

END OF SECTION
PAGE INTENTIONALLY LEFT BLANK
SECTION 01572

EROSION AND SEDIMENTATION CONTROL

PART 1- GENERAL

1.01 SECTION INCLUDES

A. General erosion and sediment controls and other control-related practices. Provide and maintain erosion and sediment controls until the site is finally stabilized or as directed by City Engineer.

B. Filter Fabric Fences:
 1. Type 1: Temporary filter fabric fences for erosion and sediment control in non-channelized flow areas.
 2. Type 2: Temporary reinforced filter fabric fences for erosion and sediment control in channelized flow areas.

C. Straw Bale Fence.

D. Temporary vehicle and equipment fueling areas, which require erosion and sediment controls, are specified in Section 01579.

E. Dust controls are specified in Section 01506.

1.02 MEASUREMENT AND PAYMENT

A. Control of erosion and sedimentation is incidental to the Work. Include costs for control of erosion and sedimentation in the cost of work for which it is required.

1.03 REFERENCES

A. ASTM:

1.04 SYSTEM DESCRIPTIONS

A. Filter Fabric Fence Type 1 and Type 2: Install to allow surface or channel runoff percolation through fabric in sheet-flow manner and to retain and accumulate sediment. Maintain Filter Fabric Fences to remain in proper position and configuration at all times.

B. Straw Bale Fence: Install to allow surface runoff percolation through straw in sheet-flow manner and to retain and accumulate sediment. Maintain Straw Bale Fence to remain in proper position and configuration at all times.

1.05 SUBMITTALS

A. Follow Section 01340 - Shop Drawings, Product Data and Samples.
B. Submit manufacturer’s catalog sheets and other product data on filter fabric and wire fencing.

PART 2- PRODUCTS

2.01 EROSION CONTROL PRODUCTS AND SYSTEMS

A. Sandbags: Polypropylene, polyethylene, or polyamide woven fabric, with minimum unit weight of 4 ounces per square yard, Muller burst strength exceeding 300 psi, and ultraviolet stability exceeding 70 percent. Fill bags with bank-run sand.

B. Standpipe for Sediment Pump Pits: Galvanized round culvert pipe or round PVC pipe, minimum of 12-inch and a maximum of 24-inch diameter, perforate at 6 to 12 inch centers around circumference.

C. Sediment Pump Pit Aggregate: Nominal 2-inch diameter river gravel.

D. Portable Sediment Tank System: Standard 55-gallon steel or plastic drums, free of hazardous material contamination.

1. Shop or field fabricate tanks in series with main inlet pipe, intertank pipes and discharge pipes, using quantities sufficient to collect sediments from discharge water.

E. Straw: Standard-baled agricultural hay bound by wire, nylon, or polypropylene rope. Do not use jute or cotton binding.

F. Straw Bale Stakes (applicable where bales are on soil): No. 3 diameter concrete reinforcing bars, deformed or smooth at Contractor’s option, length as required for minimum 8 inch bury and full height bales.

G. Filter Fabric: Mirafi, Inc., Synthetic Industries, or equivalent following Section 01630.

1. Woven or nonwoven geotextile filter fabric made of either polypropylene, polyethylene, ethylene, or polyamide material, in continuous rolls of longest practical length.

2. Grab Strength: 100 psi in any principal direction (ASTM D-4632), Muller burst strength >200 psi (ASTM D-3786), and equivalent opening size between 50 and 140.

3. Furnish ultraviolet inhibitors and stabilizers for minimum 6 months of expected usable construction life at temperature range of 0 degrees F to 120 degrees F.

H. Wire Fencing: Woven galvanized steel wire, 14 gauge by 6 inch square mesh spacing, minimum 24 inch roll or sheet width of longest practical length.

I. Fence Stakes: Nominal 2 by 2 inch moisture-resistant treated wood; length as required for minimum 8 inch bury and full height of filter fabric.
PART 3- EXECUTION

3.01 GENERAL

A. Do not clear, grub or rough cut until erosion and sediment controls are in place, other than site work specifically directed by City Engineer to allow surveying and soil testing.

B. Maintain existing erosion and sediment controls, if any, until directed by City Engineer to remove and dispose of existing controls.

C. Prohibit equipment and vehicles from maneuvering on areas outside of dedicated rights-of-way and easements for construction. Immediately repair damage, caused by construction traffic, to erosion and sediment control systems.

3.02 INSPECTION AND REPAIR

A. Inspect erosion and sedimentation controls daily during periods of prolonged rainfall, at end of rainfall period, and minimum once each week.

B. Repair or replace damaged sections immediately.

C. Remove eroded and sedimented products when silt reaches a depth one-third the height of the control or 6 inches, whichever is less.

3.03 FILTER FABRIC FENCES

A. Layout fence lines with wood stakes.

B. Fence Type 1:
 1. Install stakes 3 feet on center maximum and firmly embed minimum 8 inches in soil. If filter fabric is factory preassembled with support netting, then maximum support spacing is 8 feet. Install wood stakes at a slight angle toward the source of anticipated runoff.
 2. Trench in the toe of the fence lines so the downward face of the trenches are flat and perpendicular to direction of flow. V-trench configuration as shown on Drawings may also be used.
 3. Lay fabric along edges of trenches in longest practical continuous runs to minimize joints. Make joints only at a support post. Splice with minimum 6-inch overlap and seal securely.
 5. Backfill and compact trench.

C. Fence Type 2:
 1. Layout fence same as for Type 1.
 2. Install stakes at 6 feet on center maximum and at each joint in wire fence, firmly embedded 1-foot minimum, and inclined it as for Type 1.
 3. Tie wire fence to stakes with wire at 6 inches on center maximum. Overlap joints minimum one bay of mesh.
 4. Install trench same as for Type 1.
 5. Fasten filter fabric wire fence with tie wires at 3 inches on center maximum.
6. Layout fabric same as for Type 1. Fasten to wire fence with wire ties at 3 inches on center maximum and, if applicable, to stakes above top of wire fence it as for Type 1.
7. Backfill and compact trench.

3.04 STRAW BALE FENCES

A. Install bales in a row with ends tightly abutting adjacent bales. Place bales with bindings parallel to ground surface. Where bales are installed on soil:
1. Embed bales in soil 4 inches minimum.
2. Anchor bales with 2 stakes driven into soil, with top end of stake flush with top of bales. Angle the first stake in each bale toward previously laid bale to force bales together.
3. Fill gaps between bales with straw to prevent water from escaping between bales. Wedge carefully to not separate bales.

3.05 PLACEMENT OF TOPSOILS SPECIFIED IN OTHER SECTIONS

A. Where topsoil is work of another Section, provide erosion controls following this Section during topsoil placement operations.
1. When placing topsoil, maintain erosion and sediment control systems, such as swales, grade stabilization structures, berms, dikes, waterways, and sediment basins.
2. Maintain grades previously established on areas receiving topsoil.
3. After areas receiving topsoil are brought to grade, and immediately prior to dumping and spreading topsoil, loosen subgrade by discing or scarifying 2 inches deep minimum to permit bonding of topsoil to subsoil.
4. Do not install sod or seed on soil treated with sterilants until sufficient time elapses to permit dissipation of chemicals.

3.06 STREET AND SIDEWALK CLEANING

A. Keep areas clean of construction debris and mud carried by construction vehicles and equipment.
1. If necessary, install stabilized construction exits at construction, staging, storage, and disposal areas, following Section 01575- Stabilized Construction Exit.

B. In lieu of or in addition to stabilized construction exits, shovel or sweep pavements as required to keep areas clean. Do not waterhose or sweep debris and mud off street into adjacent areas, except, hose sidewalks during off-peak hours, after sweeping.

3.07 WASTE COLLECTION AREAS

A. Prevent water runoff from passing through waste collection areas, and prevent water runoff from waste collection areas migrating outside collection areas.

3.08 EQUIPMENT MAINTENANCE AND REPAIR

A. Confine maintenance and repair of construction machinery and equipment to areas specifically designated for that purpose, or combine with temporary fueling
area specified in Section 01579, so fuels, lubricants, solvents, and other potential pollutants are not washed directly into receiving streams or storm water conveyance systems. Provide these areas with adequate waste disposal receptacles for liquid and solid waste. Clean and inspect maintenance areas daily.

B. Where designated equipment maintenance areas are not feasible, take precautions during each individual repair or maintenance operation to prevent potential pollutants from washing into streams or conveyance systems. Provide temporary waste disposal receptacles.

3.09 VEHICLE/ EQUIPMENT WASHING AREAS

A. Install wash area (stabilized with coarse aggregate) adjacent to stabilized construction exit(s), as required to prevent mud and dirt run-off. Release wash water into drainage swales or inlets protected by erosion and sediment controls. Build wash areas following Section 01575- Stabilized Construction Exit. Install gravel or rock base beneath wash areas.

B. Wash vehicles only at designated wash areas. Do not wash vehicles such as concrete delivery trucks or dump trucks and other construction equipment at locations where runoff flows directly into watercourses or storm water conveyance systems.

C. Locate wash areas to spread out and evaporate or infiltrate wash water directly into ground, or collect runoff in temporary holding or seepage basins.

3.10 PRODUCT STORAGE

A. Follow Sections 01505- Temporary Facilities and 01610- Basic Product Requirements for basic storage requirements.

B. Isolate areas where cements, solvents, paints, or other potential water pollutants are stored so they do not cause runoff pollution.

C. Store toxic products, such as pesticides, paints, and acids following manufacturers guidelines. Protect groundwater resources from leaching, with plastic mats, packed clay, tarpaper, or other impervious materials on areas where toxic products are opened and stored.

3.11 WATER RUNOFF AND EROSION CONTROL

A. Control surface water, runoff, subsurface water, and water from excavations and structures to prevent damage to the Work, the site, or adjoining properties.

B. Control fill, grading and ditching to direct water away from excavations, pits, tunnels, and other construction areas, and to direct drainage to proper runoff courses to prevent erosion, sedimentation or damage.

C. Provide, operate, and maintain equipment and facilities of adequate size to control surface water.
D. Dispose of drainage water to prevent flooding, erosion, or other damage to the site or adjoining areas. Follow environmental requirements.

E. Retain existing drainage patterns external to the site by constructing temporary earth berms, sedimentation basins, retaining areas, and temporary ground cover as required to control conditions.

F. Plan and execute construction and earth work to control surface drainage from cuts and fills, and from borrow and waste disposal areas, to prevent erosion and sedimentation.
 1. Hold area of bare soil exposed at one time to a minimum.
 2. Provide temporary controls such as berms, dikes, and drains.

G. Construct fill and waste areas by selective placement to eliminate surface silts or clays which will erode.

H. Inspect earthwork periodically to detect start of erosion. Immediately apply corrective measures as required to control erosion.

I. Dispose of sediments offsite, not in or adjacent to streams or floodplains, nor allow sediments to flush into streams or drainage ways. Assume responsibility for offsite disposal location.

J. Unless otherwise indicated, compact embankments, excavations, and trenches by mechanically blading, tamping, and rolling soil in maximum of 8-inch layers. Provide compaction density at minimum 90 percent Standard Proctor ASTM D-698-78 density. Make at least one test per 500 cubic yards of embankment.

K. Do not maneuver vehicles on areas outside of dedicated rights-of-way and easements for construction. Immediately repair damage to erosion and sedimentation control systems caused by construction traffic.

L. Do not damage existing trees intended to remain.

3.12 REMOVAL OF CONTROLS

A. Remove erosion and sediment controls when the site is finally stabilized or as directed by City Engineer.

B. Dispose of sediments and waste products following Section 01505- Temporary Facilities.

END OF SECTION
SECTION 01575

STABILIZED CONSTRUCTION EXIT

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Stabilized construction exits for erosion and sedimentation control.

1.02 SUBMITTALS

A. Manufacturer’s catalog sheets and other product data on geotextile fabric.

B. Sieve analysis of aggregates conforming to requirements of this Specification.

1.03 MEASUREMENT AND PAYMENT

A. Stabilized construction exit is incidental to the Work. Include costs for stabilized construction exit in the cost of work for which it is required.

1.04 REFERENCES

1.05 PERMITTED METHODS

A. Use only the following methods:
 1. Cement-Stabilized Soil - Compacted cement-stabilized soil or other fill material of minimum 8 inches thick.
 2. Wood Mats/Mud Mats - Nominal 6-inch thick oak or other hardwood timbers placed edge-to-edge across minimum 12 inch square wood beams placed on existing soil.
 3. Steel Mats - Perforated mats placed across perpendicular support members.
 4. Asphalt Pavement (100 LF x 18LF)

PART 2- PRODUCTS

2.01 GEOTEXTILE FABRIC

A. Woven or Nonwoven Geotextile Fabric: Either polypropylene, polyethylene, ethylene, or polyamide material.

B. Minimum Grab Strength: 270 psi in any principal direction (ASTM D-4632), and the equivalent opening size between 50 and 140.

C. Furnish geotextile and threads resistant to chemical attack, mildew, and rot and shall contain ultraviolet ray inhibitors and stabilizers to provide minimum of 6
months of expected usable life at a temperature range of 0 degrees F to 120 degrees F.

D. Representative Manufacturers: Mirafi, Inc., or equivalent; substitutions following Section 01630- Product Options and Substitutions.

2.02 COARSE AGGREGATES

A. Coarse Aggregate: Clean, hard, durable crushed stone, gravel, crushed blast furnace slag, or a combination of these materials, free from adherent coatings, salt, alkali, dirt, clay, loam, shale, soft or flaky materials, or organic and injurious matter.

B. Gradation:

<table>
<thead>
<tr>
<th>Sieve Size (Square Mesh)</th>
<th>Percent Retained (By Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2 inches</td>
<td>0</td>
</tr>
<tr>
<td>2 inches</td>
<td>0 - 20</td>
</tr>
<tr>
<td>1-1/2 inches</td>
<td>15 - 50</td>
</tr>
<tr>
<td>3/4 inches</td>
<td>60 - 80</td>
</tr>
<tr>
<td>No. 4</td>
<td>95 - 100</td>
</tr>
</tbody>
</table>

PART 3- EXECUTION

3.01 PREPARATION

A. Follow Section 01572- Erosion and Sedimentation Control.

B. Install stabilized construction roads and exits at construction, staging, parking, storage, and disposal areas, as required to keep the street clean of mud carried by construction vehicles and equipment.

C. Remove stabilized construction roads and exits promptly when directed by the City Engineer.

3.02 INSTALLATION

A. Provide stabilized access roads and parking areas, and other on-site vehicle transportation routes where shown on Drawings.

B. Provide stabilized construction exits, and truck washing areas when approved by City Engineer, of the sizes and locations where shown on Drawings or as specified in this Section.

C. Clean tires of vehicles leaving construction areas to remove sediment prior to entrance onto public right-of-way. Follow Section 01572- Erosion and Sedimentation Control for requirements for washing area.

D. Construct stabilized construction exit, and other areas requiring temporary stabilization, following the Drawings.

1. Roadway Width: 14 feet minimum for one-way traffic; 20 feet minimum for two-way traffic, full width at ingress and egress.

2. Length: As shown on Drawings.

E. Install geotextile fabric as a permeable separator to prevent mixing of coarse aggregate with underlying soil. Expose geotextile fabric to the elements between laydown and cover a maximum of 14 days to minimize damage potential.

F. Grade roads and parking areas to provide sufficient drainage away from stabilized areas. Use sandbags, gravel, boards, or similar methods to prevent sediment from entering public right-of-way, receiving stream or storm water conveyance system.

G. Inspect and maintain stabilized areas daily. Provide periodic top dressing with additional coarse aggregates to maintain the required depth. Repair and clean out damaged control measures used to trap sediment. Immediately remove sediment spilled, dropped, washed, or tracked onto public right-of-way.

H. Stabilized area may be widened or lengthened to accommodate truck-washing area when authorized by City Engineer.

END OF SECTION
Section 01576

WASTE MATERIAL DISPOSAL

PART 1 G E N E R A L

1.01 SECTION INCLUDES

A. Disposal of waste material and salvageable material.

1.02 SUBMITTALS

A. Conform to requirements of Section 01325 – Construction Schedules for Submittal Procedures.

B. Submit copy of approved "Development Permit", as defined in Chapter 19 of Flood Plain Ordinance (City Ordinance Number 81-914 and Number 85-1705), prior to disposal of excess material in areas designated as being in "100-year Flood Hazard Area" within the City. Contact the City of Houston Flood Plain Manager, 3300 Main Street, at (713) 525-7605 for flood plain information.

C. Obtain and submit disposal permits for proposed disposal sites, if required by local ordinances.

D. Submit copy of written permission from property owner, with description of property, prior to disposal of excess material adjacent to Project. Submit written and signed release from property owner upon completion of disposal work.

E. Describe waste materials expected to be stored on-site and a description of controls to reduce Pollutants from these materials, including storage practices to minimize exposure of materials to storm water; and spill prevention and response measures in the Project’s Storm Water Pollution Prevention Plan (SWPPP). Refer to Section 01410 – TPDES Requirements.

PART 2 P R O D U C T S - Not Used

PART 3 E X E C U T I O N
3.01 SALVAGEABLE MATERIAL

A. Excavated Material: When indicated on Drawings, load, haul, and deposit
excavated material at location or locations shown on Drawings outside limits
of Project.

B. Base, Surface, and Bedding Material: Load shell, gravel, bituminous, or other
base and surfacing material designated for salvage into City trucks.

C. Pipe Culvert: Load culverts designated for salvage into City trucks.

D. Other Salvageable Materials: Conform to requirements of individual
Specification Sections.

E. Coordinate loading of salvageable material on City trucks with Project
Manager.

3.02 EXCESS MATERIAL

A. Remove and legally dispose of vegetation, rubble, broken concrete, debris,
asphaltic concrete pavement, excess soil, and other materials not designated
for salvage from job site.

B. Excess soil may be deposited on private property adjacent to Project when
written permission is obtained from property owner. See Paragraph 1.02 D
above.

C. Verify flood plain status of any proposed disposal site. Do not dispose of
excavated materials in area designated as within 100-year Flood Hazard Area
unless "Development Permit" has been obtained. Remove excess material
placed in "100-year Flood Hazard Area" within the City, without "Development
Permit", at no additional cost to the City.

D. Remove waste materials from site daily, in order to maintain site in neat and
orderly condition.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Dewatering, depressurizing, draining, and maintaining trenches, shaft excavations, structural excavations and foundation beds in stable condition, and controlling ground water conditions for tunnel excavations.

B. Protecting work against surface runoff and rising floodwaters.

C. Trapping suspended sediment in the discharge form the surface and ground water control systems.

1.02 MEASUREMENT AND PAYMET

A. UNIT PRICES

1. Measurement for control of ground water, if included in Document 00410 - Bid Form, will be on either a lump sum basis or a linear foot basis for continuous installations of wellpoints, eductor wells, or deep wells.

2. If not included in Document 00410 - Bid Form, include the cost to control ground water in unit price for work requiring such controls.

3. No separate payment will be made for control of surface water. Include cost to control surface water in unit price for work requiring controls.

4. Follow Section 01270 - Payment Procedures for unit price procedures.

B. Stipulated Price (Lump Sum) Contract. If the Contract is a Stipulated Price Contract, include payment for work under this section in the total Stipulated Price.

1.03 REFERENCES

A. ASTM D 698 - Standard Test Methods for Laboratory Compaction of Soils Using Standard Effort (12,400 ft-lbf/ft³ (600kN·m/m³)

B. Federal Regulations, 29 CFR Part 1926, Standards-Excavation, Occupational Safety and Health Administration (OSHA)
C. Storm Water Management Handbook for Construction Activities prepared by City of Houston, Harris County and Harris County Flood Control District.

1.04 DEFINITIONS

A. Ground water control system: system used to dewater and depressurize water-bearing soil layers.
 1. Dewatering: lowering the water table and intercepting seepage that would otherwise emerge from slopes or bottoms of excavations, or into tunnels and shafts; and disposing of removed water. Intent of dewatering is to increase stability of tunnel excavations and excavated slopes, prevent dislocation of material from slopes or bottoms of excavations, reduce lateral loads on sheeting and bracing, improve excavating and hauling characteristics of excavated material, prevent failure or heaving of bottom of excavations, and to provide suitable conditions for placement of backfill materials and construction of structures and other installations.
 2. Depressurization: includes reduction in piezometric pressure within strata not controlled by dewatering alone, necessary to prevent failure or heaving of excavation bottom or instability of tunnel excavations.

B. Excavation drainage: includes keeping excavations free of surface and seepage water.

C. Surface drainage: includes use of temporary drainage ditches and dikes and installation of temporary culverts and sump pumps with discharge lines necessary to protect Work from any source of surface water.

D. Monitoring facilities for ground water control system: includes piezometers, monitoring wells and flow meters for observing and recording flow rates.

1.05 PERFORMANCE REQUIREMENTS

A. Conduct subsurface investigations to identify groundwater conditions and to provide parameters for design, installation, and operation of groundwater control systems. Submit proposed method and spacing of readings for review prior to obtaining water level readings.

B. Design ground water control system, compatible with requirements of Federal Regulations 29 CFR Part 1926 and Section 02260 - Trench Safety Systems, to produce following results:
 1. Effectively reduce hydrostatic pressure affecting:
 a. Excavations
b. Tunnel excavation, face stability or seepage into tunnels

2. Develop substantially dry and stable subgrade for subsequent construction operations

3. Preclude damage to adjacent properties, buildings, structures, utilities, installed facilities and other work

4. Prevent loss of fines, seepage, boils, quick condition, or softening of foundation strata

5. Maintain stability of sides and bottom of excavations

C. Provide ground water control systems that include single-stage or multiple-stage well point systems, eductor and ejector-type systems, deep wells, or combinations of these equipment types.

D. Provide drainage of seepage water and surface water, as well as water from other sources entering excavation. Excavation drainage may include placement of drainage materials, crushed stone and filter fabric, together with sump pumping.

E. Provide ditches, berms, pumps and other methods necessary to divert and drain surface water from excavation and other work areas.

F. Locate ground water control and drainage systems so as not to interfere with utilities, construction operations, adjacent properties, or adjacent water wells.

G. Assume sole responsibility for ground water control systems and for any loss or damage resulting from partial or complete failure of protective measures and settlement or resultant damage caused by ground water control operations. Modify ground water control systems or operations if they cause or threaten to cause damage to new construction, existing site improvements, adjacent property, adjacent water wells, or potentially contaminated areas. Repair damage caused by ground water control systems or resulting from failure of system to protect property as required.

H. Install an adequate number of piezometers installed at proper locations and depths, necessary to provide meaningful observations of conditions affecting excavation, adjacent structures and water wells.

I. Install environmental monitoring wells at proper locations and depths necessary to provide adequate observations of hydrostatic conditions and possible contaminant transport from contamination sources into work area or ground water control system.
1.06 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittals Procedures.

B. Submit Ground Water and Surface Water Control Plan for review by Project Manager prior to start of excavation work. Include the following:

1. Results of subsurface investigations and description of extent and characteristics of water bearing layers subject to ground water control

2. Names of equipment Suppliers and installation Subcontractors

3. Description of proposed ground water control systems indicating arrangement, location, depth and capacities of system components, installation details and criteria and operation and maintenance procedures

4. Description of proposed monitoring facilities indicating depths and locations of piezometers and monitoring wells, monitoring installation details and criteria, type of equipment and instrumentation with pertinent data and characteristics

5. Description of proposed filters including types, sizes, capacities and manufacturer's application recommendations

6. Design calculations demonstrating adequacy of proposed systems for intended applications. Define potential area of influence of ground water control operation near contaminated areas.

7. Operating requirements, including piezometric control elevations for dewatering and depressurization

8. Excavation drainage methods including typical drainage layers, sump pump application and other means

9. Surface water control and drainage installations

10. Proposed methods and locations for disposing of removed water

C. Submit following records upon completion of initial installation:

1. Installation and development reports for well points, eductors, and deep wells

2. Installation reports and baseline readings for piezometers and monitoring wells
3. Baseline analytical test data of water from monitoring wells

4. Initial flow rates

D. Submit the following records weekly during control of ground and surface water operations:

1. Records of flow rates and piezometric elevations obtained during monitoring of dewatering and depressurization. Refer to Paragraph 3.02, Requirements for Eductor, Well Points, or Deep Wells.

2. Maintenance records for ground water control installations, piezometers and monitoring wells

1.07 ENVIRONMENTAL REQUIREMENTS

A. Comply with requirements of agencies having jurisdiction.

B. Comply with Texas Commission on Environmental Quality regulations and Texas Water Well Drillers Association for development, drilling, and abandonment of wells used in dewatering system.

C. Obtain necessary permits from agencies with jurisdiction over use of groundwater and matters affecting well installation, water discharge, and use of existing storm drains and natural water sources. Since review and permitting process may be lengthy, take early action to obtain required approvals.

D. Monitor ground water discharge for contamination while performing pumping in vicinity of potentially contaminated sites.

PART 2 PRODUCTS

2.01 EQUIPMENT AND MATERIALS

A. Select equipment and materials necessary to achieve desired results for dewatering. Selected equipment and materials are subject to review by Project Manager through submittals required in Paragraph 1.06, Submittals.

B. Use experienced contractors, regularly engaged in ground water control system design, installation, and operation, to furnish and install and operate eductors, well points, or deep wells, when needed.

C. Maintain equipment in good repair and operating condition.
D. Keep sufficient standby equipment and materials available to ensure continuous operation, where required.

E. Portable Sediment Tank System: Standard 55-gallon steel or plastic drums, free of hazardous material contamination.
 1. Shop or field fabricate tanks in series with main inlet pipe, inter-tank pipes and discharge pipes, using quantities sufficient to collect sediments from discharge water.

PART 3 EXECUTION

3.01 GROUND WATER CONTROL

A. Perform necessary subsurface investigation to identify water bearing layers, piezometric pressures and soil parameters for design and installation of ground water control systems. Perform pump tests, if necessary to determine draw down characteristics. Present results in the Ground Water and Surface Water Control Plan, submittal.

B. Provide labor, material, equipment, techniques and methods to lower, control and handle ground water in manner compatible with construction methods and site conditions. Monitor effectiveness of installed system and its effect on adjacent property.

C. Install, operate, and maintain ground water control systems in accordance with the Ground Water and Surface Water Control Plan. Notify Project Manager in writing of changes made to accommodate field conditions and changes to Work. Provide revised drawings and calculations with notification.

D. Provide continuous system operation, including nights, weekends, and holidays. Arrange appropriate backup if electrical power is primary energy source for dewatering system.

E. Monitor operations to verify systems lower ground water piezometric levels at rate required to maintain dry excavation resulting in stable subgrade for subsequent construction operations.

F. Depressurize zones where hydrostatic pressures in confined water bearing layers exist below excavations to eliminate risk of uplift or other instability of excavation or installed works. Define allowable piezometric elevations in the Ground Water and Surface Water Control Plan.
G. Removal of ground water control installations.

1. Remove pumping system components and piping when ground water control is no longer required.

2. Remove piezometers, including piezometers installed during design phase investigations and left for Contractor's use, upon completion of testing, as required in accordance with Part 3 of applicable specification.

3. Remove monitoring wells when directed by Project Manager.

4. Grout abandoned well and piezometer holes. Fill piping that is not removed with cement-bentonite grout or cement-sand grout.

H. During backfilling, maintain water level a minimum of 5 feet below prevailing level of backfill. Do not allow the water level to cause uplift pressures in excess of 80 percent of downward pressure produced by weight of structure or backfill in place. Do not allow water levels to rise into cement-stabilized sand until at least 48 hour after placement.

I. Provide uniform pipe diameter for each pipe drain run constructed for dewatering. Remove pipe drains when no longer required. If pipe removal is impractical, grout connections at 50-foot intervals and fill pipe with cement-bentonite grout or cement-sand grout after removal from service.

J. The extent of ground water control for structures with permanent perforated underground drainage systems may be reduced, for units designed to withstand hydrostatic uplift pressure. Provide a means to drain affected portions of underground systems, including standby equipment. Maintain drainage systems during construction operations.

K. Remove systems upon completion of construction or when dewatering and control of surface or ground water is no longer required.

L. Compact backfill to not less than 95 percent of maximum dry density in accordance with ASTM D 698.

M. Foundation Slab: Maintain saturation line at least 3 feet below lowest elevations where concrete is to be placed. Drain foundations in areas where concrete is to be placed before placing reinforcing steel. Keep free from water for 3 days after concrete is placed.
3.02 REQUIREMENTS FOR EDUCTOR, WELL POINTS, OR DEEP WELLS

A. For aboveground piping in ground water control system, include a 12-inch minimum length of clear, transparent piping between each eductor well or well point and discharge header to allow visual monitoring of discharge from each installation.

B. Install sufficient piezometers or monitoring wells to show that trench or shaft excavations in water bearing materials are pre-drained prior to excavation. Provide separate piezometers for monitoring of dewatering and for monitoring of depressurization. Install piezometers and monitoring wells for tunneling as appropriate for selected method of work.

C. Install piezometers or monitoring wells at least one week in advance of the start of associated excavation.

D. Dewatering may be omitted for portions of under drains or other excavations, where auger borings and piezometers or monitoring wells show that soil is pre-drained by existing systems and that ground water control plan criteria are satisfied.

E. Replace installations that produce noticeable amounts of sediments after development.

F. Provide additional ground water control installations, or change method of control if, ground water control plan does not provide satisfactory results based on performance criteria defined by plan and by specifications. Submit revised plan according to Paragraph 1.06B.

3.03 SEDIMENT TRAPS

A. Install sediment tank as shown on approved plan.

B. Inspect daily and clean out tank when one-third of sediment tank is filled with sediment.

3.04 SEDIMENT SUMP PIT

A. Install sediment sump pits as shown on approved plan.

B. Construct standpipe by perforating 12 inch to 24-inch diameter corrugated metal or PVC pipe.

C. Extend standpipe 12 inches to 18 inches above lip of pit.

01578-8
08-01-2003
D. Convey discharge of water pumped from standpipe to sediment trapping device.

E. Fill sites of sump pits, compact to density of surrounding soil and stabilize surface when construction is complete.

3.05 EXCAVATION DRAINAGE

A. Use excavation drainage methods if well-drained conditions can be achieved. Excavation drainage may consist of layers of crushed stone and filter fabric, and sump pumping, in combination with sufficient ground water control wells to maintain stable excavation and backfill conditions.

3.06 MAINTENANCE AND OBSERVATION

A. Conduct daily maintenance and observation of piezometers or monitoring wells while ground water control installations or excavation drainage is operating at the site, or water is seeping into tunnels, and maintain systems in good operating condition.

B. Replace damaged and destroyed piezometers or monitoring wells with new piezometers or wells as necessary to meet observation schedules.

C. Cut off piezometers or monitoring wells in excavation areas where piping is exposed, only as necessary to perform observation as excavation proceeds. Continue to maintain and make specified observations.

D. Remove and grout piezometers inside or outside of excavation area when ground water control operations are complete. Remove and grout monitoring wells when directed by Project Manager.

3.07 MONITORING AND RECORDING

A. Monitor and record average flow rate of operation for each deep well, or for each wellpoint or eductor header used in dewatering system. Also, monitor and record water level and ground water recovery. Record observations daily until steady conditions are achieved and twice weekly thereafter.

B. Observe and record elevation of water level daily as long as ground water control system is in operation, and weekly thereafter until Work is completed or piezometers or wells are removed, except when Project Manager determines more frequent monitoring and recording are required. Comply with Project Manager's direction for increased monitoring and recording and take measures necessary to ensure effective dewatering for intended purpose.
3.08 SURFACE WATER CONTROL

A. Intercept surface water and divert it away from excavations through use of dikes, ditches, curb walls, pipes, sumps or other approved means. Requirement includes temporary works required to protect adjoining properties from surface drainage caused by construction operations.

B. Divert surface water and seepage water into sumps and pump it into drainage channels or storm drains, when approved by agencies having jurisdiction. Provide settling basins when required by agencies.

END OF SECTION
SECTION 01579

TEMPORARY VEHICLE AND EQUIPMENT FUELING AREA

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Installation of erosion and sediment control for a temporary vehicle and equipment fueling area for aboveground fuel storage tank, which will be on site for more than 48 hours.

1.02 SUBMITTALS

A. Follow Section 01340 - Shop Drawings, Product Data and Samples.

B. Submit manufacturer’s catalog sheets and other product data on dispensing equipment, pump, and aboveground fuel storage tanks, indicating the capacity and dimensions of the tank.

C. Submit drawings to show the location of tank protection area and driveway. Indicate the nearest inlet or channelized flow area. Clearly dimension all distances and measurements.

D. Submit a copy of Contractor’s spill response and containment procedures to City Engineer. In lieu of the above, the Contractor shall submit a written statement declaring that the Spill Containment Procedures contained in the Airport’s pollution prevention plan will be used in the event of a spill, and that a copy of the spill procedures will be located on-site.

E. Submit a list of significant materials to be used or stored at the airport construction site. Submit statement that all significant materials and associated waste containers that are to be used or stored overnight at the airport construction site will be properly labeled.

F. Submit a list of spill containment equipment, and quantities thereof, located at the fueling area.

G. Submit manufacturer’s catalog sheets and other product data on geotextile fabric.

H. Submit inspection reports after the fueling site has been returned to its original condition or constructed in accordance with the Drawings.

1.03 MEASUREMENT AND PAYMENT

A. Unless indicated in Document 00405 - Bid Tabulation Form, the Temporary Vehicle and Equipment Fueling Area is incidental to the Work. Include costs for Temporary Vehicle and Equipment Fueling Area in the cost of work for which it is required.

1.04 QUALITY ASSURANCE
A. Person conducting visual examination for pollutant shall be fully knowledgeable about the NPDES Construction General Permit, detecting sources of storm water contaminants, inspection of aboveground storage tank and appurtenances for leakage, and the day to day operations that may cause unexpected pollutant releases.

PART 2- PRODUCTS

2.01 ABOVEGROUND STORAGE TANK

A. Tank Assembly: Must be listed with UL 1709 and UL 2085.

B. Inner Steel Storage Tank: Follow UL 142, with minimum thickness of 1/8-inch all welded construction.

C. Tank Encasement: Either concrete or steel to provide a minimum of 110 percent containment of the inner tank capacity. Provide 5-gallon overspill containment pan for tank refueling.

D. Dispenser Pump: For submersible pump, UL listed emergency shut-off valve to be installed at each dispenser. For suction pump, UL listed vacuum-activated shut-off valve, with a shear section, is to be installed at each dispenser. Fuel may not be dispensed from a tank by gravity flow or by pressurization of the tank. Means must be provided to prevent release of fuel by siphon flow.

E. Representative Manufacturers: Convault, Fireguard, Ecovault, SuperVault, or equal.

2.02 CONCRETE

A. Follow Technical Specification P-610 Structural Concrete with a minimum concrete strength of 4,000 psi at 28 days.

2.03 AGGREGATES

A. Coarse aggregate shall consist of crushed stone, gravel, crushed blast furnace slag, or a combination of these materials. Aggregate shall be composed of clean, hard, durable materials, free from adherent coatings, salt, alkali, dirt, clay, loam, shale, soft or flaky materials, or organic and injurious matter.

B. Coarse aggregate shall conform to the following gradation requirements.

<table>
<thead>
<tr>
<th>Sieve Size (Square Mesh)</th>
<th>Percent Retained (By Weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2"</td>
<td>0</td>
</tr>
<tr>
<td>2"</td>
<td>0 - 20</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>15-50</td>
</tr>
<tr>
<td>3/4"</td>
<td>60-80</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
</tbody>
</table>

2.04 GEOTEXTILE FABRIC
A. Woven or non-woven geotextile filter fabric made of either polypropylene, polyethylene, ethylene, or polyamide material, in continuous rolls of longest practical length.

B. Grab Strength: 270 psi in any principal direction (ASTM D-4632), Mullen burst strength exceeding 200 psi (ASTM D-3786), and the equivalent opening size between 50 and 140.

C. Furnish ultraviolet inhibitors and stabilizers to provide a minimum of 6 months of expected usable construction life at a temperature range of 0 °F to 120 °F.

D. Representative Manufacturers: Mirafi, Inc., Synthetic Industries, or equal.

PART 3- EXECUTION

3.01 GENERAL

A. Follow Section 01572 - Erosion and Sedimentation Control.

B. Do not clear, grub, or rough cut until erosion and sedimentation control systems are in place, unless otherwise approved by City Engineer.

C. Maintain existing erosion and sedimentation control systems located within the project site installed by others prior to start of construction under this contract until acceptance of the project or until directed by the City Engineer to remove and dispose the existing systems.

D. Inspect and repair or replace components of all erosion and sedimentation control systems as specified for each type of system. Unless otherwise directed, maintain the erosion and sedimentation control systems until acceptance of the project. Remove erosion and sedimentation control systems promptly when directed by the City Engineer and dispose of removed materials offsite.

E. Remove and dispose of sediments deposits at the project spoil site. If a project spoil site is not designated on Drawings, dispose sediment at an offsite location. Contractor assumes responsibility for offsite disposal location. Sediment shall be disposed of at an offsite location not in or adjacent to a stream or floodplain. Spread, compact, and stabilize sediment placed at the project site in accordance with the directions of the City Engineer. Do not allow sediment to flush into a stream or drainage way. If sediment is contaminated, dispose of sediment in accordance with federal, state and local regulations.

F. Do not maneuver equipment or vehicles on areas outside of dedicated rights-of-way and easements for construction. Immediately repair damages caused by construction traffic to erosion and sedimentation control systems.

G. Employ protective measures to avoid damage to existing trees to be retained on the project site. Conduct all construction operations under this Contract in conformance with the erosion control practices described in Section 01572 - Erosion and Sedimentation Control.
H. Contractor to prepare spill response and containment procedures to be implemented in the event of a significant materials spill. Significant materials include but are not limited to: raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under section 101(14) of CERCLA; any chemical required to be reported pursuant to Section 313 of Title III of SARA; fertilizers; pesticides; and waste products such as slag, ashes and sludge that have the potential to be released with storm water discharges. In lieu of developing procedures stated above, Spill Containment Procedures enclosed in the airport's pollution prevention plan may be used. Spill procedures shall be kept on-site at the airport construction site.

I. Spill containment equipment appropriate to the size of operation is to be located in close proximity to the fueling area. Such equipment includes, but not limited to, suitable waste containers for significant materials, drip pans, booms, inlet covers, or absorbent.

J. All significant materials or waste containers used for airport construction activities and stored on-site at the airport overnight are to be properly labeled.

3.02 CONSTRUCTION METHODS

A. Provide fuel tank protection area and driveway as shown on the Drawings, or equivalent if prior written approval has been given by City Engineer.

B. Do not locate fueling area in or near a channelized flow area or close to a storm sewer conveyance system. Sufficient space must be provided to allow installation of other erosion and sediment controls to protect those areas.

C. Clear and grub the fueling area to remove unsuitable materials. Place geotextile fabric as permeable separator to prevent mixing of coarse aggregate with underlaying soil. Overlap fabric a minimum of 6 inches. Place coarse aggregate on top of the geotextile fabric to minimum depth of 8 inches.

D. Grade protection area and driveway to provide sufficient drainage away from stabilized areas. Use sandbags, gravel, boards, or similar methods to prevent sediment from entering public right-of-way, receiving stream or storm water conveyance system. The driveway to the fuel tank area shall have a minimum width of 15 feet for one way traffic and 30 feet for two-way traffic.

E. Place the aboveground storage tank on top of the cast-in-place or pre-cast foundation. The size and thickness of the foundation shall based on the size and weight of the tank to be used, with a minimum thickness of 6 inches. The concrete foundation shall be enclosed by a 5-inch by 5-inch concrete curb and shall extend a minimum of 1 foot beyond the tank and dispenser assemblies, so that leak and drip can be contained within the concrete foundation.

F. Slope the concrete foundation a minimum of 1 percent toward a 6-inch wide by 12-inch long by 4-inch deep sump pit. Install a minimum of 2-inch pipe inside the sump pit with a valve on the outside of the curb to allow draining of the concrete foundation.
G. Install a portable concrete jersey barrier around the concrete foundation. Provide a minimum clearance of 2 feet from the edge of the foundation. In lieu of the Jersey barrier, Contractor can install 4-inch diameter steel pipe bollards around the foundation. The bollards shall be buried a minimum of 3 feet deep, 3 feet aboveground, and 4 feet on center, encased in a 12-inch wide concrete foundation.

3.03 MAINTENANCE

A. Inspect stabilized areas after every storm event and at least once a week. Provide periodic top dressing with additional coarse aggregate to maintain the required depth. Repair and clean out damaged control measures used to trap sediment.

B. Inspect fuel tank foundation’s bermed area after every storm event and at least once a week. Visually examine storm water contained in the tank’s bermed foundation area for oil sheen or other obvious indicators of storm water pollution. Properly dispose of the storm water when significant amount of pollutant is present (as defined in Federal Register, Vol. 60, No. 189, Friday, September 29, 1995). Record visual examination of storm water discharge in a Report noting the date and time of examination, name of examiner, observations of water quality, and volume of storm water discharged from the bermed area. The Report shall be kept together with all other storm water pollution control inspection reports on the site, in a readily accessible location. The Report shall be maintained for the duration of the construction activity, and thereafter in accordance with the provisions of Section 01571 - NPDES Requirements.

3.04 TEMPORARY FUELING AREA CLOSURE

A. The temporary vehicle and equipment fueling area shall be disposed of by removal of all sediment and erosion controls properly offsite. City Engineer will inspect the top soils in the fueling area and immediate vicinity for evidence of fuel leaks. If the City Engineer determines that sufficient pollutants have been released, the soil shall be removed and properly disposed offsite. Other remediation method may be required at no additional cost to the City.

END OF SECTION
SECTION 01610

BASIC PRODUCT REQUIREMENTS

PART 1- GENERAL

1.01 SECTION INCLUDES

A. Transportation, delivery, handling, and storage of products.
 1. Follow manufacturers' instructions for same.
 2. Repair damage resulting from product transportation, delivery, handling and storage to the satisfaction of the City Engineer.
 3. Contractor salvaged products (CSP) are specified in Section 01110-Summary of Work.

B. Metric conversion.

C. Volatile organic compound (VOC)-producing products.

D. Contractor's responsibilities for product design.

1.02 PRODUCTS

A. “Products” is defined in Document 00700- General Conditions. “Products” does not include machinery and equipment used for preparation, fabrication, conveying and erection of the Work. Products may also include existing construction designated for reuse.

B. Do not reuse existing products, except as permitted in Section 01110- Summary of Work.

C. Provide products from the fewest number of manufacturers as practical, to simplify spare parts inventory and to allow for maximum interchangeability of components. For multiple components of the same size, type or application, use the same manufacturer and model of component throughout the Work.
 1. Furnish products of latest proven design, new and in current production. Do not use obsolete components or components to be phased out of production.

D. Do not use new or existing products containing asbestos or other hazardous materials except as permitted by governing agencies.

E. When using chlorofluorocarbon (CFC) containing materials, follow regulations governing the release of CFCs into the atmosphere during fabrication or installation.

F. It is the City’s intention to “Buy American” to the maximum practical extent.

1.03 TRANSPORTATION

A. Transport, deliver, and handle products as required for timely completion of the Work.
B. Consign and address shipping documents to the proper party giving name of Project, street number, and City. Deliver shipments to proper consignee.

1.04 DELIVERY

A. Deliver products in accord with construction schedule and in ample time for inspection prior to installation. Reduce lengthy storage or overburden of limited storage space due to excessively early deliveries.

B. Coordinate deliveries to avoid conflict with Work and conditions at the site and to accommodate the following:
 1. Work of other contractors or City.
 2. Limitations of storage space.
 3. Availability of equipment and personnel for handling products.
 4. City's use of premises.

C. Deliver products only after related submittal data are approved by City Engineer.

D. Deliver products when proper storage facilities are in place.

E. Deliver products to the site in manufacturer's original, unopened, labeled containers. Keep the City Engineer informed of delivery schedules for equipment to be incorporated in the Work.

F. Clearly mark partial deliveries of component parts of equipment to identify the equipment, to permit easy accumulation of parts, and to facilitate assembly.

G. Immediately upon delivery, including CSP, inspect shipment to assure:
 1. Product complies with requirements of Contract Documents and reviewed submittals.
 2. Quantities are correct.
 3. Containers and packages are intact; labels are legible.
 4. Products are properly protected and undamaged.
 5. Process claims for damages and replacement.

1.05 PRODUCT HANDLING

A. Coordinate off-loading of products delivered to the site, including City-furnished products. If necessary to move stored products during construction, relocate products at no additional cost or time to the contract.

B. Provide handling equipment, personnel and additional protection as required to:
 1. Prevent soiling or damage to products, packaging or surrounding work and existing facilities.
 2. Prevent bending or overstressing.
 3. Lift heavy components only at designated lifting points.
 4. Follow manufacturer's recommendations and specified requirements.

C. Do not drop, roll, or skid products off delivery vehicles. Hand carry or use suitable materials handling equipment.

1.06 PRODUCT STORAGE
A. Provide safe storage of products. Place salvaged products, excavated products, construction equipment, and other products to prevent damage to the Work or Base Facilities (Section 01726- Base Facility Survey) and to maintain free access at all times to the Work and to City and applicable separate contractors with installations in the vicinity of the Work.
 1. Keep products neatly and compactly stored in locations that with least inconvenience to other contractors, public travel, adjoining owners, tenants, and occupants.
 2. Arrange storage to provide easy access for inspection.

B. Store products on airport property at location(s) shown on Drawings or approved by City Engineer.

C. Provide bonded off-site storage and protection when on-site storage is not adequate. Submit copy of storage facility bond following Section 01340- Shop Drawings, Product Data and Samples procedures for certifications.

D. Do not use lawns, grass plots, private property, occupied areas, sidewalks or roadways for storage.

E. Protect stored products against loss or damage.

F. Store in manufacturers’ unopened containers, placed on solid supports (sloped to drain at exterior conditions) and covered if subject to erosion or deterioration, except open for inspection and immediately repackage if products are scheduled for immediate installation.
 1. Maintain stored products within manufacturer’s required environmental range.
 2. Provide supplemental ventilation as required to prevent condensation.
 3. Store products with clearly visible part numbers, carton numbers, packing lists and other identification markings.

G. Neatly, safely, and compactly stack permitted excavation, fill, pavement and utility products stored along the line of paving and utility work to cause the least inconvenience and damage to Base Facility, occupants, airport operations and the general public, and:
 1. No closer than 3 feet to fire hydrants.
 2. Keep public and private drives and street crossings open.
 3. Distribute evenly along the route of construction to maximum 1000 lineal feet, unless otherwise approved in writing by the City Engineer.

1.07 METRIC CONVERSION

A. The Drawings and Specifications are typically prepared in Imperial (inch and feet) measure, to establish the basis for the contract.

B. Contractor may use SI (metric) measure when SI material, fabrication methods, tolerances and other dimension-controlled characteristics is in normal use by manufacturers and fabricators. Use meters or millimeters only, not centimeters, on submittals.

C. Follow ASTM E380 and ASTM/ANSI E621 for conversion protocol.

1.08 VOC-PRODUCING MATERIAL
A. Provide products and use installation methods producing the least practical amount of volatile organic compounds (VOCs).

B. Schedule and sequence work to allow maximum possible VOC release of products to occur off-site. Follow applicable laws and codes governing atmospheric release of VOCs.

C. For VOC-producing products which by nature must be fabricated or installed on-site, schedule and sequence work to allow initial VOC release as early as possible before Substantial Completion. Follow Section 01630- Product Options and Substitutions for proposal of products with less VOC than specified products.

D. Contain odors following Section 01505- Temporary Facilities.

1.09 CONTRACTOR’S RESPONSIBILITIES FOR PRODUCT DESIGN

A. Drawings and Specifications intend for the Contractor to provide product design expertise where actual conditions cannot be anticipated by the Drawings and Specifications or where the Contractor’s expertise or suggestions could substantially improve performance of the Work to the benefit of the Work without increase of Contract Sum or Time.

B. The Drawings and Specifications establish the general design concept for the Work.
 1. Drawings show “sight-line,” profile, units or modules, alignments and other visual characteristics of work.
 2. Specifications state performance requirements including types of materials, fabrication and installation requirements, applicable performance criteria and other aspects of application of work.

C. Drawings and Specifications intentionally address performance and visual characteristics in order to employ Contractor's expertise and choice of fabrication processes and techniques, coordination of the trades and Separate Contracts, correlating and confirming dimensions and other aspects of construction control, or because concealed conditions are not known to Designer.

D. Product engineering design, design of details, and construction procedures within the general design concept is Contractor's responsibility. Supplement general designs with submittal data showing how general design requirements are fulfilled.
 1. By accepting a contract for this work, Contractor agrees the requirements shown or specified for known conditions adequately establish the scope, location and other performance and visual requirements for the Work without additional cost or time.
 2. If performance and visual requirements are unclear, obtain direction before expenditure of non-recoverable costs including preparation of submittal data, fabrication or acquisition of products and on-site preparatory work. When required, make subcontractors available for consultation at no additional cost.
 3. Design, fabricate, erect, and installation products shall be based on local applicable building codes and local environmental conditions:
 a. Normal Site Elevation, feet ASL: 98.0 (IAH)
b. Seismic Zone: 0

c. Highest Wind Velocity, mph: 110 (IAH)

d. Temperature:
 - Coldest Winter Month: High: 60 degrees F, Low: 41 degrees F
 - Warmest Summer Month: High: 94 degrees F, Low: 73 degrees F
 - Lowest Expected: 11 degrees F
 - Highest Expected: 107 degrees F

e. Rainfall:
 - Annual: 45 Inches

f. Design Relative Humidity: 98%

g. Station Barometric Pressure: 29.5 Inches Hg Abs., average annual

E. When product engineering design is required, use designers licensed to practice the applicable discipline in the State of Texas.
 1. Seal design drawings, calculations and submittal data where specified, and process as submittal data.
 2. Where seal is not required, provide letter of certification or statement of compliance signed by Subcontractor(s) and countersigned by Contractor stating products are fabricated and installed to meet or exceed requirements.

PART 2- PRODUCTS (NOT USED)

PART 3- EXECUTION (NOT USED)

END OF SECTION
SECTION 01630

PRODUCT OPTIONS AND SUBSTITUTIONS

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Procedure for requesting substitution of products in lieu of those specified. These requirements supplement Paragraph 3.10 of Documents 00700- General Conditions and 00800- Supplementary Conditions.

B. After submittal period expires, requests for substitutions will be considered only when a specified product becomes unavailable because of conditions beyond Contractor's control.

1.02 DEFINITIONS

A. Process: Any proprietary method for installing products that results in an integral, functioning part of the Work. For this Section, the word "product" includes "process."

1.03 SUBMITTALS

A. Submit electronic copy and 5 hard copies of each separate product substitution request, within time period stated in Document 00700- General Conditions, including:

1. Full submittal data for specified products, following Section 01340- Shop Drawings, Product Data and Samples.
2. Full data substantiating compliance of proposed substitutions with Contract Documents and substantiating equivalency with specified products:
 a. Product identification, including manufacturer's name and address.
 b. Manufacturer's literature with precise product description, and directly applicable performance and test data and reference standards.
 c. Samples, as applicable.
 d. Name and address of projects on which proposed product was used in similar or equivalent conditions within the last 3 years, and date of installation.
 e. Name, address and telephone number of owner, designer, and installing contractor.
 f. For process substitutions, detailed description of proposed method and drawings illustrating methods.

B. Detailed reason(s) for substitution, and tangible benefits accruing to City.

C. Itemized comparison of proposed substitutions with specified products and full description of deviations.

D. Fully describe all effects of substitutions on the Work and on separate contracts and work by City. Include full cost data comparing proposed substitution with specified products and amount of change in Contract Sum. Indicate changes in construction schedule (Section 01325- Construction Schedules).
E. Substitutions are not permitted when:
 1. They are not processed following Document 00700- General Conditions and this Section.
 2. Acceptance will require revision of Contract Documents or will change the design concept.
 3. Delay in construction will occur.
 4. No provisions for substitutions are stated in the Contract Documents.

F. Burden of proof of merit of proposed substitution remains solely with Contractor.

1.02 CONTRACTOR'S OPTIONS

A. Options, stated as "Contractor's option(s)" in Contract Documents, are intended to benefit the Work through reduced cost, decreased construction time, or better performance within designated range of criteria.

B. Volunteer options are not permitted.

C. Notify in writing City Engineer of options chosen.

1.03 QUALITY ASSURANCE

A. To the maximum extent possible, provide products of the same type or function from a single manufacturer, make, or source. Where more than one choice is available, select the product which is compatible with other products already selected, specified, or which is in use by City.

1.04 DESIGNER'S ACTIONS

A. Decision to accept or deny proposed substitute products, or selection of one product instead of another, is solely the responsibility of Designer; such decisions and selections are final.

1.05 COSTS FOR REVIEW OF SUBSTITUTIONS

A. Pay costs related to Designer's review and examination of proposed substitutions. Assume liability for obtaining acceptance of substitutions.

B. Reimburse City for actual evaluation costs of Designer's(s') if proposed substitute does not meet requirements of Contract Documents, or acceptance of proposed substitute requires changes to the Work.

C. Reimburse City for associated design costs, including redesign, additional submittal reviews, investigations, Designer's fees and revision of Contract Documents required because of the requested substitution. Design costs are the full price for additional work performed, paid at the rates established by Designer's contract with City for Design and Contract Documents phase of the Project.

D. Pay for laboratory testing required to obtain information upon which equivalency can be determined.
E. If Designer determines that proposed substitutions are not equivalent to specified products, furnish one of the specified products without delay in time or additional cost to City.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

END OF SECTION
SECTION 01725

FIELD SURVEYING

PART 1 GENERAL

1.01 QUALITY CONTROL

A. Employ a State of Texas Registered Public Land Surveyor acceptable to City Engineer for:
 1. Recovering control points established by City.
 2. Verifying benchmarks furnished by City.
 3. Establishing temporary benchmarks and construction control points.
 4. Recording location(s) and elevation(s) of temporary benchmarks and construction control points.
 5. Setting stakes for grading, fill and topsoil placement, utility locations, slopes, and inverts.
 8. Establishing grid or axis for structures.
 10. Establishing horizontal and vertical layout of taxiway centerline and edge lights.

Reference Technical Section G-104 Survey and Stakeout for method of measurement, payment and additional requirements for survey.

1.02 SUBMITTALS

A. Submit to City Engineer the name, address, and telephone number of Surveyor before starting survey work.

B. On request, submit documentation verifying accuracy of survey work.

C. Submit 3 original copies of certificate, signed by surveyor and sealed, stating that horizontal and vertical control lines, elevations, and benchmarks follow Contract Documents.

1.03 PROJECT RECORD DOCUMENTS

A. Maintain a complete and accurate log of control and survey work as it progresses.

B. Prepare a certified survey setting forth dimensions, locations, angles, and elevations of construction and sitework upon completion of the Work.

C. Submit Record Documents following Section 01770- Contract Closeout.

1.04 EXAMINATION

A. Establish benchmarks, control points, lines and elevations prior to starting work. Notify City Engineer immediately of discrepancies discovered between stated attributes of City-furnished data and surveyor’s verification, using Document 00685- Request for Information.
1.05 SURVEY REFERENCE POINTS

A. Control datum for survey is that established by City-furnished survey following Document 00700- General Conditions and indicated on Drawings.

B. Locate and protect benchmarks, control points, lines and elevations prior to starting site work. Preserve permanent reference points during construction.

C. Notify City Engineer 48 hours in advance of need for relocation of reference points due to changes in grades or other reasons.

D. Report promptly to City Engineer the loss or destruction of reference points.

E. Reimburse City for cost of reestablishment of permanent reference points disturbed by Contractor's operations.

1.06 SURVEY REQUIREMENTS

A. Utilize recognized engineering survey practices.

B. Establish a minimum of 2 permanent benchmarks on site, referenced to established control points. Record locations, with horizontal and vertical data, on Record Documents.

C. Establish elevations, lines and levels to provide quantities required for measurement and payment and to provide appropriate controls for the Work. Locate and lay out by instrumentation and similar appropriate means:

D. Periodically verify layouts by same means.

PART 2 PRODUCTS (Not Used)

PART 3 EXECUTION (Not Used)

END OF SECTION
SECTION 01726
BASE FACILITY SURVEY

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. “Base Facility” is defined in Section 01423- References.

B. Survey of Base Facility and related existing conditions.

C. Notification of discoveries.

D. Contractor’s survey of Base Facility is intended to identify and describe actual as-found conditions to supplement information contained in Base Facility documents and in the Drawings and Specifications.

E. Necessary changes in location of the Work may be made by City Engineer to avoid unanticipated concealed conditions, following Section 01255- Modification Procedures.

F. If permanent relocation or reworking of existing conditions is required and not otherwise provided for in the Contract Documents, City Engineer will direct Contractor following Section 01255- Modification Procedures.

1.02 BASE FACILITY DOCUMENTS

A. Drawing and Specifications for the Work are based on City-furnished Base Facility documents and upon the Designer's limited visual observations of sight-exposed conditions existing in October 2015.
 1. Contract Documents do not necessarily completely describe all details of Base Facility at interfaces with the Work.
 2. The Designer’s observations did not extend to areas or sub-surface conditions that are undetermined or unknown from those identified in exploratory geotechnical investigations, by survey and/or observable site conditions found during site investigations.

B. Obtain available Base Facility documents from the City Engineer.

1.03 SEQUENCING AND SCHEDULING

A. Sequence and schedule survey to properly coordinate with other construction operations.

B. Complete survey work, process one or more Document 00685- Request for Information, obtain responses, evaluate and submit cost or schedule impact of responses, and process accepted modifications before commencing work of affected Sections.

C. Obtain or designate and protect control samples of Base Facility work during survey and maintain until required submittals pertinent thereto are processed.
1.04 BASE FACILITY CONDITIONS

A. Base Facility intended or required to remain takes precedence of fact and control over details and construction of interfaces, dimensions, clearances, openings, alignments, and substrate conditions between Base Facility and the Work.

B. Base Facility is intended to remain except where shown on Drawings or specified as work of Section 01731- Cutting and Patching or Division 2 sections covering demolition.

1.05 DIMENSIONS

A. Control dimensions are indicated by nominal value on the Drawings within parenthesis. This designation means, in addition to other requirements, the Contractor is responsible for finding the actual dimension following this Section, and using actual dimensions to govern placement of work including relationship to and coordination with related work.

1. Follow Section 01255- Modification Procedures to resolve discrepancies between existing conditions and Contract Documents.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 GENERAL

A. Survey Base Facility affecting or affected by the Work by on-site examination of existing conditions.

B. Explore ahead of trenching and excavation work to uncover obstructing underground structures sufficiently to determine location, to prevent damage and to prevent interruption of services. Restore to original condition damages to underground structure at no cost or time increase to the contract, following Section 01731- Cutting and Patching.

C. Note discovered discrepancies between the Base Facility and Contract Documents.

1. Use one set of prints of Drawings and Specifications (made from reproducibles furnished following Section 01110- Summary of Work) for the sole purpose of documenting discoveries. Designate as “SURVEY DOCUMENTS.”

2. Prepare and issue Document 00685- Request for Information for each discrepancy, following Section 01255- Modification Procedures.

3. Supplement data noted on survey documents with video or photographs following Section 01321- Construction Photographs as required to clearly and fully describe conditions.

D. Coordinate survey of semi-exposed and concealed conditions with work of Sections 01731- Cutting and Patching, and P-101 Surface Preparation.

END OF SECTION
SECTION 01731

CUTTING AND PATCHING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Obtain CSP and control samples.
B. Repair remaining Base Facility.
C. Connect work to Base Facility.
D. Remove construction required to enable required alteration or addition to Base Facility.
E. Uncover work for inspection or reinspection of covered work by authorities having jurisdiction.
F. Connect work not done in proper sequence.
G. Make connections or alterations to Base Facility or to work.
H. Provide openings, channels, chases and flues as required.

1.02 REFERENCES

A. National Terrazzo and Mosaic Association, Inc. (NTMA).

1.03 SUBMITTALS

A. Submit Document 00931- Request for Information, with supporting data, in advance of cutting or patching not shown on the Drawings or which affects:
 1. Contract Sum or Time.
 2. Visual quality of remaining sight-exposed surfaces exposed after work is complete and for which no work is required other than to gain access.
 3. Work of separate contractors and work by City (Section 01110- Summary of Work).
 4. Warrantability, value, integrity, serviceability, or life expectancy of any component of the Base Facility and the Work.
 5. Integrity or serviceability of weather-exposed, moisture-resistant, or fire-resistant components or systems.

B. Include in each request:
 1. Identification of the Project.
 2. Description of affected Work.
 3. The necessity for cutting and patching.
 4. Effect on Base Facility construction, on the Work, or on work of separate contractors and work by City.
5. Description of proposed work:
 a. Scope of cutting and patching.
 b. Contractor, Subcontractor or trades executing work.
 c. Products proposed.
 d. Extent and type of refinishing.
 e. Schedule of operations.

6. Alternatives to cutting and patching, if any.

7. Written permission of separate contractors or installers of work by City whose work will be affected, countersigned by City Engineer.

C. Should Base Facility conditions require change of products, follow Section 01630- Product Options and Substitutions.

D. Submit product data and samples following Section 01340- Shop Drawings, Product Data and Samples.
 1. Submit manufacturer’s technical literature for each patch material and fully describe compatibility with each substrate.
 2. Submit samples of paint colors and sheen on gypsum board with taped edges.
 3. Submit 2-foot square samples of drywall and plaster finish texture.
 4. Submit mix designs following Section 01455- City’s Acceptance Testing.

E. Submit written notice to City Engineer designating time work will be uncovered for observation. Do not cut until authorized by City Engineer, except when documentable emergency conditions require immediate cutting.

F. Should conditions of work or schedule indicate change of products or methods, submit Document 00931- Request for Information stating conditions indicating change, recommendations for alternative products or methods and submittals. Follow Section 01630- Product Options and Substitutions.

1.04 QUALITY ASSURANCE

A. Cut and patch by persons qualified to perform work.

B. Remove minimum construction necessary. Return surfaces to appearance of new work and match Base Facility.
 1. Cut finish surfaces such as masonry, tile, plaster or metals in a straight line at a natural line or plane of division from abutting work.

C. When required, make patch work visually undetectable at 5 feet for exposed and semi-exposed interior work, and at 10 feet for exposed and semi-exposed exterior work under Base Facility lighting conditions.

D. Presence of a damaged or defective product, finish or type of construction requires patching, extending or matching be performed as necessary to make work complete and consistent to standards of quality identical to Base Facility.

E. Promptly notify City Engineer by Document 00931- Request for Information of discoveries of construction, such as furnishings and articles having possible historic or private value to City.
 1. Protect discovery until disposition.
 2. Legally dispose of items not removed by City.
1.05 INSPECTION, HANDLING, STORAGE AND PROTECTION OF CSP AND CONTROL SAMPLES

A. Follow Section 01610- Basic Product Requirements and following minimum standards.

B. After removal CSP and control samples, inspect and tag each item. Prepare a written inventory.
 1. Describe damage or deficiencies discovered. Process claims and obtain replacement products.
 2. Inspect and inventory in presence of City Engineer if necessary.

C. Store CSP following Section 01610- Basic Product Requirements until delivery to City. Package CSP in weatherproof containers, labeled with inventory on outside of containers.

D. Load, transport, off-load and provide other incidental labor required to place CSP inside City’s facility. Notify City Engineer at least 7 days before delivery is scheduled.

E. Provide CSP manufacturer's labor if required to properly handle, store and protect products.

F. Obtain written receipt or transfer of title from City Engineer.

1.06 SCHEDULING AND SEQUENCING

A. Provide specific time and date information to City Engineer 48 hours in advance of proposed Work involving temporary shutdown of utilities and environmental systems.

B. Notify City Engineer at least 7 days before starting work in areas or conditions affecting data, communications, security and paging systems. Do not cut or patch such systems without approval of City Engineer.

C. Submit a detailed schedule of proposed connections, including shutdowns and tie-ins. Include in the submittal the proposed time and date as well as the anticipated duration of the Work. Submit the detailed schedule coordinated with the construction schedule.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Based on the Designer's knowledge of available “as-builts” of the Base Facility, and observation of sight-exposed construction, patching materials required include:

B. Where there is no specification for a required patch product, provide same products and types of construction as analogous Base Facility construction.
 1. Contract Documents do not define products or standards of quality present in the Base Facility.
2. Determine products required following Section 01726- Base Facility Survey. Determine required workmanship by using equivalent Base Facility products as control samples.

PART 3 - EXECUTION

3.01 GENERAL PERFORMANCE

F. Repair damage to Base Facility resulting from work under this contract.

G. Perform activities to avoid interference with facility operations and work of other contractors, following Document 00700- General Conditions and Sections 01145-Use of Premises, 01312- Coordination and Meetings, 01505- Temporary Facilities and 01506- Temporary Controls.

H. Restore Base Facility to a state equivalent to or better than that before cutting and patching. Restore new work to standards of these Specifications.

I. Support, anchor, attach, match, trim and seal materials to work of other contractors. Unless otherwise specified, provide sleeves, inserts, and hangers, required for the execution of the Work.

J. Provide shoring, bracing and support as required to maintain structural integrity and protect adjacent work from damage during cutting and patching. Before cutting beams or other structural members, anchors, lintels or other supports, request written instructions from City Engineer. Follow such instructions, as applicable.

K. Cut and patch as recommended by manufacturers of patch products, and where possible by manufacturer of affected Base Facility products.

L. Fit and adjust products to provide finished installation complying with specified products, functions, tolerances and finishes.

M. Restore Base Facility damaged as a result of the Work. Install work following Contract Documents, Base Facility documents, trade standards, or governing agencies, as applicable.
 1. Follow Section 01726- Base Facility Survey to document Base Facility damage Base Facility prior to commencing work.

N. Refinish entire exposed and semi-exposed surfaces.
 1. For continuous surfaces, refinish to nearest change in plane. Remove and reinstall remaining signs, hardware and similar interferences.
 2. For an assembly, refinish entire unit.

O. Where cutting and patching fails to match Base Facility work, provide complete replacement work.

3.02 TEMPORARY FACILITIES AND PROTECTION
3.03 INSPECTION AND COORDINATION

A. Inspect Base Facility following Section 01726- Base Facility Survey, and if required provide Contractor's testing following Section 01450- Contractor's Quality Control, for Base Facility conditions subject to this Section.

B. Report by Document 00931- Request for Information questionable Base Facility conditions that affect the Work.

C. Obtain written authorizations before beginning utility or environmental systems work affecting Base Facility outside the contract limits.

D. Coordinate work with demolition work specified in Division 2, Technical Specifications.

3.04 REMAINING FLOORS, WALLS, CEILINGS AND DOORWAYS

A. Where only partitions are removed, patch remaining floors, walls and ceilings, with substrate and finish materials to match Base Facility.
 1. Where removal of partitions results in adjacent spaces becoming one, rework floors and remaining walls and ceilings to provide smooth planes without breaks, steps or bulkheads.
 2. Where extreme change of plane occurs, obtain direction by Document 00931- Request for Information.

B. Trim and refinish Base Facility doors as necessary to clear plane of new floors.

3.05 DAMAGED SURFACES

A. Replace or patch any portion surfaces of the Work and Base Facility found damaged, lifted, discolored, or showing other imperfections resulting from work, with matching sound material and finish.
 1. Provide proper support of substrate before patching.
 2. Refinish patched portions of painted or coated surfaces scheduled for new finish, to produce uniform color and texture over entire surface.
 a. Tape, float, sand and apply two coats of latex paint to repaired Base Facility drywall, plaster, doors and doorframes.
 3. Exceptions: Fully patch remaining Base Facility surfaces exposed and semi-exposed to public view to match all visual characteristics of Base Facility.

3.06 TRANSITION FROM BASE FACILITY TO NEW CONSTRUCTION

A. Where new work abuts or finishes against Base Facility work, make smooth and workmanlike transition. Match patched work adjacent to Base Facility work for all visual characteristics.
 1. Where smooth transition is not possible, terminate Base Facility surface neatly along a straight line at a natural line or plane of division, and provide edge trim appropriate to substrate and finish.
 2. Exceptions: Fully patch remaining Base Facility surfaces exposed and
semi-exposed to public view to match all visual characteristics of Base Facility.

3.07 SITE UTILITY AND BUILDING ENVIRONMENTAL SYSTEMS

A. Perform work needed to complete connections and tie-ins to Base Facility. Keep Base Facility in continuous operation unless otherwise specifically permitted or approved by City Engineer.

B. Base Facility electrical and mechanical systems and site utilities are intended to be functioning properly prior to start of the Work. Follow Section 01505 to confirm proper function.
 1. Notify City Engineer by Document 00931- Request for Information of non-operating systems prior to commencing affected work in each area.
 2. Do not proceed with work affecting improperly functioning utilities or systems until corrective work is complete.

C. Make required cuts, plugs and terminations. Tag remaining lines with contents names and direction of flow, whether or not flow is active, using weather-resistant tags and permanent markers.

D. Plumbing Systems and HVAC Systems:
 1. Provide temporary or permanent by-passes, test plugs and stop valves in plumbing waste and supply lines, and in HVAC system piping as individual fixtures and equipment are removed. Do not bypass wastewater or sludge into waterways. Provide temporary pumping facilities to handle wastewater if necessary. Provide temporary power supply and piping to facilitate construction where necessary.
 a. Scope, type and locations of temporary plugs and valves are at the Contractor's option, as approved, based on Base Facility conditions encountered.
 b. Unless otherwise required, install permanent plugs and valves as follows:
 1) For risers tapped into remaining lateral lines cut and plug risers as close as practical to laterals.
 2) For laterals, cut and plug approximately one foot from surface of Base Facility demising walls intended to remain.
 3) For risers extending through floors in unoccupied areas, cut and plug approximately one foot above top surface of Base Facility floor.
 4) For risers extending through floors in occupied areas and which cannot be fully removed following Paragraph 1) above, cut and plug flush with surface of Base Facility floor.

E. Electrical Power Systems:
 1. Provide temporary or permanent bypasses and terminations of electrical systems. Do no work on Base Facility data, communications, security or paging systems following Paragraph 1.05.B above.
 a. Scope, type and location of terminations are at the Contractor's option, as approved, determined by Base Facility conditions encountered.
 b. Unless otherwise required, terminate electrical lines as follows:
1) For circuits tapped into remaining laterals intended to remain and which occur above Base Facility ceiling planes, terminate circuits in appropriately-sized junction boxes. Attach boxes to building structure, install wire nuts on unconnected wires, and Permanently label outside of box with panel/circuit number and voltage.

2) For abandoned circuits, remove wire, conduit, boxes, breakers and related components back to the respective panel boxes or terminal boards, and provide a blank plate in the breaker slot, and identify plate as “SPARE CIRCUIT/(CAPACITY) AMP” minimum.

c. Unless otherwise required by demolition work, and where Base Facility ceilings are indicated for removal, leave paging and security system components in place, using at least two hanger wires per device.

2. Provide permanent support for risers and laterals intended to remain.

3. Fit ductwork, conduit and pipes water-tight, air-tight and fire-stopped, following Section 07, at penetrations through walls, floors and ceiling, whether or not Base Facility penetrations are constructed as water-, air- or fire-tight.

a. If not otherwise shown on Drawings, provide properly sized fire dampers for remaining Base Facility ducts which penetrate fire-rated construction and which do not already have fire dampers.

4. Remove site utility lines without disturbing underlying soil or sub-base.

F. Insofar as possible, test work under operating conditions before final tie-ins are made to connect equipment to the Base Facility. Test remaining utilities and service in presence of City Engineer before covering up. Repair defects and deficiencies.

3.09 SALVAGING CONTROL SAMPLES AND CSP

A. Remove Base Facility designated as CSP and control samples using methods and procedures specified herein.

1. Control samples located outside contract limits are intended to remain in place.

2. Remove control samples of sufficient size and proper quantity to establish standards for comparison.

B. Inspect, handle, store, and protect control samples and CSP following this Section. Package CSP in impact- and moisture-resistant containers.

C. Where applicable, reinstall control samples following this Section.

3.17 INTERIM CLEANING

A. Clean occupied areas daily. Immediately remove spillage, overspray, dust and debris in occupied areas and at points of access into contract limits. Sweep and wet mop floors as required, using safety cones and tape barricades as required cleaning operations.
B. Make surfaces ready for work of successive trades.

C. At completion of work in each area, provide final cleaning following Section 01770- Contract Closeout.

END OF SECTION
SECTION 01740
SITE RESTORATION

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Restoration of site affected by the Work in public or private property, including pavement, esplanades, sidewalks, driveways, fences, lawns and landscaping.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. Payment for restoration of Project site disturbed by utility construction operations is on a linear foot basis. Measurement will be as provided for corresponding utility in each Specification section. No separate payment made for branch pipe, valves and, other associated work for utilities. Measurement for restoration with multiple utilities within the same right-of-way will be on a linear foot basis for only one utility.

2. No separate payment made for facility or roadway projects. Include cost in the surface improvements associated with the facility or roadway construction.

3. Payment includes required site restoration within the right-of-way or easement regardless of size or type of pipe, method of construction, paved or unpaved areas or thickness and width of pavement.

4. No separate payment made for site restoration for service connections under this Section. Include cost in appropriate utility section.

5. Refer to Section 01270 - Measurement and Payment for Unit Price procedures.

B. Stipulated Price (Lump Sum) Contracts. If Contract is Stipulated Price...
Contract, include payment for work under this section in total Stipulated Price.

1.03 DEFINITIONS

A. Phase: Locations identified on the plans and listed in Section 1110 – Summary of Work under Work Sequence.

B. Site Restoration: Replacement or reconstruction of Site Improvements located in rights-of-way, easements, public property, and private property affected or altered by the Work.

C. Site Improvement: Includes pavement curbs and gutters, esplanades, sidewalks, driveways, fences, lawns, irrigation systems, landscaping, and other improvements in existence at the Project site before commencement of construction operations.

1.04 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Schedule of testing, service connections, abandonment, backfill, and site restoration.

C. Sample of notices to residents outlining their responsibility for maintenance of site improvements adjacent to the Project that are not disturbed by construction operations.

1.05 SCHEDULING

A. Schedule testing, service connections, abandonment, backfill and site restoration immediately following completion of pipe laying work or paving within each block or line segment.

B. Phased Construction:

1. Commencement of subsequent Phase will follow scheduling of site restoration of prior Phase. Limit work to a maximum of two Phases of the project.

C. Construction of Projects with no Phases listed in Section 01110 – Summary of Work:
1. Complete site restoration prior to disturbing over 50% of total project linear feet or 2,000 linear feet, whichever is greater, of right-of-way or easement.

2. Limit work to a maximum of 50% of total project linear feet or 2,000 linear feet, whichever is greater, of right-of-way and easement. Commence work in additional right-of-way or easement after completion of site restoration.

PART 2 PRODUCTS

2.01 MATERIALS

A.

C. Trees, Shrubs and Plantings: Conform to requirements of Section 01562 - Tree and Plant Protection.

PART 3 EXECUTION

3.01 Preparatory Work

A. Provide cleanup and restoration crews to work closely behind pipe laying and roadway construction crews, and where necessary, during testing, service restoration, abandonment, backfill and surface restoration.

B. Water Lines: Unless otherwise approved by Project Manager, comply with the following:

1. Once Project Manager approves work within a Phase, immediately begin preparatory work for disinfection effort.

2. No later than three days after completing disinfection preparatory work, submit to City appropriate request for disinfection.

3. If City fails to perform initial disinfection of lines in accordance with
Section 2514 - Disinfection of Water Lines, within seven days from submission of appropriate request, and if approved by Project Manager, pipe laying operations may continue beyond approved limits until the City responds.

4. Immediately after transfer of services, begin abandonment of old water lines and site restoration.

C. Wastewater Lines:

1. Once Project Manager approves work within a Line Segment, immediately begin preparatory work for testing effort.

2. No later than three days after completing preparatory work for testing, initiate testing work.

3. Immediately after transfer of service connections, begin abandonment of old wastewater lines, and site restoration.

D. Street Construction and Paving Projects

1. Once Project Manager approves work within a Line Segment or block, immediately begin preparatory work for testing effort.

2. No later than three days after completing preparatory work for testing, initiate testing work.

3. Immediately after testing begin site restoration.

E. Street Construction and Paving Projects

1. Once Project Manager approves work within a block, immediately begin preparatory work for sidewalk construction, sodding and seeding and tree planting.

2. No later than seven days after completing preparatory work, initiate construction.

3.02 CLEANING

A. Remove debris and trash to maintain a clean and orderly site in accordance with requirements of General Conditions and Section 01576 -
Waste Material Disposal.

3.03 LANDSCAPING AND FENCES

A. Seeding and Sodding.

1. Remove construction debris and level area with bank sand so that new grass surface matches level of existing grass and maintains pre-construction drainage patterns. Level and fill minor ruts or depressions caused by construction operations with bank sand, where grass is still viable.

2. Restore previously existing turfed areas with sod and fertilize in accordance with Technical Specification T-904 Sodding. Sod to match existing turf.

3. Restore unpaved areas not requiring sodding with seeding conforming to Technical Specification T-901 Seeding.

B. Trees, Shrubbery and Plants.

1. Remove and replant trees, shrubs, and plants in accordance with requirements of Section 01562 - Tree and Plant Protection.

C. Fence Replacement.

1. Replace removed or damaged fencing to equal or better condition than existed prior to construction, including concrete footings and mow strips. Provide new wood posts, top and bottom railing and panels. Metal fencing material, not damaged by the Work, may be reused.

2. Remove and dispose of damaged or substandard material.

3.04 MAINTENANCE

A. Maintain shrubs, plantings, sodded areas and seeded areas.

B. Replace shrubs, plantings and seeded or sodded areas that fail to become established.

C. Refer to Section 01562 - Tree and Plant Protection, Technical
Specification T-901 Seeding, T-904 Sodding, T-905 Topsoiling for maintenance requirements.

END OF SECTION
PART 1 – GENERAL

1.01 SECTION INCLUDES

A. Requirements to protect existing services and minimize impact of interruptions.

1.02 DEFINITIONS:

A. Service is defined to include utilities (natural gas, water, or power); lighting and emergency lighting; data and telecommunications; closed-circuit video, control and monitoring circuits, and air conditioning, heating, and ventilating. Service types include, but are not limited to:
 1. Power.
 2. Lighting, and emergency lighting.
 3. Paging.
 4. Telephone.
 5. Video.
 7. Water.
 8. Natural gas.
 9. Heating, ventilating, and air conditioning.

B. Data and Telecom Service is defined to include:
 1. Wiring and cable used for the transmission of data, voice, or video information.
 2. Wiring for low voltage monitoring and control of various types of devices.

C. Service interruption is defined to include any temporary or permanent inability to provide the service as contracted or as intended and includes interference with or disruption to source, distribution, or terminal items of a service system.

D. Response time is defined to be the time elapsed between the time that a Service Interruption becomes known to the Contractor and the time that a person is at the site of the interruption or, if the site of the interruption is not immediately known, at the job site to diagnose and locate the service interruption.

1.03 PERFORMANCE REQUIREMENTS

A. Contractor is required to protect and maintain existing services to those operating areas of the Airport.
 1. Where services are affected by construction activities and interruption of service is required to complete the Work, schedule service interruption to minimize impact.
2. Where services cannot be interrupted, provide alternate services or circuits as required to maintain affected services. Design and implement service "cut-over" so that services are maintained without interruption.

B. Train employees and subcontractors to ensure that accidental service interruptions are promptly recognized and appropriate responses can be initiated.

C. Maintain personnel, equipment, and parts at hand or on call to provide the response times indicated.

D. Interruptions to Existing Service are classified as follows:
 1. Security Service Interruption:
 a. Any service interruption of power, lighting, or data and telecom service that affects and compromises one of the following:
 (1) FAA Security
 (2) Airline Security
 (3) Airport Security
 (4) Other government entity charged with enforcing security at the Airport (Houston Police Department, FBI, Secret Service, etc.).
 b. Security Services must be active at all times.
 2. Life Safety Service Interruption:
 a. Any service interruption of power, lighting, or data and telecom service affecting or compromising one or more of the following life safety systems.
 (1) Fire/smoke alarms.
 (2) Emergency lighting.
 (3) Elevator operations in "Fire" mode.
 (4) Emergency intercom systems.
 b. Life Safety Services must be active at all times.
 3. Business Service Interruption:
 a. Any service interruption of utility service (power, lighting, natural gas, data and telecom, etc.) that affects and compromises the ability of a profit-seeking entity to earn revenue, including:
 (1) Airline: Includes FIDS network, reservation/confirmation systems, paging systems.
 (2) Tenants Other Than Airlines: Point of sale systems, reservation/confirmation systems, utilities for storing, cooking, or maintaining food for sale to the public.
 b. Business Services must be active at all times in the areas of the Airport served by Airlines or other tenants during hours of their operation.
 4. Comfort / Convenience Service Interruption:
 a. Any service interruption of power, lighting, or data and telecom services affecting or compromising the comfort or convenience of those using the Airport (passengers, visitors, employees, concessionaires, etc.) including:
 (1) Lighting.
 (2) Air Conditioning.
 (3) Heating.
 (4) Public telephones.
 (5) Elevators.
b. Minimize Comfort/Convenience Service Interruptions except in construction areas.

1.04 SUBMITTALS

A. Schedule of service interruptions.

B. Emergency Response Plan.

1.05 QUALITY ASSURANCE

A. Develop emergency response plan for each class of service interruption indicated. Notify other contractors responsible for services and obtain contact information. Where possible, obtain written instructions for emergency repairs from the contractor responsible for each service. Where required, arrange for contractor personnel to be available to meet required response times.

1.06 COORDINATION AND SEQUENCING

A. Schedule and execute construction activities to prevent service interruption or, where service interruption is required to complete the Work, minimize service interruption.

1.07 SCHEDULING

A. Follow Section 01325.

B. Develop a schedule of required service interruptions. Coordinate with the schedules required by Section 01325 and revise as required by the City or project conditions.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION

3.01 CONTRACTOR RESPONSIBILITIES:

A. Follow Section 01726.

B. Scheduled Service Interruptions: Notify the City Engineer in writing not less than 7 days in advance of a scheduled service interruption. Use the attached form and include the following information in addition to the information required on the form:
 1. Type and classification of service.
 2. Location.
 3. Area(s) affected.
 4. Entities affected.
 5. Expected duration.

C. Unscheduled Service Interruptions to Data and Telecom Service:
 1. Immediately notify IAH 24-Hour Emergency Dispatch Service at (281) 230-3024 HOU 24-Hour Emergency Dispatch Service at (713) 641-4000. Do not attempt to repair these lines. Include the following information:
 a. Location.
 b. Area(s) affected.
c. Type and classification of service (if known).
d. Entities affected (if known).

2. In addition to the notification requirements above, immediately notify the City Engineer of interruption.

D. Unscheduled Service Interruptions to Service Other Than Data and Telecom Service:
 1. When executing Work in an area known to have existing services, maintain on-site or on-call capability to initiate repairs to unscheduled service interruptions within the response times required.
 2. Immediately notify the City Engineer of interruption.
 a. Location.
 b. Area(s) affected.
 c. Type and classification of service (if known).
 d. Entities affected (if known).

3. Response Times to Interruptions to Existing Service:
 b. Life Safety Service Interruption: 15 minutes.
 c. Business Service Interruption:
 (1) Service Interruptions to Airlines: 15 minutes.
 (2) Service Interruptions to Tenants other than Airlines: 1 hour.
 d. Comfort/Convenience Service Interruption: 1 hour.

END OF SECTION
Rehabilitation of Taxiways WA & WB

Project No.: HAS PN 901 PROTECTION OF EXISTING SERVICES

<table>
<thead>
<tr>
<th>SERVICE INTERRUPTION REQUEST/NOTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO: HOU Plan Review</td>
</tr>
<tr>
<td>7800 Airport Blvd.</td>
</tr>
<tr>
<td>Houston, TX 77061</td>
</tr>
<tr>
<td>ATT: Bill White</td>
</tr>
<tr>
<td>DATE RECEIVED:</td>
</tr>
<tr>
<td>REF:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL CONTRACTOR:</th>
<th>PROJECT NUMBER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHONE NUMBER:</td>
<td>PAGER NUMBER:</td>
</tr>
<tr>
<td>FAX NUMBER:</td>
<td></td>
</tr>
</tbody>
</table>

SUBCONTRACTOR:	PHONE NUMBER:
	FAX NUMBER:
	PAGER NUMBER:

<table>
<thead>
<tr>
<th>TYPE AND CLASSIFICATION OF SERVICE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION OF INTERRUPTION:</td>
<td>DATE OF INTERRUPTION</td>
</tr>
<tr>
<td>AREAS AFFECTED:</td>
<td>TIME OF INTERRUPTION</td>
</tr>
<tr>
<td>ENTITIES AFFECTED:</td>
<td>EXPECTED DURATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE:</td>
</tr>
</tbody>
</table>

Do not write below this line

RESPONSE:

PROTECTION OF EXISTING SERVICES
01761-5 ver. 3-24-10
SECTION 01770

CONTRACT CLOSEOUT

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Submittal of Operation and Maintenance (O & M) manual, lien releases, record documents, badges, and keys.

B. O & M manual format and contents.

C. Final cleaning. Interim cleaning is specified in Section 01505.

D. Systems demonstrations and personnel training.

E. Notification of Substantial Completion.

F. Contractor's punch list.

G. Record of the Work.

H. Forwarding of Contractor-Salvaged products (CSP), and extra products.

1.02 SUBMITTALS

A. One month before Substantial Completion inspection, submit 2 sets of Preliminary O & M manual (Paragraph 1.03), 1 copy to Designer and 1 copy direct to City Engineer.

B. Subsequent to Preliminary O & M manual submittal and precedent to final Certificate for Payment, submit the following:
 1. Five (5) sets of final O & M manual with one (1) original executed warranty plus four (4) copies, in same format as preliminary O & M manual.
 2. Release or Waiver of Liens and consents of sureties following Documents 00700- General Conditions and 00800- Supplementary Conditions.
 3. Record Documents following Document 00700 and Paragraph 1.08 below.
 a. Bind sepias or vellums with metal folding clasps (such as used for file folders) at top and bottom along binding edge. Collate into separate sets for Drawings, shop drawings, and other drawings.
 b. Bind Project Manual, product data and similar page-type data in separate 3-ring “D” binders, contents marked on spine.
 c. CADD diskettes in plastic file box or on approved media.
 d. Video and photographs following Section 01321- Construction Photographs.
 e. Other data as directed.
 5. Construction and other master keys.
1.03 O&M MANUAL CONTENTS AND FORMAT

A. Provide O & M Manual with full information to allow matching products under future contracts to products under this contract, and to allow City to operate, maintain and repair (for user-serviceable aspects) products, including trade names, model or type numbers, colors dimensions, and other physical characteristics.

B. Format:
1. Produce on 8-1/2 x 11-inch pages, and bind in 3-ring/D binders with durable plastic covers.
2. Label binder covers with printed title “OPERATION AND MAINTENANCE MANUAL”, title of project, and subject matter and “Number _ of _” of binder when multiple binders are required.
3. Separate each “Part” with substantial dividers tabbed and titled by Part number

C. Contents:
1. Table of Contents for each volume, naming each Part.
2. Part 1: Directory with name, address, and telephone number of Designer, Contractor, and Subcontractors and Suppliers for each Project Manual Section.
3. Part 2: Operation and maintenance instructions, arranged by Project Manual Section number where practical, and where not, by system. Include:
 a. For finish materials, maintenance instructions prepared by manufacturers, including recommended cleaning methods and materials and special precautions identifying detrimental agents.
 b. Utility, door and window hardware, HVAC, plumbing and electrical products, prepared by product manufacturer, including:
 1) Product design criteria, functions, normal operating characteristics, and limiting conditions.
 2) Assembly, installation, alignment, adjustment, checking instructions, and troubleshooting guide.
 3) Operating instructions for start-up, normal operation, regulation and control, normal shutdown, and emergency shutdown.
 4) Lubrication and detailed maintenance instructions; detailed drawings giving location of each maintainable part and lubrication point and detailed instructions on disassembly and reassembly of products.
 5) Spare parts list for operating products, prepared by manufacturers, including detailed drawings giving location of each maintainable part; describe predicted life of parts subject to wear, lists of spares recommended for user-service inventory, and nearest source of in-stock spares.
 6) Outline, cross-section, and assembly drawings; engineering data; wiring diagrams.
 7) Test data and performance curves.
4. Part 3: Project documents and certificates, including:
 a. Shop drawings, product data, and where practical, samples.
 b. Air and water balance reports.
 c. Certificates of occupancy or use.
 d. Product certifications and mix designs.
 e. Material Safety Data Sheets.
5. Part 4: Copy (not original) of each warranty form containing language of final warranty.
6. Part 5: Meeting notes from systems demonstrations.
7. Revise content and arrangement of preliminary Manual until approval by City Engineer.

1.04 FINAL CLEANING

A. Execute final cleaning prior to Substantial Completion of each phase.
B. Clean surfaces exposed to view; remove temporary labels and protective coverings, stains and foreign substances; polish transparent and glossy surfaces; vacuum carpeted and soft surfaces. Clean equipment and fixtures to sanitary condition. Clean permanent filters and install new replaceable filters at equipment. Clean HVAC diffusers.
C. Remove and legally dispose of waste and surplus products and rubbish, including from roofs, gutters, downspouts, drainage systems, pavements, lawn and landscaped areas, and elsewhere from site.
D. Sweep streets and parking areas, rake lawn and landscaped areas.
E. Wash roofs, opaque building walls and sidewalks.
F. Remove temporary facilities and controls.
G. Leave premises in spotless condition, requiring no further cleaning of construction by City.
H. Adjust products to proper operating condition.
I. Correct defective function of products.

1.05 SYSTEMS DEMONSTRATIONS AND PERSONNEL TRAINING

A. Demonstrate proper operation and maintenance of each product to City’s maintenance personnel precedent to Substantial Completion inspection.
B. Precedent to submittal of O & M Manual, train City’s maintenance personnel in proper operation, adjustment, and maintenance of products and systems, using the preliminary O & M Manual as the basis of instruction. Continue training until City’s personnel demonstrate proper knowledge and skills.
C. Take minutes of meetings, including sign-in sheet, and record subjects covered in each session. Bind minutes in O&M Manual.

1.06 NOTIFICATION OF SUBSTANTIAL COMPLETION

A. When Contractor considers the Work (or a designated portion or stage thereof identified in Section 01326- Construction Sequencing) substantially complete, submit written notice and Punchlist (Paragraph 1.04) to City Engineer.
1. Do not claim Substantial Completion until authorities having jurisdiction issue certificates of occupancy or use and related inspections affirming compliance.
2. Attach copy of each certificate to Substantial Completion form.

B. Within a reasonable time after receipt of certificates, an inspection will be made by City Engineer and Designer to determine status of completion.

C. Should the Work be determined by City Engineer as not substantially complete as a result of any Substantial Completion inspection, Contractor will notified in writing.
 1. Remedy deficiencies.
 2. Send written notice of Substantial Completion as above.
 3. City Engineer and Designer will re-inspect the Work.
 4. Pay costs of Designer’s second and subsequent Substantial Completion inspections, by Change Order.

D. When the Work is determined as substantially complete, the Certificate of Substantial Completion will be executed.

1.07 CONTRACTOR’S PUNCHLIST

A. Prior to and in connection with Substantial Completion procedures, prepare a written Punchlist on an area-by-area basis for each phase and as follows:
 1. Designer will provide one reproducible copy of then-current floor plans. These drawings are the basis of Contractor’s Punchlist.
 2. Inspect the Work and mark applicable comments on the floor plans. Prepare written notes as required to supplement notes made on drawings.
 3. Continue completion of the Work including Punchlist items, marking off completed items.
 4. Forward electronic copy and 3 diazo prints or hard copies of the annotated Drawings to City Engineer accompanied by notification that Substantial Completion Inspection is ready.

B. Schedule Punchlist Inspection and other closeout inspections through City Engineer.

C. Punchlist inspection will be attended by the following as a minimum:
 1. Contractor, Contractor’s Superintendent, and applicable Subcontractors’ superintendents. Attend with Punchlist drawing.
 2. City Engineer.
 3. Designer.
 4. Others of City Engineer’s choice.

D. Substantial Completion inspection will be made during one or more mutually agreed times to inspect the Work, to review and amend Contractor’s Punchlist. If the work is substantially complete, Document 00645- Certificate of Substantial Completion will be executed.
 1. Amendments to the Contractor’s Punchlist will be made on the reproducible.
 2. Within 5 days of execution of Document 00645, provide 4 copies of the amended Punch List and original Document 00645 to City Engineer.

E. Expeditiously correct work.
F. Process each re-inspection as above and in Paragraph 1.04.

G. Punchlist items and corrections required after execution of Document 00650-Certificate of Final Completion will be processed as warranty work following Document 00700-General Conditions, Paragraph 3.12.

1.08 RECORD OF THE WORK

A. Following requirements expand Paragraph 3.16 of Documents 00700-General Conditions and 00800-Supplementary Conditions.

B. Record information concurrently with construction progress. Do not conceal work until required information is recorded.

C. Keep in a secure location in the Engineer’s field office (Section 01505-Temporary Facilities) at the site or Contractor’s office and timely record the Work as actually built as the Work progresses.

1. Use one set of Drawings made from reproducibles or electronic copies and one set of Project Manual furnished under Section 01110-Summary of Work. Use one set of submittal data, video and photographic data, and other record data as required by Contractor to support and supplement records made on Drawings and Project Manual.

2. Legibly note variations from Contract Documents on Drawings, Project Manual and submittal data, whichever most clearly shows the change.

3. Clearly mark each document in red ink “RECORD OF THE WORK. Use only for recording field deviations and actual constructed conditions and arrangements.”

D. Keep documents current and make available for inspection by City Engineer.

E. Show following minimum information, as applicable to type of work, marked in fine-point red ink:

1. Measured depths of foundation elements in relation to finish first floor datum.
2. Measured horizontal locations and elevations of underground utilities and appurtenances, referenced to permanent surface improvements.
3. Elevations of underground utilities referenced to City’s benchmark utilized for project.
4. Measured locations of internal utilities, environmental systems and appurtenances concealed in construction, referenced to visible and accessible features of construction.
5. Field changes of dimension and detail.
7. Changes made by Modifications.
8. Details not on original Contract Documents.
9. References to related shop drawings, product data, samples, RFIs and Modifications.

F. Upon completion of the Work, collect diazo prints of marked-up Drawings, one single-sided copy of marked-up Project Manual, one set of shop drawings (including diskettes of CAD files prepared as part of the Contract, such as data required by Section 01340-Shop Drawings, Product Data and Samples), one
original set of product data (Section 01340), one set of RFIs, one set of Modifications, one set of originals of video tapes and one copy of photographs (Section 01321- Construction Photographs), and other required documents.

1. Clearly mark each document, immediately adjacent to the “RECORD OF THE WORK” mark, in red ink thus:

 “CERTIFIED AS THE CORRECT AND COMPLETE RECORD OF WORK PERFORMED.
 ____________________________ (Contractor Firm Name)
 ____________________________ (Authorized Signature)
 ____________________________ (Date)"

G. Transmit all records to City Engineer.

H. Transmit reproducible copies of Drawings (see Section 01110- Summary of Work) to City Engineer.

I. Submit proper record of the Work, in addition to other requirements in the Contract Documents, precedent to City Engineer’s authorization for release of final payment.

1.09 FORWARDING CSP AND EXTRA PRODUCTS

A. Before submitting final application for payment, forward remaining proper CSP (Section 01110- Summary of Work), extra products, including spare parts (specified in other Sections) to location designated by City Engineer.

B. Furnish pallets and containers as required for proper product storage.

C. Unload products from Contractor’s vehicles. Place pallets, containers and products as directed by City Engineer.

D. Obtain written transfer of title or receipt.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)
SECTION 01785

PROJECT RECORD DOCUMENTS

PART 1 G E N E R A L

1.01 SECTION INCLUDES

A. Maintenance and submittal of record documents and Samples.

1.02 MAINTENANCE OF DOCUMENTS AND SAMPLES

A. Maintain one record copy of documents at the site in accordance with Document 00700 - General Conditions,

B. Store record documents and Samples in field office, if a field office is required by the Contract, or in a secure location. Provide files, racks, and secure storage for record documents and Samples.

C. Label each document "PROJECT RECORD" in neat, large, printed letters.

D. Maintain record documents in a clean, dry, and legible condition. Do not use record documents for construction purposes. Do not use permit drawings to record Modifications to the Work.

E. Keep record documents and Samples available for inspection by Project Manager.

F. Bring record documents to progress review meetings for viewing by Project Manager and, if applicable, Design Consultant.

1.03 RECORDING

A. Record information legibly with red ink pen on a set of field drawings maintained and kept at the Contractor’s field office, concurrently with construction progress. Maintain an instrument on site at all times for measuring elevations accurately. Do not conceal work until required information is recorded

B. Contract Drawings and Shop Drawings: Mark each item to record completed Modifications, or when minor deviations exist, the actual construction including:

1. Measured depths of elements of foundation in relation to finish first floor datum.

2. Measured horizontal locations and elevations of Underground Facilities and appurtenances, referenced to permanent surface improvements.

4. Measured locations of internal utilities and appurtenances concealed in construction, referenced to visible and accessible features of the Work.

5. Dimensions and details of field changes.

6. Changes made by Modifications.

7. Details not on original Drawings.

8. References to related Shop Drawings and Modifications.

C. Survey all joints of water mains at the time of construction. Record on Drawings, water main invert elevation, elevation top of manway, and centerline horizontal location relative to baseline.

D. For large diameter water mains, mark specifications and addenda to record:

1. Manufacturer, trade name, catalog number and Supplier of each Product actually installed.

2. Changes made by Modification or field order.

3. Other matters not originally specified.

E. Annotate Shop Drawings to record changes made after review.

1.04 SUBMITTALS

A. At closeout of the Contract, deliver Project record documents to Project Manager.

PART 2 P R O D U C T S - Not Used

PART 3 E X E C U T I O N - Not Used
ITEM G-100

MOBILIZATION & GENERAL CONDITIONS

DESCRIPTION

100-1.1 This item shall consist of work and operations, but is not limited to, work and operations necessary for the movement of personnel, equipment, material and supplies to and from the project site for work on the project except as provided in the contract as separate pay items. The work specified in this item shall also include the preparatory work and operations in mobilizing for beginning work on the project, including, but not limited to, those operations necessary for the establishment of temporary offices, buildings, guard houses, utilities, safety equipment and first aid supplies, sanitary facilities and any other work not included in other contract pay items. The cost of bonds and any required insurance and any other preconstruction expenses necessary for the start of the work, excluding the cost of construction materials, shall also be included in this section.

100-1.2 Posted notices. Prior to commencement of construction activities, the Contractor must post the following documents in a prominent and accessible place where they may be easily viewed by all employees of the prime Contractor and by all employees of subcontractors engaged by the prime Contractor: Equal Employment Opportunity (EEO) Poster “Equal Employment Opportunity is the Law” in accordance with the Office of Federal Contract Compliance Programs Executive Order 11246, as amended; Davis Bacon Wage Poster (WH 1321) - DOL “Notice to All Employees” Poster; and Applicable Davis-Bacon Wage Rate Determination. These notices must remain posted until final acceptance of the work by the Owner.

METHOD OF MEASUREMENT

100-2.1 Measurement of the item Mobilization, as specified herein, will be on a lump sum basis.

BASIS OF PAYMENT

100-3.1 The work and incidental costs covered under this item will be paid for at the Contract lump sum price. The Engineer shall make the final determination of the allowable percentage of completion for the payment of mobilization and shall approve the percentage paid based on the percent of contract amount actually earned which will be based upon actual work completed.

Partial payments will be allowed as follows:

a. With first pay request, 25%.
b. When 25% or more of the original contract is earned, an additional 25%.
c. When 50% or more of the original contract is earned, an additional 40%.
d. After Final Inspection, Staging area clean-up and delivery of all Project Closeout materials as required by Section 90-11 of the General Provisions, the final 10%.

* The Percent of Contract Amount Earned equals the work completed to date (including the total of all previous mobilization) plus or minus work completed associated with executed change orders, if any, divided by the Total Original Contract Amount plus or minus the Total Executed Change Order Amounts, if any.

** In the event the lump sum bid for mobilization exceeds 7.5 percent of the original contract amount for the project, the amount in excess of 7.5% will not be paid until the project is complete and the Engineer and Owner have issued a statement of final acceptance as of the date when the Contractor has furnished all of the required reports, certifications and other documentation. The date of final acceptance by the Engineer and Owner will govern, in accordance with statutes and regulations, for payment of retainage or
other monies due to the Contractor.

***Payments associated with mobilization are subject to approval of the submitted Trench Safety Program, Construction Schedule, required photographs, and Quality Control Program by the City Engineer. Reference Section 01290 Payment Procedures for additional information.

Payment shall be made under:

 Item G-100-3.1 Mobilization and General Conditions -- Per Lump Sum.

TESTING REQUIREMENTS

100-4.1 None.

END OF ITEM G-100
ITEM G-102
SAFETY AND SECURITY

DESCRIPTION

102-1.1 General. This work shall consist of complying with the provisions of the Construction Safety and Phasing Plan (CSPP) and as contained in this specification and other contract documents. A complete understanding of all safety and security procedures and requirements contained in the contract documents is required to ensure safety during construction. The CSPP is a part of this Contract and deviations from the requirements established herein will be sufficient cause for the Contract termination. The CSPP can be found in The Contract Documents.

Required reference material associated with this safety plan includes the current versions of the following documents:

- FAA AC 150/5200-18, Airport Safety Self-Inspection
- FAA AC 150/5210-5, Painting, Marking and Lighting of Vehicles Used on an Airport
- FAA AC 150/5340-1, Standards for Airport Markings
- FAA AC 150/5370-2, Operational Safety on Airports During Construction
- FAA AC 150/5370-13, Offpeak Construction of Airports Using Hot-Mix Asphalt

Copies of these documents are available for download at www.faa.gov

CONTRACTOR SAFETY AND SECURITY OFFICER

102-2.1 Contractor Safety and Security Officer (CSSO). The Contractor shall appoint its on-site Construction Superintendent or other qualified individual(s) as its duly authorized representative to serve as Contractor Safety and Security Officer (CSSO) for the duration of the Contract. The CSSO shall thoroughly understand the safety and security requirements of the Contract, the necessity for them and shall have sufficient authority to implement its provisions without significant deviation. The Contractor shall notify the Engineer in writing of the name of the individual(s) selected for the assignment.

The CSSO shall represent the Contractor on safety and security requirements compliance. The CSSO shall be especially knowledgeable regarding the requirements of FAA AC’s 150/5200-18, Airport Self Inspection Guide and 150/5370-2 Operational Safety on Airports During Construction, current editions.

102-2.2 Responsibilities of the Contractor Safety and Security Officer. Prior to the desired date for commencement of any work on the project, the CSSO shall accomplish the following:

a. Develop and submit in writing a detailed work sequence schedule with dates and times specified for all milestone events. This sequence schedule shall conform, as a minimum, to the events specified in Section 3.1, Construction Sequence, and shall be subject to the approval of the Engineer. To assure adequate time for coordination, this document shall be submitted at least one week prior to the date of the Preconstruction Conference.

b. Develop and submit in writing a Safety Plan Compliance Document (SPCD), See The Contract Documents for requirements and guidelines regarding the SPCD. The SPCD shall, as a minimum, be a detailed outline of the procedures to be followed showing how the Contractor will comply with the CSPP. The SPCD shall detail, but not be limited to, how the Contractor plans to maintain safety and
security of both Contractor operations and the integrity of airport landside and airside operations during the prosecution of contract work and the procedures to be followed in the event of an emergency or accident. These procedures shall be subject to the approval of the Engineer and reflect any change as may be deemed necessary. The development of the required SPCD shall be considered incidental to G-102-10.1 Safety & Security.

c. Conduct at least one meeting of all Contractor supervisory personnel prior to the start of contract work. The purpose of this meeting is to review the approved Work sequence schedule and safety and security procedures. Attendance at this meeting by the CSSO, all Contractor supervisory personnel and the Engineer is mandatory. This meeting shall also be open to other employees of the Contractor and others as the Engineer may deem appropriate. Minutes of this meeting shall be taken by the CSSO, copies provided to each supervisor and kept on file in the Contractor's construction office for periodic review and updating.

d. Develop a safety and security orientation program and provide a briefing for all employees of the Contractor and subcontractors that will be used on the project. A similar briefing will be given to new employees prior to their use on contract work. In addition, the CSSO shall be responsible for briefing, from time to time, all Contractor personnel on any changes to safety and security measures deemed necessary.

CONSTRUCTION SEQUENCING

102-3.1 Construction Sequence. The Contractor shall prepare a construction schedule and submit to the Engineer at least one week prior to the pre-construction conference.

102-3.2 Closing Surfaces. The Contractor shall acquaint his supervisors and employees with the sequence of construction and its relationship to airport activity and aircraft operations that are inherent to this airport. No runway, taxiway, apron or airport roadway shall be closed without the written approval of the Owner, to enable necessary NOTAMS and/or advisories to airport fixed based operators (FBOs), tenants and users.

The Contractor shall contact the Engineer a minimum of ten (10) days prior to any requested closing.

Any construction activity within 400 feet of the centerline of an active runway or within 193 feet of the centerline of an active ADG VI taxiway, 160-feet of the centerline of an active ADG V taxiway, 129.5-feet of an active ADG IV taxiway, 93-feet of an active ADG III taxiway or 167-feet of the centerline of an active ADG VI Taxilane, 138-feet of an active ADG V Taxilane, 112.5-feet of an active ADG IV Taxilane, 81-feet of an active ADG III taxi lane or apron requires closure of the impacted area. These safety and object free areas are shown on the phasing plan and detailed in the CSPP.

The Engineer will arrange for an inspection, prior to return to service, of any facility that has been closed for work, on or adjacent thereto, or that has been used for a crossing point or haul route by the Contractor.

MARKING AND LIGHTING

102-4.1 Proper marking and lighting of areas on the airfield associated with the construction shall be the responsibility of the Contractor. This will include properly marking and lighting closed runways, taxiways, taxilanes, and aprons, the limits of construction, material storage areas, equipment storage areas, haul routes, parking areas and other areas defined as required for the Contractor's exclusive use. The Contractor shall erect and maintain around the perimeter of these areas suitable marking and warning devices visible for day and night use. Temporary barricades, flagging, and flashing warning lights shall be required at critical access points. The type and location of marking and warning devices will be as shown on the plans and approved by the Engineer.
Special emphasis shall be given to open trenches, excavations, heavy equipment marshalling areas, and stockpiled material located in the airport operations area, which shall be predominantly marked by the Contractor with flags and lighted by approved light units during hours of restricted visibility and darkness. All marking shall be in accordance with FAA Advisory Circular (AC) 150/5340-1L, current edition, latest change.

TRAFFIC CONTROL

102-5.1 Vehicle Identification. The Contractor shall establish and maintain a list of Contractor and subcontractor vehicles authorized to operate on the site. Contractor employee vehicles shall be restricted to the Contractor's staging area and are not allowed in the Airport Operations Area (AOA) at any time. To be authorized to operate on the airport, each Contractor or subcontractor's vehicle shall:

a. be marked/flagged for high daytime visibility and lighted for nighttime operations. Vehicles that are not marked and/or lighted shall be escorted by a vehicle appropriately marked and/or lighted. Vehicles requiring escort shall be identified on the list.

b. be identified with the name and/or logo of the Contractor and be of sufficient size to be identified at a distance of 50 feet. Vehicles needing intermittent identification could be marked with tape or with commercially available magnetically attached markers. Vehicles that are not appropriately identified shall be escorted by a vehicle that conforms to this requirement. Vehicles requiring escort shall be identified on the list.

c. be operated in a manner that does not compromise the safety of either landside or airside airport operations. If, in the opinion of the Engineer, any vehicle is operated in a manner not fully consistent with this requirement, the Engineer has the right to restrict operation of the vehicle or prohibit its use on the airport.

102-5.2 Access to the Site of Construction. The Contractor’s access to the site shall be as shown in the plans. No other access points shall be allowed unless approved by the Engineer. All Contractor traffic authorized to enter the site shall be experienced in the route or guided by Contractor personnel. The Contractor shall be responsible for traffic control to and from the various construction areas on the site, and for the operation and security of the access gate to the site. A Contractor's flagman or traffic control person shall monitor and coordinate all Contractor traffic at the access gate with Airport Security. The Contractor shall not permit any unauthorized construction personnel or traffic on the site. Access gates to the site shall be locked and secured at all times when not attended by the Contractor. If the Contractor chooses to leave any access gate open, it shall be attended by Contractor personnel who are familiar with the requirements of the Airport Security Program. The Contractor is responsible for the immediate cleanup of any debris deposited along the access route as a result of his construction traffic. Directional signing from the access gate along the delivery route to the storage area, plant site or work site shall be as directed by the Engineer. In addition, the following requirements are applicable:

a. All Contractor traffic authorized to travel on the airport shall have been briefed as part of the Contractor's construction safety and security orientation program, be thoroughly familiar with the access procedures and route for travel or be escorted by personnel authorized by the Contractor Safety and Security Officer (CSSO).

b. The Contractor shall install work site identification signs at the authorized access point(s). If, in the opinion of the Engineer, directional signs are needed for clarity, they shall be installed along the route authorized for access to each construction site.

c. Under no circumstance will Contractor personnel be permitted to drive their individually owned vehicles to any construction site on the airport. All vehicles must be parked in the area designated for
employee parking and out of secured airport property.

d. In addition to the inspection and cleanup required at the end of each shift, the Contractor is responsible for the immediate cleanup of any debris generated along the construction site access route(s) as a result of construction related traffic or operations whether or not created by Contractor personnel.

102-5.3 Material Suppliers. All material suppliers, subcontractors and visitors to the work site are obligated to follow the same safety and security operating procedures as the Contractor. All material suppliers shall make their deliveries using the same access points and routes as the Contractor and shall be advised of the appropriate delivery procedures at the time the materials order is placed. The Contractor shall not use the Airport address for any delivery but shall use the street address appropriate to the location of the entrance to the work site. If it is not practical to conform to the vehicle identification requirements of Section 102-5.1 and the safety and security operations program requirements of Section 102-2.2, the Contractor shall be prepared to escort all suppliers, subcontractors and visitors while they are on the airport.

102-5.4 Personnel Identification. All employees, agents, vendors, invitees, etc. of the Contractor or subcontractors requiring access to the construction site shall, conform to the Security Program.

GENERAL SAFETY REQUIREMENTS

102-6.1 All Contractor vehicles that are authorized to operate on the airport outside of the designated construction area limits or haul routes as defined herein shall display in full view above the vehicle a flashing amber (yellow) dome-type light or a three-foot by three-foot, or larger, orange and white checkerboard flag, each checkerboard color being one-foot square. Vehicles must be under control of a Contractor mobile (two-way) radio operator (flagmen) monitoring the Airport frequency. Vehicle operators must be vigilant for conflict with any aircraft and give way to any operating aircraft at all times.

All Contractor vehicles that are required to operate outside of the construction area limits as defined herein and cross active runways, taxiways, aprons, or runway approach clear zones shall do so under the direct control of a flagman who is monitoring the Airport frequency. Flagmen and two-way radios shall be furnished by the Contractor. Flagmen shall be instructed in the use and operation of two-way radios on an active airfield prior to use. All aircraft traffic on runways, taxiways and aprons shall have priority over Contractor's traffic.

Construction vehicles not in use for extended periods during the work day, or during nights and weekends (nonwork periods) shall be parked away from active runways, taxiways, and aprons in designated vehicle marshalling areas.

102-6.2 In order to protect all aircraft traffic, aviation related businesses, terminal apron areas, etc. from potential damage caused by foreign object debris (FOD) generated by construction activities, the Contractor shall provide a vacuum truck as required at the startup of construction to daily vacuum all pavements affected by construction. The vacuum truck shall remain on-site for the duration of the project and shall be available at the discretion of the Owner to vacuum pavement areas adjacent to the construction areas to ensure no FOD is present on pavements within 500 feet of any construction area. Protecting the aircraft, airport tenants, users, public, etc. against FOD is a critical safety issue therefore the cost of the vacuum truck will be included in the cost established for this specification item.

CONSTRUCTION CONTROL

102-7.1 A primary and alternate responsible Contractor's representative shall be designated by the Contractor. The Contractor's representatives shall be available locally on a 24-hour basis. Names of the primary and alternate, including phone number, shall be made available to the Engineer by the Contractor. The Contractor shall insure that the names and phone numbers are kept current and made
available to the Engineer.

CONSTRUCTION TECHNIQUES

102-8.1 Construction shall be planned and conducted throughout this project in such a manner as to maintain safe airport operations. Every effort shall be made to reduce the impact of construction activity on overall airport operations. To this end, the Contractor's activities shall be conducted in such a manner so as to preclude, except where absolutely required, open excavations, trenches, ditches and above ground obstacles such as booms on cranes. The primary responsibility for assuring that safe construction techniques are followed rests with the Contractor Safety and Security Officer (CSSO).

METHOD OF MEASUREMENT

102-9.1 The item of Safety and Security shall be measured as a lump sum item when required and furnished for the life of the Contract.

BASIS OF PAYMENT

102-10.1 Payment for safety and security measures for personnel, labor, equipment, materials and incidentals related to this specification item and required to satisfy the specified objectives will be paid at the contract lump sum price. In the event the contract completion date is extended, no additional payment will be made for Safety and Security. This compensation shall be full compensation for furnishing all materials and for all labor, equipment, tools, and incidentals necessary to complete the item.

No payment will be made under safety and security for each calendar day during which there are substantial deficiencies in compliance with the Specification requirements of any subsection of this Section as determined by the Engineer.

The amount of such calendar day non-payment will be determined by dividing the lump sum amount bid for Safety and Security by the number of calendar days between the date the Contractor commences work and the date of completion as designated in this proposal, without regard to any extension of time. If the Contractor fails to maintain and protect traffic adequately and safely for a period of 24 hours, the Owner shall correct the adverse conditions by any means it deems appropriate and shall deduct the cost of the corrective work from any monies due the Contractor. The cost of this work shall be in addition to any liquidated damages and non-payment for Safety and Security listed above.

However, where major non-conformance with the requirements of this Specification is noted by the Engineer and prompt Contractor compliance is deemed not to be obtainable, all contract work may be stopped by direct order of the Engineer regardless of whether corrections are made by the Owner as stated above.

PARTIAL PAYMENTS. Partial payments will be made in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Percentage of Original Contract Amount Earned</th>
<th>Percent of the Lump Sum Price for the Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>100 (or Contract Completion)</td>
<td>100</td>
</tr>
</tbody>
</table>

Payment shall be made under:

Item G-102-10.1 Safety and Security -- Per Lump Sum.
TESTING REQUIREMENTS

102-11.1 None.

END OF ITEM G-102
ITEM G-103
ENGINEER’S FIELD OFFICE

DESCRIPTION

103-1.1 This item shall include furnishing a field office for the exclusive use of and occupancy by the Engineer and his authorized personnel. The building shall be furnished and maintained by the Contractor as specified herein and shall become the property of the Contractor when the contract work is completed.

FIELD OFFICE

103-2.1 Engineer’s Field Office and Equipment. The Contractor shall furnish for the duration of the project one building for the use of the field Engineers and inspectors, as a field office. This facility shall be an approved weatherproof building meeting the current State Highway Specifications for a TxDOT Type C structure. This building shall be located conveniently near to the construction or as shown on the plans and shall be separate from any building used by the Contractor.

The field office shall conform to the following minimum requirements:

a. The facility shall be permitted as required by local ordinances and shall meet all applicable codes. The Contractor shall be solely responsible for the permitting of the facility. The facility shall meet current ADA accessibility standards. The field office shall have as a minimum floor area of 400 square feet. Each room shall have at least one weatherproof window (minimum 8 square feet each) and be screened with the capability of opening, closing and being secured. The trailer shall have a minimum of two outside doors or as required by code and have locking capability.

b. The facility shall have electrical service and outlet receptacles throughout the office. The electrical service shall be a minimum of a 120/240 volt single phase power with at least 100-150 amp service. The office shall be illuminated meeting local lighting codes or at a minimum have non-glare lighting providing 100 foot-candles at desk level. Energy efficient light bulbs with an ENERGY STAR rating, such as compact fluorescent lamps (CFL’s), shall be used. The Contractor shall also provide electrical hookup and termination. The use of solar power is also acceptable and encouraged.

c. Heating and air conditioning shall be provided and shall be of adequate capacity for the volume of space which meets local heating and air conditioning codes. The equipment shall be capable of maintaining an ambient air temperature of 70+ 5 degrees Fahrenheit. A programmable thermostat with four programmable settings shall be installed to reduce heating and cooling costs while the facility is unoccupied.

d. Sanitary facilities with a sanitary sewer holding tank that will be emptied weekly at the Contractor’s expense shall be provided by the Contractor. Sanitary facilities in the office shall be continuously supplied with toilet paper, paper towels and soap or hand sanitizer.

e. New office furniture consisting of 4 double pedestal desks with locking file drawers, 12 chairs, conference table sized to seat at least ten people (4-feet by 10-feet minimum), drafting table and chair, two fire proof and lockable four-drawer file cabinets, plan rack suitable to hold six sets of plans, two reference or storage tables, 4 fully adjustable high back swivel chairs, and four waste baskets. The Contractor shall also provide a new bottled water dispensing unit with both hot and cold water dispensers and the water supply service to continually provide bottled water for the trailer occupants.

f. Office equipment consisting of a commercial color copier capable of 8.5”x11” and 11”x17” copies and pdf scans in color. (Provide all paper and replacement toner cartridges as required). Provide all routers, wireless routers, cable, etc to allow personnel to connect with laptop computers. Provide IT personnel to ensure setup and compatibility with RPR computers.
g. Fire Extinguishers shall be provided and maintained by the Contractor. The extinguishers shall meet Underwriter's Laboratories, Inc. approval for Class A and B and C fires with a minimum rating of 40A: 60B: 10C. The Contractor shall inspect all fire extinguishers on a monthly basis to verify they are in good working condition.

h. High speed internet cable service. The Contractor shall pay all high speed internet service fees for the project duration.

i. The Contractor shall be responsible for moving; proper blocking; tie-downs; installing a gravel parking area in front of the trailers; removal of the office; restoration of the site to pre-installation condition and shall conform to local ordinances and laws. The gravel parking area shall be 40’ x 50’ with a gravel access road 24-feet wide to paved roadway and a 4-foot gravel walk from the parking area to the trailer steps. If the trailer is positioned adjacent to a paved parking area, then a paved walk will be required. The Contractor shall provide positive drainage around the office with no standing water during or after rainfall events.

j. The Contractor shall also provide a set of stairs and landing with the appropriate handrails from the walk to the threshold of the trailer entrance meeting all required local codes. If the trailer has multiple entrances, the Contractor shall provide a set of stairs at each door.

k. The Contractor shall provide janitorial service on a weekly basis including trash collection and disposal for the project duration.

l. The Contractor shall be responsible for all utility connections to the field office including, but not limited to, electric, internet service, water and sanitary sewer and shall coordinate hook-up with the appropriate utility agencies.

METHOD OF MEASUREMENT

103-3.1 Method of Measurement. The item of Engineer's Field Office shall be measured for payment on a lump sum basis.

BASIS OF PAYMENT

103-4.1 Basis of Payment. Payment for Engineer's Field Office shall be made at the contract lump sum price. This price shall include all labor, material, equipment, permitting, utility charges, services and incidentals necessary to complete this item. A prorated portion of the lump sum shall be paid on a monthly basis determined by the total lump sum amount divided by the number of months of actual contract duration.

Payment shall be made under:

Item G-103-4.1 Engineer's Field Office -- Per Lump Sum.

TESTING REQUIREMENTS

103-5.1 None.

END OF ITEM G-103
ITEM G-104
PROJECT SURVEY AND STAKEOUT

DESCRIPTION

104-1.1 Under this item, the Contractor shall perform all necessary surveying required to construct all elements of the work as shown in the contract documents. This shall include, but not be limited to, stakeout, layout and elevations for grading, base courses, pavements, structures, forms and other appurtenances and items as shown and required to construct the project. Methods shall be consistent with current practices and shall be performed by qualified personnel acceptable to the Engineer. All survey work shall be provided under the direction of a licensed land surveyor.

MATERIALS

104-2.1 All instruments, equipment, stakes and any other material necessary to perform the work shall be provided by the Contractor. All stakes used shall be of a type approved by the Engineer. It shall be the Contractor’s responsibility to maintain these stakes in their proper position and location at all times.

CONSTRUCTION METHODS

104-3.1 GENERAL. The Contractor shall trim trees, brush and other interfering objects from survey lines in advance of all survey work to permit accurate and unimpeded work by his stakeout survey crews.

The exact position of all work shall be established from control points, baseline transit points or other points of similar nature that are shown on the Contract Drawings or approved by the Engineer. Before any layout work is accomplished, the Contractor shall first verify that the control point data shown on the plans is accurate. Any error, apparent discrepancy or absence of data shown or required for accurately accomplishing the stakeout survey shall be immediately referred to the Engineer for interpretation or resolution before the control point(s) in question are used for construction layout.

The Contractor shall place layout stakes as detailed in Section 50-06 of the General Provisions and at such intermediate locations as the Engineer may direct. From computations and measurements made by the Contractor, these stakes shall be clearly and legibly marked with the correct station number, offset and cut or fill so as to permit the establishment of the exact centerline location and elevation during construction. If markings become faded or blurred for any reason, the markings shall be restored by the Contractor at the request of the Engineer. All control points shall be properly guarded and flagged for easy identification.

Drainage structures shall be staked out by the Contractor at the locations and elevations shown on the Contract Drawings or specified by the Engineer.

Reference points, baselines, stakes and benchmarks for borrow pits shall be established by the Contractor.

Permanent survey marker locations shall be established and referenced by the Contractor.

The Contractor shall be responsible for the accuracy of his work and shall maintain all reference points, stakes, etc., throughout the life of the work. Damaged or destroyed points, benchmarks or stakes, or any reference points made inaccessible by the progress of the construction, shall be replaced or transferred by the Contractor. Any of the above points which may be destroyed or damaged shall be transferred by the Contractor before they are damaged or destroyed. All control points shall be referenced by ties to acceptable objects and recorded. Any alterations or revisions in the ties shall be so noted and the
information furnished to the Engineer immediately. All stakeout survey work shall be referenced to the centerlines shown on the Contract Drawings. All computations necessary to establish the exact position of the work from control points shall be made and preserved by the Contractor. All computations, survey notes and other records necessary to accomplish the work, shall be neatly made. Such computations, survey notes and other records shall be made available to the Engineer upon request and shall become the property of the Owner and delivered to the Engineer in a timely manner.

The Contractor shall furnish, at his expense, all horizontal and vertical control and all staking and layout of construction work called for on the plans. The Engineer and Owner shall not be responsible for such work. However, the Owner and Engineer reserve the right to check all said lines, grades, and measurements with their appointed surveyor. Should the Owner's surveyor detect errors in said lines, grades, and measurements, the Contractor shall pay for all said surveying costs and subsequent surveying costs performed to correct and verify correction of errors found in said lines, grades and measurements. Definition of an error shall be a discrepancy of 1/4" or more. In the case of a discrepancy between the technical specifications and this defined tolerance, this tolerance shall govern.

Prior to the final cross-section survey of the work by the Contractor, the Contractor shall reestablish centerline or baseline points and stationing as required by the Engineer.

Any existing stakes, iron pins, survey monuments or other markers defining property lines which may be disturbed during construction shall be properly tied into fixed reference points before being disturbed and accurately reset in their proper position upon completion of the work.

Just prior to completion of the work, the Contractor shall reestablish, if necessary, and retie all control points as permanently as possible and to the satisfaction of the Engineer.

104-3.2 CROSS SECTIONAL DATA FOR PAYMENT. The Contractor shall be required to submit cross sectional or Digital Terrain Model (DTM) data to the Engineer at monthly intervals prior to the Contractor submittal of the monthly application for payment so that the Engineer can verify the quantities of earthwork and other pay item volumes for payment. All cross sectional data provided will be in AutoCAD Civil 3D 2014 or higher format only. No other formats will be accepted. If the data is submitted in another format other than AutoCAD, no earthwork or other materials volumes will be calculated and approved for payment.

104-3.3 AUTOMATED MACHINE GUIDANCE. If the Contractor elects to use Global Positioning System (GPS) machine control grading, a work plan including, but not limited to, proposed equipment, control software, types of work to be completed and methods shall be submitted to the Engineer for approval. The use of this technology is referenced as Automated Machine Guidance (AMG). All equipment using AMG shall be able to generate end results that meet the requirements of the specifications. The Contractor shall be responsible for developing a Digital Terrain Model (DTM) of the design surfaces for use with the AMG equipment. The DTM shall be submitted to the Engineer for review and approval prior to beginning work. Perform test sections for each type of work to be completed with AMG to demonstrate that the system has the capability to achieve acceptable results. If acceptable results cannot be achieved, conform to the requirements for conventional stakeout. The Contractor shall be responsible for all errors resulting from the use of AMG and shall correct deficiencies to the satisfaction of the Engineer at no cost to the Owner.

104-3.4 PRE-CONSTRUCTION SURVEYS. The Contractor shall be required to survey and confirm existing field conditions prior to beginning construction in each work area. Confirmation of existing conditions shall include, but is not limited to, drainage structure locations, elevations and invert, pipe invert, existing ground elevations, existing pavement elevations where the proposed work will tie into, existing utility locations and elevations, and any other existing features and conditions that may impact the proposed construction. The contractor shall notify the Engineer of any discrepancies that are found in the existing conditions compared to the information contained in the plans prior to beginning work in each work area.
METHOD OF MEASUREMENT

104-4.1 Survey and Stakeout shall be measured for payment on a lump sum basis.

BASIS OF PAYMENT

104-5.1 Payment for Survey and Stakeout shall be made at the contract lump sum price. This price shall include the cost of furnishing all labor, equipment, instruments and all other material necessary to satisfactorily complete this item. Partial payments will be made at the discretion of the Engineer as the work progresses based generally on the percentage of actual work completed compared to the total construction cost.

Payment will be made under:

Item G-104-5.1 Project Survey and Stakeout -- Per Lump Sum.

TESTING REQUIREMENTS

104-6.1 None.

END OF ITEM G-104
This page intentionally left blank.
ITEM G-105
TEMPORARY CONSTRUCTION ITEMS

DESCRIPTION

105-1.1 This item consists of furnishing all labor, materials and equipment for temporary construction items necessary for the safe and proper execution of work not otherwise included in other contract bid items. The Contractor will be expected to supply and utilize the temporary construction items listed below and other items contained in the plans and specifications. Temporary construction items to be provided may include, but are not limited to, the following: construction flag persons, portable floodlighting, steel plates for temporary covering of excavations and structures, construction barricades, test pits, vacuum trucks and sweepers, portable bathroom facilities, waste disposal containers and runway/taxiway closure markers.

MATERIALS

105-2.1 Construction Barricades. Construction barricades shall be constructed in accordance with the details shown in the plans and shall be placed in accordance with the phasing plans and as directed by the Engineer.

105-2.2 Portable Floodlighting. Portable floodlighting shall be provided, as required, for construction that must occur during nighttime operations. The Contractor shall provide sufficient units so that all work areas are illuminated to a level of 5 horizontal footcandles. The lighting levels shall be calculated and measured in accordance with the current standards of the Illumination Engineering Society. Lights shall be positioned in such a way that they do not impact air traffic control operations.

105-2.3 Steel Plates. Steel plates of adequate size and thickness shall be furnished as necessary to cover temporary excavations, unfinished structures or surfaces requiring protection or for safety purposes. Plates shall be securely fastened down and shall be adequate to safely support any anticipated loadings to be imposed.

105-2.4 Lighted Runway Closure Markers. Two (2) lighted runway closure markers meeting the requirements of FAA AC 150/5370-2 shall be provided by the Contractor as necessary for the duration of the construction. The Contractor shall maintain the markers during construction, replace any worn parts, keep them fueled and maintain all oil levels, filters, etc. required to keep them running in good working order. The Contractor shall retain possession of the lighted closure markers upon contract completion.

105-2.5 Vacuum Trucks. A vacuum truck(s) shall be provided by the Contractor to vacuum haul routes and other pavement areas traversed by construction vehicles and equipment. These areas shall be kept clean and free of mud, dirt, debris and other FOD to the satisfaction of the Engineer.

105-2.6 Other Miscellaneous Items. Any other items not listed herein but which are associated directly or indirectly with temporary construction related work shall, by reference, be included in the requirements of this specification. No additional payment will be made for any temporary construction related item not specifically listed herein. The Contractor shall be responsible for providing any and all items necessary to ensure a safe, secure and functioning project construction site.

CONSTRUCTION METHODS

105-3.1 Construction Barricades. Barricades shall be placed around each phase of the work in accordance with the phasing plans and shall remain in place until completion of work in each phase.
105-3.2 Flaggers. Flaggers shall be provided, as necessary, to control the Contractor's traffic during the prosecution of work. All Contractor vehicles or equipment that are required to cross active airfield pavement or safety areas shall do so under the direct control of a competent flagger.

105-3.3 Portable Floodlighting. Portable floodlighting is required for construction during periods of limited visibility (i.e., nighttime). Illumination requirements shall be those contained in Paragraph 105-2.2.

METHOD OF MEASUREMENT

105-4.1 No direct measurement will be made for this item. Payment will be made on a lump sum basis.

BASIS OF PAYMENT

105-5.1 Payment will be made at the lump sum bid price for Temporary Construction Items. This payment shall be full compensation for furnishing all materials and labor for placing, moving and removing construction barricades and steel plates, providing flaggers, furnishing portable floodlighting, test pitting, and for any other labor, materials, equipment, tools and incidentals necessary for temporary items required for construction of this work.

Partial payments will be allowed as follows:

a. With first pay request, 25%.

b. When 25% or more of the original contract is earned, an additional 25%.

c. When 50% or more of the original contract is earned, an additional 40%.

d. After Final Inspection, Staging area clean-up and delivery of all Project Closeout materials as required by Section 90-11 of the General Provisions, the final 10%.

* The Percent of Contract Amount Earned equals the work completed to date (including the total of all previous mobilization) plus or minus work completed associated with executed change orders, if any, divided by the Total Original Contract Amount plus or minus the Total Executed Change Order Amounts, if any.

Payment will be made under:

- Item G-105-5.1 Temporary Construction Items - Per Lump Sum.

TESTING REQUIREMENTS

105-6.1 None.

END OF ITEM G-105
ITEM G-106
REMOVAL OF PAINTED PAVEMENT MARKING

DESCRIPTION

106-1.1 General. This item shall consist of furnishing all labor, materials and equipment required for the removal of pavement markings from asphalt and concrete surfaces, which are identified to be removed, including the removal of temporary painted pavement markings installed under this contract, as directed by the Engineer.

The existing paint is known to be thick, in areas, from many years of repainting activities. In other locations indicating paint removal, a majority of the paint marking has deteriorated, leaving minimal paint to be removed. The Contractor shall inspect the conditions of the markings and provide a comprehensive plan to remove the markings without damaging the pavement, which may include multiple steps or processes to complete the removal.

EQUIPMENT

106-2.1 Equipment, tools and machines used in the performance of the removal operation shall be safe and in satisfactory working condition at all times. The Contractor shall provide satisfactory evidence that the Contractor's equipment has been used in the performance of similar work. This removal operation shall be accomplished with ultra-high pressure water blasting, or grinding. Milling and sandblasting are prohibited for the removal of either temporary or permanent markings on finished pavement surfaces. The use of chemicals will also not be permitted.

106-2.2 General. The allowable methods for paint removal may include grinding and/or water blasting or a combination of multiple methods. The combination of equipment used may be different for asphalt vs. concrete surfaces and must not damage the pavement surface. The Contractor shall submit a description of the types and quantity of equipment proposed for this project. The Contractor shall submit a qualification statement indicating length of time the company has been performing paint removal on airfields and references from airports that a similar method was used.

106-2.3 Water Blasting. The water blasting equipment shall be truck mounted and shall be capable of water pressures of 2,000 to 40,000 psi. Operating pressures during paint removal shall be above 20,000 psi to prevent a hydraulic effect from the force of the water on the pavement. The equipment shall be capable of adjusting the pressure to accomplish paint removal without damaging the paving surface. The equipment shall be capable of following a straight line and be maneuverable to accommodate various pavement markings. The spray width needs to be able to accommodate lines from 4-inches to 8-inches wide. If water blasting is used to remove lines on active airfield pavements, a vacuum system will be provided to allow for timely repainting and the prevention of any debris being ingested into propellers or turbine engines once the water blasting equipment has exited the active pavements. Water Blasting equipment similar to the Stripe Hog SH8000, manufactured by Waterblasting Technologies, is preferred for these operations. Water blasting equipment shall be limited to use on concrete pavements only. Water blasting may be permitted on asphalt pavements to remove the top layers of paint only if it can be demonstrated that the water jets will not damage the asphalt.

106-2.4 Grinding. The grinding equipment may be hand operated or mounted on a skid steer or other motorized vehicle. Adjustable skids or other means to control the depth of the grinding shall be used to prevent excessive grinding depths. Grinding equipment shall be subject to approval by the engineer. Grinding equipment to be used on concrete pavements shall be used to remove the top most layers of paint, with clean up by water blasting methods. Grinding may be acceptable for full removal of pavement markings should a light grind texture be left behind. Test sections shall be performed for acceptance by the Engineer.
PERFORMANCE

106-3.1 Test Strip. The Contractor shall perform a test strip for each different pavement type and removal process used to demonstrate the ability of the equipment to do the work, ability of the operator to run the equipment and the degree of paint removal that will be satisfactory.

106-3.2 Cleanup and Restoration. The pavement surface shall be thoroughly cleaned during and after the pavement marking removal process. Dust control is imperative during removal and cleanup operations due to the proximity of the terminal building. Methods to prevent dust generation will need to be employed. Subsequent to water blasting, the pavement surface shall be flushed with high-pressure water (via water truck or similar) to remove the debris from the surface to be re-painted. Subsequent to grinding, the surface shall be vacuumed, swept and blown with compressed air to adequately remove all dust particles left on the pavement surface. Cleaning with water may be required to remove residual grit if the compressed air cannot clean the surface adequately.

Vacuum trucks alone are not sufficient means to remove all the debris and dust left after the removal process, however should be used to reduce the amount of dust generated.

106-3.3 The Contractor shall furnish all equipment, water trucks and labor for delivery of water to the job site. Water is available for the Contractor's use from hydrants on airport property as identified on the plans. If the Contractor chooses to use water from this source, he shall attach a water meter to the hydrant(s). The Contractor shall obtain all permits, pay all fees and provide to the Engineer the written approval of the authority having jurisdiction over the water source that all requirements for its use have been met.

106-3.2 The removal method applied to the surface shall not be damaging to Portland cement or asphaltic concrete surfaces, joint sealing material or light fixtures. The Contractor shall place re-bar or similar material in the concrete joints to prevent damage to the joint sealant when removing paint, when the joint sealant is to remain in place or if damage to the joint face occurs during removal. If it is deemed by the Engineer that damage to any existing facility is caused by an operational error, such as permitting a pressure water jet to dwell in one location for an extensive time, the Contractor shall repair said damage without additional compensation from the Owner. The Contractor shall cover or protect light fixtures within the removal area. Any damage to light fixtures or lenses shall be repaired at the Contractor's expense.

The removal methods shall result in a scar of no more than 1/8-inch deep on asphalt pavements and no more than 1/16-inch deep on concrete pavements. Water removal shall not allow the jets to penetrate into the pavement structure, thereby dislodging fines around large aggregate.

106-3.3 Paint removal shall be defined as the removal of the existing markings at the degree specified in the table below. The degree of removal will be determined by the Engineer by visual inspection.

<table>
<thead>
<tr>
<th>Type of Marking Removal</th>
<th>Degree of Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markings not to be Remarked</td>
<td>90% to 100%</td>
</tr>
<tr>
<td>Markings to be remarked in same location</td>
<td>85% to 95%</td>
</tr>
</tbody>
</table>

106-3.4 The removal method used shall not materially damage the structural integrity of the pavement. Any damage caused by the Contractor's operations shall be corrected at the Contractor's expense and in a manner approved by the Engineer. The Contractor shall take precautions to protect the public from any damage due to his operations. Accumulation of sand, water, dust, or other residue resulting from the removal operation shall be removed as the work progresses and legally disposed of off airport property.
METHOD OF MEASUREMENT

106-4.1 The quantity of Pavement Marking Obliteration (removal) to be paid shall be the number of square feet of pavement marking obliteration (removal), regardless of the method or number of methods required to remove the markings and shall be in accordance with the specifications and accepted by the Engineer. Multiple operations to remove the same marking will not be measured separately.

BASIS OF PAYMENT

106-5.1 Payment shall be at the contract unit price per square foot for Pavement Marking Obliteration. The price shall be full compensation for furnishing all materials and for all labor, equipment, tools and incidentals necessary to complete the item.

Payment will be made under:

Item G-106-5.1 Pavement Marking Obliteration -- Per Square Foot

TESTING REQUIREMENTS

106-6.1 None.

END OF ITEM G-106
This page intentionally left blank.
ITEM G-109 SAWCUTTING

DESCRIPTION

109-1.1 This work shall consist of sawcutting the edge of existing portland cement and/or asphaltic concrete pavements to provide a uniform joint alignment in sound material, as shown on the Plans or as directed by the Engineer.

EQUIPMENT

109-2.1 Saws shall be power-driven, self-propelled, wheel or track-mounted, and capable of cutting to a depth of at least three (3) inches in one pass. The Contractor shall make the necessary number of passes to cut through the portland cement and/or bituminous concrete pavement. The use of a cutting wheel mounted on a roller, grader or similar equipment, or the use of pneumatically driven hand-held tools, will only be approved if the Contractor can demonstrate to the satisfaction of the Engineer that such equipment can consistently produce satisfactory results. Multi-blade arbor saws shall be used to construct sealant reservoirs.

CONSTRUCTION METHODS

109-3.1 The Contractor shall establish the line to be cut using chalkline or similar means in accordance with the details shown on the Plans or as directed by the Engineer. The finished cut shall be true to line, smooth and vertical and shall not deviate from the established line more than 1/2-inch from side to side or end to end of the pavement being sawcut.

109-3.2 The existing paving material beyond the saw cut on the construction side shall be removed to the depth of the final cut and disposed of legally off Airport property. The saw cut depth shall be full depth so that spalling or other breakage of the existing pavement along the bottom of the pavement does not occur. If spalling or other breakage of the existing pavement along the bottom of the pavement does occur, the Contractor shall relocate the saw cut line to a point deeper in the existing pavement to remove completely any spalled or broken pavement so that the subbase under the existing pavement is not damaged and the new pavement can be constructed up against the existing pavement without either the new or existing pavement strength and pavement section being compromised.

109-3.3 All dust, chips, slurry, or waste material shall be carefully collected and removed from the site in accordance with the general safety requirements of the Contract and disposed of legally off the airport property.

METHOD OF MEASUREMENT

109-4.1 The quantity of Sawcutting along the abutment of pavements designated to remain shall be measured for payment per linear foot of sawcutting completed. All other sawcutting that the contractor may elect to complete as part of the demolition process shall not be measured for payment, and shall be considered incidental to the removal.

BASIS OF PAYMENT

109-5.1 Payment shall be made at the contract price per linear foot for sawcutting at the abutment of pavements designated to remain. This price shall fully compensate the contractor for furnishing all materials, equipment and for all preparation, clean-up, labor and incidentals to complete the item.

No separate payment will be made for any other sawcutting the contractor may elect to complete as part of the demolition process or required for phasing. The cost of these incidental sawcuts shall be considered incidental to installation of the various other elements included in the project.
Payment will be made under:

Item G-109-5.1 Pavement Sawcutting (Concrete) - per linear foot
Item G-109-5.2 Pavement Sawcutting (Asphalt) - per linear foot

TESTING REQUIREMENTS

109-6.1 None.

END OF ITEM P-109
ITEM G-112
CONSTRUCTION SCHEDULES

DESCRIPTION

112-1.1 The work specified in this item consists of procedures for preparation and submittal of Construction Progress Schedules and periodic updating that will be used for coordination, monitoring, and payment of all work under the Contract.

The Contractor's timely performance of all construction related activities shall be in compliance with the approved Project Schedule, however, means and methods of construction in accordance with the Contract Documents shall remain the sole responsibility of the Contractor.

FORMAT

112-2.1 Preparation of the progress schedules and associated updating shall be in a network analysis system using a computerized critical path method (CPM) such as Primavera Project Planner or Microsoft Project or Precedence Diagram Method (PDM) format such as P6. The software shall be capable of providing all requirements of this specification. Failure of the Contractor to meet all of the requirements of this specification shall result in the disapproval of the schedule. Reference Section 01325 Construction Schedules and 00701 FAA General Provisions, Section 80 for additional details and requirements associated with the submittal and performance of construction schedules.

CONTENT

112-3.1 The construction schedule shall include the level of detail defined herein. Failure to develop or update the construction schedule or provide data at the level of detail defined herein, shall result in the disapproval of the construction schedule. The overall project schedule shall be in the form of a time scaled precedence diagram and associated computer analysis and shall consist of detailed activities and their restraining relationships as required to complete the project from Notice-To-Proceed through completion of the work and shall indicate the following:

a. Show complete sequence of construction by activity, with dates for beginning, end date and duration in Calendar days for each element of construction (activities in occupied areas and activities requiring premium time shall be differentiated from each other and from the balance of project activities). These elements shall be based either on the unit bid items or the construction schedule of values.

b. Identify work items by major specification section number.

c. Identity of Contractor/Subcontractors for each work activity.

d. Provide activity code identity for each stage of work.

e. Specific location of each work activity per the Engineer’s phasing drawings or alternative location drawings approved by the Owner.

f. Detailed schedule of all “utility shut-downs” which could impact the Airport, airlines, tenants, and other building operations or functions including, but not limited to: power, telephone telecommunication systems, FAA facilities, domestic and fire hydrant water systems, and sanitary sewer systems.

g. Sequence and interdependence of all activities required for complete performance of all items of work under this contract.
h. All network restraints (restraining ties between activities which restrict the start or finish of another activity).

i. Fabrication and delivery activities for all equipment, including that furnished by the Owner, and materials to be installed during the project.

j. Dates for ordering long lead items (materials, equipment, or specialty shop fabricated work) should include but not be limited to submittals, approvals, procurement, fabrication and delivery.

k. When all permits (if required) will be submitted and anticipated dates when they will be in hand.

l. Provide submittal dates for shop drawings, product data and samples, including Owner or Agency furnished products, and dates submittals review will be required from the Engineer. Show decision dates for selection of finishes (if applicable). Provide schedule of shop drawings submittals within fourteen (14) days from the Notice to Proceed.

m. Changes in scope requiring a change order or field order must be identified in the schedule.

n. Submission and approval of Operational and Maintenance (O & M) manuals.

o. Submission and approval of as-built drawings.

p. Controls testing.

q. Performance Verification testing.

r. Other systems testing, if required.

s. Pre-final inspection.

t. Correction of punch list from pre-final inspection.

u. Final inspection.

v. Owner, Engineer and agencies activities that could impact progress shall be shown. These activities include but are not limited to: approvals, change order reviews, environmental testing or permitting approvals by any authority having jurisdiction, special inspections by others, utility tie-ins, Owner, government or agency furnished equipment and special phasing notice(s) to-proceed.

w. Other changes required due to delays in completion of any activity or group of activities that include: 1) delays beyond the Contractor’s control, such as strikes and unusual weather, 2) delays encountered due to submittals, government or Owner activities, deliveries or work stoppages which make re-planning the work necessary, 3) changes required to correct a schedule which does not represent the actual or planned prosecution and progress of the work.

The critical path for the entire project shall be clearly shown on the initial and all updated construction schedules.

Submit with the new or updated construction schedule, a color aerial photograph of the project site taken at low altitude to show sufficient detail to identify the project progress on a monthly basis. The aerial can either be overhead or an angled bird’s eye view.

Actual start and finish dates shall not be automatically updated by default mechanisms that may be included in CPM scheduling software systems. Actual start and finish dates on the CPM schedule shall match those dates provided by the Contractor and verified by the Engineer as work is completed. Failure
of the Contractor to document the actual start and finish dates on the schedule shall result in the disapproval of the Contractor’s schedule and the inability of the Engineer and Owner to evaluate the Contractor’s progress for payment purposes. Updating of the percent complete and the remaining duration of any activity shall be independent functions. Program features which calculate one of these parameters from the other shall be disabled.

Appropriate advance notice to tenant(s) is required prior to start of work in occupied or used tenant spaces.

The Contractor shall also provide the following information: work days per week, holidays, number of shifts per day, number of hours per shift, number of prime time work hours, proposed schedule of “utility shut-downs”, special equipment or machinery to be used, and list of work activities which must be performed during restricted or special working hours including night work.

Long-term construction activities shall be broken down into reasonable smaller activities that can be easily evaluated and understood.

The schedule shall be sufficiently detailed to track the progress of each activity and the project, as a whole, on a daily basis. The activities shall be clearly described so that the work is readily identifiable. The progress of each activity is to be reasonable and based on either the amount of bid item quantities involved or value of the project schedule of values. When added together, the dollar value of all activities shall equal the Contract.

The precedence diagram submitted by the Contractor shall be drawn in the format approved by the Owner and shall be accompanied by a computer generated and plotted schedule utilizing the software identified in Section 112-2.1. The Contractor shall exercise sufficient care to produce clear, legible, and accurate diagrams. The Contractor shall group activities related to specific physical areas on the diagram for ease of understanding and simplification.

The schedule shall be sufficiently detailed to track the progress of each activity and the project, as a whole, on a daily basis. The activities shall be clearly described so that the work is readily identifiable. The progress of each activity is to be reasonable and based on either the amount of bid item quantities involved or value of the project schedule of values. When added together, the dollar value of all activities shall equal the Contract.

The Engineer will review the overall project schedule for compliance with the Contract requirements as to staging, phasing, and the time of completion. Such review and acceptance of these schedules does not imply either the Engineer’s or the Owner’s endorsement and/or responsibility of each and every activity duration or sequence of activities.

The duration of the overall project schedule shall be in agreement with the duration of the Contract as stipulated in the Bid Schedule, or as modified by the Contract provisions described in these Contract Documents.

In the event the Contractor requests an extension of the contract completion date, or any interim milestone date, the Contractor shall furnish the following for a determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract: 1) justification, project schedule data, and supporting evidence as the Engineer and Owner may deem necessary, 2) submission of proof of delay, based on revised activity logic, duration and costs (updated to the specific date that the delay occurred) is obligatory to any approvals. The construction schedule shall clearly display that the Contractor has used, in full, all of the float time available for the work involved with this request. The Engineer and Owner’s determination as to the number of allowable days of contract time extension shall be based upon the construction schedule updates in effect for the time period in question, and other factual information as required elsewhere in the contract documents. Actual delays that are found to be caused by the Contractor’s own actions, which result in the extension of the schedule, will not be a cause for a time extension to the contract completion date.

CONSTRUCTION PROGRESS REPORT

112-4.1 As part of the monthly updating process, the Contractor shall prepare a construction progress report describing the physical progress during the report period, plans for the forthcoming report period,
actions to correct any negative float predictions, and potential delays and problems and their estimated impact on performance, and the overall project completion date.

a. Clearly describe all approved revisions to the accepted overall project schedule for that period.

b. Report actual progress by updating the mathematical analysis for the accepted overall project schedule.

c. Show tasks/activities, or portions of activities completed during the reporting period, and actual quantities installed.

d. State the percentage of work actually completed as of the report date, and the progress along the critical path in terms of days ahead of or days behind the allowable dates.

e. Report progress along other paths with negative float, if the work is behind schedule.

f. Include a narrative report that describes, but is not necessarily limited to:

(1) Description of the problem areas, current and anticipated; List of delaying factors and their impact;

(2) Explanation of corrective actions taken or proposed.

g. Describe plans/actions for the next report period.

h. Attach the monthly aerial photograph of the construction site.

SCHEDULE REVISIONS

112-5.1 The overall project schedule shall be revised from time to time as conditions may require, however, nothing in this specification shall be construed to authorize or approve any extension of time or increase in Contract price, it being expressly understood and agreed that time extensions or increase in contract price, if any, may only be granted in accordance with the applicable requirements of the Contract Documents. Any further revisions to the overall project schedule durations, restrictions, lags or any other logic or cost related components of the schedule must be accepted, in writing, by the Owner.

The Contractor may make only those revisions to the construction schedule as are accepted in advance by the Owner. In the event of a revision, the Contractor shall make certain that not more than one activity shall have the same activity identification number. The activity numbers of deleted activities shall not be used again.

Changes to the Contract by Change Order are to be included in the overall project schedule.

Once the changes are accepted, the Contractor’s schedule revisions shall be incorporated into the previously accepted overall project schedule with the same force as the original schedule. It is understood that should the Contractor fall behind in the schedule and not be entitled to any time extension other than the extension already reflected, the Contractor shall submit his plan for bringing his work back up to schedule and shall implement the plan. If other measures are not sufficient to make up the lag, the Contractor’s plan and implementation thereof shall include increasing the number of workers, shifts, days of work, and/or instituting or increasing overtime, all at no additional cost to the Owner.

SCHEDULE SUBMITTALS

112-6.1 To facilitate and enhance the use of Contractor provided scheduling and cost related information required by the Contract Documents, the Contractor shall utilize one of the software programs defined in
Section 112-2.1 and provide the following:

a. Initial Baseline Schedule Submittal. The overall project schedule submittal (all activities required for the entire contract) shall be submitted within fourteen (14) calendar days after notice to proceed (NTP) or at the Preconstruction Conference whichever is earliest. Submit a hard copy of the overall project schedule with detailed predecessor and successor analysis. Submit three (3) color copies of the schedule and an electronic version for Engineer's and Owner's use.

b. Monthly Update Submittals. The overall project schedule shall be updated at least monthly starting at the first monthly contractor progress payment request and continuing for the remainder of the project. This monthly update shall generate a report that will indicate the remaining duration along with a schedule and percent complete for each activity. This report together with the monthly sorts, organized by bid items, will act as the basis for the Contractor's requests for partial payment and shall be submitted with it. No payment will be made to the Contractor without an approved updated schedule accompanying each contractor progress payment request.

c. Submit one hard copy and an electronic copy with each of the above submittals, containing the files used to generate the above reports, and the current overall project schedule.

d. Contractor is solely responsible for the preparation, revision and updating of the overall project schedule in the form and content prescribed within this Item G-112 Construction Schedules.

e. The timely execution or performance of all construction related activities and the duration and sequencing of those activities in accordance with the approved project schedule is the Contractor's sole responsibility.

METHOD OF MEASUREMENT

112-7.1 The acquisition of software and the development, updating, revising and submittal of schedules or progress reports will not be measured for payment.

BASIS OF PAYMENT

112-8.1 No separate payment will be made for Construction Schedules. The cost of the work described in this item shall be considered incidental to the various other elements included in the project. Lack of an approved construction schedule will result in an inability of the Engineer and Owner to adequately evaluate the progress for the purposes of payment. Failure of the Contractor to provide all information, as specified above, shall result in the disapproval of the entire construction schedule submission and the inability of the Engineer and Owner to evaluate Contractor progress for payment purposes.

Although there is no direct payment for the development and maintenance of the schedule, the schedule is a requirement of Section 100-04 PROJECT PROGRESS SCHEDULE of the General Provisions. As quality is a requirement of all items of the contract, if the project schedule is not maintained in a satisfactory manner, all items of work will be considered incomplete and no payment can or will be made for any item until such time as the schedule is current and approved.

TESTING REQUIREMENTS

112-9.1 None.

END OF ITEM G-112
This page intentionally left blank.
Item P-101
SURFACE PREPARATION

DESCRIPTION
101-1.1 This item shall consist of preparation of existing pavement surfaces for overlay, surface treatments, removal of existing pavement, and other miscellaneous items. The work shall be accomplished in accordance with these specifications and the applicable drawings.

EQUIPMENT
101-2.1 All equipment shall be specified here and in the following paragraphs or approved by the Engineer. The equipment shall not cause damage to the pavement to remain in place.

CONSTRUCTION
101-3.1 Removal of existing pavement.

a. Concrete pavement. The existing concrete pavement to be removed shall be freed from the pavement to remain by sawing through the complete depth of the slab one foot inside the perimeter of the final removal limits or outside the dowels, whichever is greater when the limits of removal are located on the joints. The pavement between the perimeter of the pavement removal and the saw cut shall be carefully broken up and removed using hand-held jackhammers, weighing 30 pounds or less, or other light-duty equipment which will not cause distress in the pavement which is to remain in place. The Contractor shall have the option of sawing through the dowels at the joint, removing the pavement and installing new dowels. Where the perimeter of the removal limits is not located on the joint and there are no dowels present, then the perimeter shall be saw cut the full depth of the pavement. The pavement inside the saw cut shall be removed by methods suitable to the Engineer which will not cause distress in the pavement which is to remain in place. If the material is to be wasted on the airport site, it shall be reduced to a maximum size designated by the Engineer. The Contractor’s removal operation shall not cause damage to cables, utility ducts, pipelines, or drainage structures under the pavement. Concrete slabs that are damaged by under breaking shall be removed. Any damage shall be repaired at the Contractor’s expense.

b. Asphalt concrete pavement. Asphalt concrete pavement to be removed shall be cut to the full depth of the bituminous material around the perimeter of the area to be removed. The pavement shall be removed so the joint for each layer of pavement replacement is offset 1 foot from the joint in the preceding layer.

c. Where only a portion of the existing pavement is to be demolished, special care shall be exercised to avoid damage to that portion of the pavement to remain in place. The existing pavement shall be cut to the neat lines shown on the plans or established by the Engineer, and any existing pavement beyond the neat lines so established which is damaged or destroyed by these operations shall be replaced at the Contractor's expense with no additional compensation from the Owner.

d. In the event the demolished portland cement concrete and/or bituminous concrete pavements are used either as recycled asphalt pavement (RAP) or pavement that will be crushed and utilized as base or subbase material on the project, the cost for removal and operations performed to reuse the demolished pavements shall be included in the unit prices for which the material will be used.
101-3.2. Preparation of asphalt pavement surfaces. Existing asphalt pavements indicated to be treated with a surface treatment shall be prepared as follows:

a. Patch asphalt pavement surfaces that have been softened by petroleum derivatives or have failed due to any other cause. Remove damaged pavement to the full depth of the damage and replace with new asphalt concrete similar to that of the existing pavement in accordance with paragraph 101-3.2.

b. Remove oil or grease that has not penetrated the asphalt pavement by scraping or by scrubbing with a detergent, then wash thoroughly with clean water. After cleaning, treat these areas with an oil spot primer.

c. Clean pavement surface immediately prior to placing the surface treatment by sweeping, flushing well with water leaving no standing water, or a combination of both, so that it is free of dust, dirt, grease, vegetation, oil or any type of objectionable surface film.

101-3.3 Maintenance. The Contractor shall perform all maintenance work necessary to keep the pavement in a satisfactory condition until the full section is complete and accepted by the Engineer. The surface shall be kept clean and free from foreign material. The pavement shall be properly drained at all times. If cleaning is necessary or if the pavement becomes disturbed, any work repairs necessary shall be performed at the Contractor’s expense.

METHOD OF MEASUREMENT

101-4.1 Pavement removal. The unit of measurement for pavement removal shall be the number of square yards removed by the Contractor. Any pavement removed outside the limits of removal because the pavement was damaged by negligence on the part of the Contractor shall not be included in the measurement for payment.

BASIS OF PAYMENT

101-5.1 Payment. Payment shall be made at contract unit price for the unit of measurement as specified above. This price shall be full compensation for furnishing all materials and for all preparation, hauling, and placing of the material and for all labor, equipment, tools, and incidentals necessary to complete this item.

Item P 101-5.1 Portland Cement Concrete Pavement Demolition -- per square yard
Item P 101-5.2 Bituminous Concrete Pavement Demolition -- per square yard
Item P-101-5.3 Haul Road Repair Preparation (Milling, Crack Sealing, and Tack Coat) -- per square yard

MATERIAL REQUIREMENTS

END OF ITEM P-101
Item P-152
EXCAVATION, SUBGRADE, AND EMBANKMENT

DESCRIPTION

152-1.1 This item covers excavation, disposal, placement, and compaction of all materials within the limits of the work required to construct safety areas, runways, taxiways, aprons, and intermediate areas as well as other areas for drainage, building construction, parking, or other purposes in accordance with these specifications and in conformity to the dimensions and typical sections shown on the plans.

152-1.2 Classification. All material excavated shall be classified as defined below:

a. Unclassified excavation. Unclassified excavation shall consist of the excavation and disposal of all material, regardless of its nature which is not otherwise classified and paid for under one of the following items or classified and paid for under other specification items in this contract. Unclassified excavation shall include the placement of the excavated materials at an approved and designated waste area on-site in successive lifts at the required compaction levels indicated herein.

b. Rock excavation. Rock excavation shall include all solid rock in ledges, in bedded deposits, in unstratified masses, and conglomerate deposits which are so firmly cemented they cannot be removed without blasting or using rippers. All boulders containing a volume of more than 1/2 cubic yard (0.4 m3) will be classified as “rock excavation.”

c. Muck excavation. Muck excavation shall consist of the removal and disposal of deposits or mixtures of soils and organic matter not suitable for foundation material. Muck shall include materials that will decay or produce subsidence in the embankment. It may consist of decaying stumps, roots, logs, humus, or other material not satisfactory for incorporation in the embankment.

d. Drainage excavation. Drainage excavation shall consist of all excavation made for the primary purpose of drainage and includes drainage ditches, such as intercepting, inlet or outlet ditches; temporary levee construction; or any other type as shown on the plans.

e. Borrow excavation. Borrow excavation shall consist of approved material required for the construction of embankments or for other portions of the work in excess of the quantity of usable material available from required excavations. Borrow material shall be obtained from areas designated by the Engineer within the limits of the airport property but outside the normal limits of necessary grading, or from areas outside the airport boundaries.

152-1.3 Unsuitable excavation. Any material containing vegetable or organic matter, such as muck, peat, organic silt, or sod shall be considered unsuitable for use in embankment construction. Material, suitable for topsoil may be used on the embankment slope when approved by the Engineer.

152-1.4 Contaminated Material. All borrow material shall be naturally occurring and originate from a source that has not been impacted from any known environmental concern, industrial process, or other uncontrolled activities such as, but not limited to, emergency responses, hazardous material incidents or discharges of any regulated/adverse chemical compounds. The borrow material shall be free of any industrial waste, sanitary waste, household waste or solid waste, and shall not exhibit any signs of sludge, staining, pitting, strong pungent noxious odors, non-aqueous phase liquids, foreign debris, or other pollutants.

CONSTRUCTION METHODS

152-2.1 General. Before beginning excavation, grading, and embankment operations in any area, the area shall be completely cleared and grubbed in accordance with Item P-151 and stripped in accordance with T-905.
The suitability of material to be placed in embankments shall be subject to approval by the Engineer. All unsuitable material shall be disposed of in waste areas shown on the plans or disposed of legally off airport property by the Contractor. All waste areas shall be graded to allow positive drainage of the area and of adjacent areas. The surface elevation of waste areas shall not extend above the surface elevation of adjacent usable areas of the airport, unless specified on the plans or approved by the Engineer.

When the Contractor’s excavating operations encounter artifacts of historical or archaeological significance, the operations shall be temporarily discontinued and the Engineer notified per subsection 70-20. At the direction of the Engineer, the Contractor shall excavate the site in such a manner as to preserve the artifacts encountered and allow for their removal. Such excavation will be paid for as extra work.

Those areas outside of the limits of the pavement areas where the top layer of soil material has become compacted by hauling or other Contractor activities shall be scarified and disked to a depth of 4 inches, to loosen and pulverize the soil.

If it is necessary to interrupt existing surface drainage, sewers or under-drainage, conduits, utilities, or similar underground structures, the Contractor shall be responsible for and shall take all necessary precautions to preserve them or provide temporary services. When such facilities are encountered, the Contractor shall notify the Engineer, who shall arrange for their removal if necessary. The Contractor, at his or her expense, shall satisfactorily repair or pay the cost of all damage to such facilities or structures that may result from any of the Contractor’s operations during the period of the contract.

152-2.2 Excavation. No excavation shall be started until the work has been staked out by the Contractor and the Engineer has obtained from the Contractor, the survey notes of the elevations and measurements of the ground surface. All areas to be excavated shall be stripped of vegetation and topsoil. Topsoil shall be stockpiled for future use in areas designated on the plans or by the Engineer. All suitable excavated material shall be used in the formation of embankment, subgrade, or other purposes shown on the plans. All unsuitable material shall be disposed of as shown on the plans.

When the volume of the excavation exceeds that required to construct the embankments to the grades indicated, the excess shall be used to grade the areas of ultimate development or disposed as directed by the Engineer. When the volume of excavation is not sufficient for constructing the embankments to the grades indicated, the deficiency shall be obtained from borrow areas.

The grade shall be maintained so that the surface is well drained at all times. When necessary, temporary drains and drainage ditches shall be installed to intercept or divert surface water that may affect the work.

a. Selective grading. When selective grading is indicated on the plans, the more suitable material designated by the Engineer shall be used in constructing the embankment or in capping the pavement subgrade. If, at the time of excavation, it is not possible to place this material in its final location, it shall be stockpiled in approved areas so that it can be measured for payment as specified in paragraph 152-3.3.

b. Undercutting. Rock, shale, hardpan, loose rock, boulders, or other material unsatisfactory for safety areas, subgrades, roads, shoulders, or any areas intended for turf shall be excavated to a minimum depth of 12 inches below the subgrade or to the depth specified by the Engineer. Muck, peat, matted roots, or other yielding material, unsatisfactory for subgrade foundation, shall be removed to the depth specified. Unsuitable materials shall be disposed of at locations shown on the plans or disposed off the airport. The cost is incidental to this item. This excavated material shall be paid for at the contract unit price per cubic yard for unclassified excavation. The excavated area shall be backfilled with suitable material obtained from the grading operations or borrow areas and compacted to specified densities. The necessary backfill will constitute a part of the embankment. Where rock cuts are made, backfill with select material. Any pockets created in the rock surface shall be drained in accordance with the details shown on the plans.

Material that is high in moisture content and which yields under proof rolling does not necessarily constitute an unsuitable material. The Contractor is required to manipulate and dry the material. If the material is classified as unsuitable material, then the Contractor shall remove the material to the depth directed by the Engineer but not greater than 3-feet below subgrade. The backfill of such areas shall not begin until the volume of the unsuitable excavation is determined by cross sections or other means.
acceptable to the Engineer. The backfill shall be accomplished in accordance with the embankment requirements contained in this specification. The backfill material may consist of borrow excavation, unclassified excavation or select backfill or other materials acceptable to the Engineer.

c. **Overbreak.** Overbreak, including slides, is that portion of any material displaced or loosened beyond the finished work as planned or authorized by the Engineer. All overbreak shall be graded or removed by the Contractor and disposed of as directed by the Engineer. The Engineer shall determine if the displacement of such material was unavoidable and his or her decision shall be final. Payment will not be made for the removal and disposal of overbreak that the Engineer determines as avoidable. Unavoidable overbreak will be classified as “Unclassified Excavation.”

d. **Removal of utilities.** The removal of existing structures and utilities required to permit the orderly progress of work will be accomplished by someone other than the Contractor; for example, the utility unless otherwise shown on the plans. All existing foundations shall be excavated at least 2 feet below the top of subgrade or as indicated on the plans, and the material disposed of as directed by the Engineer. All foundations thus excavated shall be backfilled with suitable material and compacted as specified.

e. **Compaction requirements.** The subgrade under areas to be paved shall be compacted to a depth of 12-inches and to a density of not less than 95 percent of the maximum density as determined by ASTM D 1557. The material to be compacted shall be within ±2% of optimum moisture content before being rolled to obtain the prescribed compaction (except for expansive soils).

The in-place field density shall be determined in accordance with ASTM D6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. Stones or rock fragments larger than 4 inches in their greatest dimension will not be permitted in the top 6 inches of the subgrade. The finished grading operations, conforming to the typical cross-section, shall be completed and maintained at least 1,000 feet ahead of the paving operations or as directed by the Engineer.

All loose or protruding rocks on the back slopes of cuts shall be pried loose or otherwise removed to the slope finished grade line. All cut-and-fill slopes shall be uniformly dressed to the slope, cross-section, and alignment shown on the plans or as directed by the Engineer.

Blasting shall not be allowed if blasting is approved, the Contractor shall employ a vibration consultant, approved by the Engineer, to advise on explosive charge weights per delay and to analyze records from seismograph recordings. The seismograph shall be capable of producing a permanent record of the three components of the motion in terms of particle velocity, and in addition shall be capable of internal dynamic calibration.

In each distinct blasting area, where pertinent factors affecting blast vibrations and their effects in the area remain the same, the Contractor shall submit a blasting plan of the initial blasts to the Engineer for approval. This plan must consist of hole size, depth, spacing, burden, type of explosives, type of delay sequence, maximum amount of explosive on any one delay period, depth of rock, and depth of overburden if any. The maximum explosive charge weights per delay included in the plan shall not be increased without the approval of the Engineer.

The Contractor shall keep a record of each blast: its date, time and location; the amount of explosives used, maximum explosive charge weight per delay period, and, where necessary, seismograph records identified by instrument number and location.
These records shall be made available to the Engineer on a monthly basis or in tabulated form at other times as required.

f. **Proof rolling.** After compaction is completed, the subgrade area shall be proof rolled with a 20 ton Tandem axle Dual Wheel Dump Truck loaded to the legal limit with tires inflated to 100 psi or a heavy pneumatic-tired roller having four or more tires abreast, each tire loaded to a minimum of 30,000 pounds and inflated to a minimum of 125 psi in the presence of the Engineer. Apply a minimum of 95% coverage, or as specified by the Engineer, to all paved areas. A coverage is defined as the application of one tire print over the designated area. Soft areas of subgrade that deflect more than 1 inch or show permanent deformation greater than 1 inch shall be removed and replaced with suitable material or reworked to conform to the moisture content and compaction requirements in accordance with these specifications.

152-2.3 Borrow excavation. Borrow areas within the airport property are indicated on the plans. Borrow excavation shall be made only at these designated locations and within the horizontal and vertical limits as staked or as directed by the Engineer.

When borrow sources are outside the boundaries of the airport property, it shall be the Contractor’s responsibility to locate and obtain the borrow sources, subject to the approval of the Engineer. The Contractor shall notify the Engineer at least 15 days prior to beginning the excavation so necessary measurements and tests can be made. All borrow pits shall be opened up to expose the various strata of acceptable material to allow obtaining a uniform product. All unsuitable material shall be disposed of by the Contractor. Borrow pits shall be excavated to regular lines to permit accurate measurements, and they shall be drained and left in a neat, presentable condition with all slopes dressed uniformly. Prior to any off-site borrow source being utilized on the project, the Contractor shall submit test reports of the material properties for the borrow source. The Engineer shall approve all sources and test results prior to any material from the borrow source being installed. The Engineer shall also have the opportunity to visit the borrow source and perform verification testing. If the tests conducted at the proposed borrow site fail the specification requirements, the cost for such testing will be paid for by the Contractor.

152-2.4 Drainage excavation. Drainage excavation shall consist of excavating for drainage ditches such as intercepting; inlet or outlet ditches; for temporary levee construction; or for any other type as designed or as shown on the plans. The work shall be performed in sequence with the other construction. Intercepting ditches shall be constructed prior to starting adjacent excavation operations. All satisfactory material shall be placed in embankment fills; unsuitable material shall be placed in designated waste areas or as directed by the Engineer. All necessary work shall be performed true to final line, elevation, and cross-section. The Contractor shall maintain ditches constructed on the project to the required cross-section and shall keep them free of debris or obstructions until the project is accepted. There shall be no separate payment for drainage excavation, it will be considered incidental to the drainage items requiring its use. Any de-watering operations for acceptable installation or associated excavation operations shall be incidental to the items requiring its use.

152-2.5 Preparation of embankment area. Where an embankment is to be constructed to a height of 4 feet or less, all sod and vegetative matter shall be removed from the surface upon which the embankment is to be placed. The cleared surface shall be broken up by plowing or scarifying to a minimum depth of 6 inches and shall then be compacted as indicated in paragraph 152-2.6. When the height of fill is greater than 4 feet, sod not required to be removed shall be thoroughly disked and recompacted to the density of the surrounding ground before construction of embankment.

Sloped surfaces steeper than one (1) vertical to four (4) horizontal shall be plowed, stepped, benched, or broken up so that the fill material will bond with the existing material. When the subgrade is part fill and part excavation or natural ground, the excavated or natural ground portion shall be scarified to a depth of 12 inches and compacted as specified for the adjacent fill.

No direct payment shall be made for the work performed under this section. The necessary clearing and grubbing and the quantity of excavation removed will be paid for under the respective items of work.
152-2.6 Formation of embankments. Embankments shall be formed in successive horizontal layers of not more than 8 inches in loose depth for the full width of the cross-section, unless otherwise approved by the Engineer.

The layers shall be placed, to produce a soil structure as shown on the typical cross-section or as directed by the Engineer. Materials such as brush, hedge, roots, stumps, grass and other organic matter, shall not be incorporated or buried in the embankment.

Earthwork operations shall be suspended at any time when satisfactory results cannot be obtained because of rain, freezing, or other unsatisfactory weather conditions in the field. Frozen material shall not be placed in the embankment nor shall embankment be placed upon frozen material. Material shall not be placed on surfaces that are muddy, frozen, or contain frost. The Contractor shall drag, blade, or slope the embankment to provide surface drainage at all times.

The material in each layer shall be within ±2% of optimum moisture content before rolling to obtain the prescribed compaction. To achieve a uniform moisture content throughout the layer, the material shall be moistened or aerated as necessary. Samples of all embankment materials for testing, both before and after placement and compaction, will be taken for each 1,000 square yards of material placed per layer. Based on these tests, the Contractor shall make the necessary corrections and adjustments in methods, materials or moisture content to achieve the specified embankment density.

Rolling operations shall be continued until the embankment is compacted to not less than 95% of maximum density for noncohesive soils, and 90% of maximum density for cohesive soils as determined by ASTM D 1557. Under all areas to be paved, the embankments shall be compacted to a depth of 12-inches and to a density of not less than 95 percent of the maximum density as determined by ASTM D 1557.

On all areas outside of the pavement areas, no compaction will be required on the top 4 inches.

The in-place field density shall be determined in accordance with ASTM 6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. The Engineer shall perform all density tests. Contractor’s laboratory shall perform all density tests in the Engineer’s presence and provide the test results upon completion to the Engineer for acceptance.

Compaction areas shall be kept separate, and no layer shall be covered by another layer until the proper density is obtained.

During construction of the embankment, the Contractor shall route all construction equipment evenly over the entire width of the embankment as each layer is placed. Layer placement shall begin in the deepest portion of the embankment fill. As placement progresses, the layers shall be constructed approximately parallel to the finished pavement grade line.

When rock and other embankment material are excavated at approximately the same time, the rock shall be incorporated into the outer portion of the embankment and the other material shall be incorporated under the future paved areas. Stones or fragmentary rock larger than 4 inches in their greatest dimensions will not be allowed in the top 6 inches of the subgrade. Rockfill shall be brought up in layers as specified or as directed by the Engineer and the finer material shall be used to fill the voids with forming a dense, compact mass. Rock or boulders shall not be disposed of outside the excavation or embankment areas, except at places and in the manner designated on the plans or by the Engineer.

When the excavated material consists predominantly of rock fragments of such size that the material cannot be placed in layers of the prescribed thickness without crushing, pulverizing or further breaking down the pieces, such material may be placed in the embankment as directed in layers not exceeding 2 feet in thickness. Each layer shall be leveled and smoothed with suitable equipment by distribution of spalls and finer fragments of rock. The layer shall not be constructed above an elevation 4 feet below the finished subgrade.

There will be no separate measurement of payment for compacted embankment. All costs incidental to placing in layers, compacting, discing, watering, mixing, sloping, and other operations necessary for construction of embankments will be included in the contract price for excavation, borrow, or other
items. [—Payment for compacted embankment will be made under embankment in place and no payment will be made for excavation, borrow, or other items.—]

152-2.7 Finishing and protection of subgrade. After the subgrade is substantially complete, the Contractor shall remove any soft or other unstable material over the full width of the subgrade that will not compact properly. All low areas, holes or depressions in the subgrade shall be brought to grade with suitable select material. Scarifying, blading, rolling and other methods shall be performed to provide a thoroughly compacted subgrade shaped to the lines and grades shown on the plans.

Grading of the subgrade shall be performed so that it will drain readily. The Contractor shall protect the subgrade from damage and limit hauling over the finished subgrade to only traffic essential for construction purposes. All ruts or rough places that develop in the completed subgrade shall be graded and recompacted.

No subbase, base, or surface course shall be placed on the subgrade until the subgrade has been approved by the Engineer.

152-2.8 Haul. All hauling will be considered a necessary and incidental part of the work. The Contractor shall include the cost in the contract unit price for the pay of items of work involved. No payment will be made separately or directly for hauling on any part of the work.

152-2.9 Tolerances. In those areas upon which a subbase or base course is to be placed, the top of the subgrade shall be of such smoothness that, when tested with a 12-foot straightedge applied parallel and at right angles to the centerline, it shall not show any deviation in excess of 1/2 inch, or shall not nor shall it be more than 0.05 feet from true grade as established by grade hubs. Any deviation in excess of these amounts shall be corrected by loosening, adding, or removing materials; reshaping; and recompacting.

On safety areas, intermediate and other designated areas, the surface shall be of such smoothness that it will not vary more than 0.10 feet from true grade as established by grade hubs. Any deviation in excess of this amount shall be corrected by loosening, adding or removing materials, and reshaping.

152-2.10 Topsoil. When topsoil is specified or required as shown on the plans or under Item T-905, it shall be salvaged from stripping or other grading operations. The topsoil shall meet the requirements of Item T-905. If, at the time of excavation or stripping, the topsoil cannot be placed in its final section of finished construction, the material shall be stockpiled at approved locations. Stockpiles shall not be placed within 400 feet of runway pavement or 200 feet of taxiway pavement and shall not be placed on areas that subsequently will require any excavation or embankment fill. If, in the judgment of the Engineer, it is practical to place the salvaged topsoil at the time of excavation or stripping, the material shall be placed in its final position without stockpiling or further rehandling.

Upon completion of grading operations, stockpiled topsoil shall be handled and placed as directed, or as required in Item T-905.

No direct payment will be made for topsoil under Item P-152. The quantity removed and placed directly or stockpiled shall be paid for at the contract unit price per cubic yard for “Unclassified Excavation.”

When stockpiling of topsoil and later rehandling of such material is directed by the Engineer, the material so rehandled shall be paid for at the contract unit price per cubic yard for “topsoiling,” as provided in Item T-905.

METHOD OF MEASUREMENT

152-3.1 The quantity of excavation to be paid for shall be the number of cubic yards measured in its original position. Measurement shall not include the quantity of materials excavated without authorization beyond normal slope lines, or the quantity of material used for purposes other than those directed.

152-3.2 For payment specified by the cubic yard, measurement for all excavation shall be computed by the average end area method. The end area is that bound by the original ground line established by field cross-sections and the final theoretical pay line established by excavation cross-sections shown on the plans, subject to verification by the Engineer. After completion of all excavation operations and prior to the placing
of base or subbase material, the final excavation shall be verified by the Engineer Contractor by means of field cross-sections taken randomly at intervals not exceeding 500 linear feet. The cross-sectional survey information shall be provided to the Engineer for verification in AutoCAD format.

152-3.3 The quantity of subgrade preparation to be paid for shall be the number of square yards measured in its final position, graded and prepared as indicated by the specifications.

BASIS OF PAYMENT

152-4.1 “Unclassified excavation” payment shall be made at the contract unit price per cubic yard. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item.

152-4.2 “Muck Excavation” payment shall be made at the contract unit price per cubic yard. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item.

152-4.3 “Borrow Excavation” payment shall be made at the contract unit price per cubic yard. This price shall be full compensation for furnishing all materials, labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

- Item P-152-4.1 Unclassified Excavation - per cubic yard

TESTING REQUIREMENTS

- ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))
- ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
- ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN-m/m³))
- ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
- ASTM D6938 Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

END OF ITEM P-152
Item P-153

CONTROLLED LOW-STRENGTH MATERIAL (CLSM)

DESCRIPTION

153-1.1 This item shall consist of furnishing, transporting, and placing a controlled low-strength material (CLSM) as flowable backfill in trenches or at other locations shown on the plans or as directed by the Engineer.

MATERIALS

153-2.1 Materials.

a. **Portland cement.** Portland cement shall conform to the requirements of ASTM C150 Type II. If for any reason, cement becomes partially set or contains lumps of caked cement, it shall be rejected. Cement salvaged from discarded or used bags shall not be used.

b. **Fly ash.** Fly ash shall conform to ASTM C618, Class C or F.

c. **Fine aggregate (sand).** Fine aggregate shall conform to the requirements of ASTM C33 except for aggregate gradation. Any aggregate gradation which produces performance characteristics of the CLSM specified here will be accepted, except as follows.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 inch (19 mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
<td>0 - 12</td>
</tr>
</tbody>
</table>

d. **Water.** Water used in mixing shall be potable and free of oil, salt, acid, alkali, sugar, vegetable matter, or other substances injurious to the finished product.

MIX DESIGN

153-3.1 Proportions. The Contractor shall submit, to the Engineer, a mix design including the proportions and source of aggregate, fly ash, cement, water, and approved admixtures. No CLSM mixture shall be produced for payment until the Engineer has given written approval of the proportions. The proportions shall be prepared by a laboratory and shall remain in effect for the duration of the project. Laboratory costs are incidental to this item. The proportions shall establish a single percentage or weight for aggregate, fly ash, cement, water, and any admixtures proposed.

a. **Compressive strength.** CLSM shall be designed to achieve a 28-day compressive strength of 100 to 200 psi when tested in accordance with ASTM D4832. There should be no significant strength gain after 28 days.

b. **Consistency.** CLSM should be designed to achieve a consistency that will produce an approximate 8-inch diameter circular-type spread without segregation when tested by: (1) filling a 3-inch inside diameter by 6-inch length flow cylinder (non-absorbent pipe) (2) strike off of the flow cylinder and start of lift within five seconds of filling and (3) by steady upward pull, lift the cylinder in a time period of between two and four seconds. Adjustments of the material proportions should be made to achieve proper solid suspension and flowable characteristics, however the theoretical yield shall be maintained at one cubic yard for the given batch weights.

CONSTRUCTION METHODS

153-4.1 Placement.

a. **Placement.** CLSM may be placed by any reasonable means from a mixing unit into the space to be filled. Agitation is required during transportation and waiting time. Placement shall be performed so structures or pipes are not displaced from their final position and intrusion of CLSM into unwanted areas is avoided. The material shall be brought up uniformly to the fill line shown on the plans or as directed.
by the Engineer. Each placement of CLSM shall be as continuous an operation as possible. If CLSM is placed in more than one layer, the base layer shall be free of surface water and loose foreign material prior to placement of the next layer.

b. Limitations of placement. CLSM shall not be placed on frozen ground. Mixing and placing may begin when the air or ground temperature is at least 35°F and rising. At the time of placement, CLSM shall have a temperature of at least 40°F. Mixing and placement shall stop when the air temperature is 40°F and falling or when the anticipated air or ground temperature will be 35°F or less in the 24 hour period following proposed placement.

153-4.2 Curing and protection

a. Curing. The air in contact with the CLSM shall be maintained at temperatures above freezing for a minimum of 72 hours. If the CLSM is subjected to temperatures below 32°F, the material may be rejected by the Engineer if damage to the material is observed.

b. Protection. The CLSM shall not be subject to loads and shall remain undisturbed by construction activities for a period of 48 hours or until a compressive strength of 15 psi is obtained. The Contractor shall be responsible for providing evidence to the Engineer that the material has reached the desired strength. Acceptable evidence shall be based upon compressive tests made in accordance with paragraph 153-3.1a.

153-4.3 Acceptance. Acceptance of CLSM delivered and placed as shown on the plans or as directed by the Engineer shall be based upon mix design approval and batch tickets provided by the Contractor to confirm that the delivered material conforms to the mix design. The Contractor shall verify by additional testing, each 1,000 cubic yards of material used. Verification shall include confirmation of material proportions and tests of compressive strength to confirm that the material meets the original mix design and the requirements of CLSM as defined in this specification. Adjustments shall be made as necessary to the proportions and materials prior to further production.

METHOD OF MEASUREMENT

153-5.1 Measurement. Controlled low-strength material shall not be measured separately for payment, but shall be incidental to the items requiring its use.

BASIS OF PAYMENT

153-6.1 Payment. No separate payment will be made for controlled low-strength material.

TESTING REQUIREMENTS

ASTM D4832 Standard Test Method for Preparation and Testing of Controlled Low-Strength Material (CLSM) Test Cylinders

MATERIAL REQUIREMENTS

ASTM C33 Standard Specification for Concrete Aggregates
ASTM C150 Standard Specification for Portland Cement
ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
ASTM C595 Standard Specification for Blended Hydraulic Cements

END OF ITEM P-153
Item P-156

TEMPORARY AIR AND WATER POLLUTION, SOIL EROSION, AND SILTATION CONTROL

DESCRIPTION

156-1.1 This item shall consist of temporary control measures as shown on the plans or as ordered by the Engineer during the life of a contract to control water pollution, soil erosion, and siltation through the use of silt fences, berms, dikes, dams, sediment basins, fiber mats, gravel, mulches, grasses, slope drains, and other erosion control devices or methods.

The temporary erosion control measures contained herein shall be coordinated with the permanent erosion control measures specified as part of this contract to the extent practical to assure economical, effective, and continuous erosion control throughout the construction period.

Temporary control may include work outside the construction limits such as borrow pit operations, equipment and material storage sites, waste areas, and temporary plant sites.

Temporary control measures shall be design, installed and maintained to minimize the creation of wildlife attractants that have the potential to attract hazardous wildlife on or near public-use airports.

156-1.2 Any permits which the Owner has obtained for any purpose such as NPDES, SPCC, etc., does not include nor cover the Contractor’s haul routes, equipment access points, staging areas, office compounds, materials stockpiles, blending and batch plant areas and operations or other project related activity areas outside the project limits or off site.

156-1.3 The Contractor shall prepare all required documentation, pay all fees and perform all services and work necessary to obtain all permits and approvals from any and all local, state and federal regulatory agencies for the Contractor’s staging, stockpile, blending and batch plant areas and operations. The cost of all permitting shall be subsidiary to other items of work.

156-1.4 The Contractor shall develop a Pollution Prevention Plan to supplement the Owner’s Stormwater Pollution Prevention Plan (SWPPP) as contained in the drawings. The plan shall be in strict compliance with the National Pollutant Discharge Elimination System (NPDES) permit issued or approved by the U.S. Environmental Protection Agency (EPA) pursuant to 40 CFR Part 122.6. The Plan shall address all measures to dispose of, control, or prevent the discharge of solid, hazardous and sanitary wastes to the waters of the U.S. The plan shall include procedures to control offsite tracking of soil by vehicles and construction equipment and procedures for cleanup and reporting of non-storm water discharges such as contaminated groundwater or accidental spills.

The Contractor shall also be required to submit a written documentation that all required permits have been obtained to the Engineer prior to start up of construction activities.

MATERIALS

156-2.1 Grass. Grass that will not compete with the grasses sown later for permanent cover per Item T-901 shall be a quick-growing species (such as ryegrass, Italian ryegrass, or cereal grasses) suitable to the area providing a temporary cover. Selected grass species shall not create a wildlife attractant.

156-2.2 Mulches. Mulches may be hay, straw, fiber mats, netting, bark, wood chips, or other suitable material reasonably clean and free of noxious weeds and deleterious materials per Item T-908. Mulches shall not create a wildlife attractant.

156-2.3 Fertilizer. Fertilizer shall be a standard commercial grade and shall conform to all Federal and state regulations and to the standards of the Association of Official Agricultural Chemists.

156-2.4 Slope drains. Slope drains may be constructed of pipe, fiber mats, rubble, Portland cement concrete, bituminous concrete, or other materials that will adequately control erosion.
156-2.5 Silt fence. The silt fence shall consist of polymeric filaments which are formed into a stable network such that filaments retain their relative positions. Synthetic filter fabric shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum of six months of expected usable construction life. Silt fence shall meet the requirements of ASTM D6461.

156-2.6 SOIL EROSION CONTROL BLANKET

Soil erosion control blanket shall be installed at the locations indicated in the construction plans. The erosion control blanket shall conform to CURLEX CL EROSION CONTROL BLANKET or approved equal. Measurement and payment shall be by square yard basis. Payment for erosion control blanket includes blanket material, ground preparation and earthwork, and installation of the blanket. Accessories, equipment and execution required are incidental to soil erosion control blanket installation work.

156-2.67 Other. All other materials shall meet commercial grade standards and shall be approved by the Engineer before being incorporated into the project.

CONSTRUCTION REQUIREMENTS

156-3.1 General. In the event of conflict between these requirements and pollution control laws, rules, or regulations of other Federal, state, or local agencies, the more restrictive laws, rules, or regulations shall apply.

The Engineer shall be responsible for assuring compliance to the extent that construction practices, construction operations, and construction work are involved.

156-3.2 Schedule. Prior to the start of construction, the Contractor shall submit schedules for accomplishment of temporary and permanent erosion control work for clearing and grubbing; grading; construction; paving; and structures at watercourses. The Contractor shall also submit a proposed method of erosion and dust control on haul roads and borrow pits and a plan for disposal of waste materials. Work shall not be started until the erosion control schedules and methods of operation for the applicable construction have been accepted by the Engineer.

156-3.3 Construction details. The Contractor will be required to incorporate all permanent erosion control features into the project at the earliest practicable time as outlined in the accepted schedule. Except where future construction operations will damage slopes, the Contractor shall perform the permanent seeding and mulching and other specified slope protection work in stages, as soon as substantial areas of exposed slopes can be made available. Temporary erosion and pollution control measures will be used to correct conditions that develop during construction that were not foreseen during the design stage; that are needed prior to installation of permanent control features; or that are needed temporarily to control erosion that develops during normal construction practices, but are not associated with permanent control features on the project.

Where erosion may be a problem, clearing and grubbing operations should be scheduled and performed so that grading operations and permanent erosion control features can follow immediately if project conditions permit; otherwise, temporary erosion control measures may be required.

The Engineer shall limit the area of clearing and grubbing, excavation, borrow, and embankment operations in progress, commensurate with the Contractor’s capability and progress in keeping the finish grading, mulching, seeding, and other such permanent control measures current with the accepted schedule. If seasonal limitations make such coordination unrealistic, temporary erosion control measures shall be taken immediately to the extent feasible and justified as directed by the Engineer.

The Contractor shall provide immediate permanent or temporary pollution control measures to minimize contamination of adjacent streams or other watercourses, lakes, ponds, or other areas of water impoundment as directed by the Engineer. If temporary erosion and pollution control measures are required due to the Contractor’s negligence, carelessness, or failure to install permanent controls as a part of the work as scheduled or directed by the Engineer, the work shall be performed by the Contractor and the cost shall be incidental to this item.
The Engineer may increase or decrease the area of erodible earth material that can be exposed at any time based on an analysis of project conditions.

The erosion control features installed by the Contractor shall be acceptably maintained by the Contractor during the construction period.

Whenever construction equipment must cross watercourses at frequent intervals, temporary structures should be provided.

Pollutants such as fuels, lubricants, bitumen, raw sewage, wash water from concrete mixing operations, and other harmful materials shall not be discharged into any waterways, impoundments or into natural or manmade channels.

The Contractor shall provide equipment wash out areas, constructed and protected to not allow any discharge of silt, fuels, lubricants and other harmful materials into nearby impoundments, ponds or surface water drainage systems.

The Contractor shall periodically inspect the pollution control features at the intervals stated in the approved Pollution Control Plan, and immediately after each rainfall and at least daily during prolonged rainfall and immediately correct any deficiencies. The Contractor shall review the location of pollution control features for effectiveness. If deficiencies exist, the Contractor shall correct as directed by the Engineer.

Remove sediment deposits when the deposit reaches approximately 1/3 of the volume capacity of the sediment control feature, or as otherwise required. Remove all sediment deposits when the sediment control feature is removed. Grade and dress area to restore to preconstruction condition or finish grade as called for on the plans.

If construction is suspended, the Contractor shall inspect, maintain and operate temporary pollution control features during such suspension. If suspension is part of the project phasing and sequencing plan, or if the suspension is requested by the Contractor, the Contractor shall not be paid additional or separate compensation to maintain and operate the erosion/pollution control facilities.

The Contractor is responsible for the removal of all temporary erosion/pollution control facilities and the restoration of those sites. This work will include the repair of any trenching for silt fence, removal of all silt build-up, the removal of fencing, barriers and silt bales and the associated stakes and appurtenances, and the placing of seeding or sodding to restore those sites. All inlets, catch basins and manholes constructed for this project shall be cleaned and the new drainage pipes flushed. All materials taken from the facilities or flushed from the new piping system shall be collected by the Contractor and disposed of off site.

156-3.4 Installation, maintenance and removal of silt fences. Silt fences shall extend a minimum of 16 inches (41 cm) and a maximum of 34 inches (86 cm) above the ground surface. Posts shall be set no more than 10 feet (3 m) on center. Filter fabric shall be cut from a continuous roll to the length required minimizing joints where possible. When joints are necessary, the fabric shall be spliced at a support post with a minimum 12-inch (300 mm) overlap and securely sealed. A trench shall be excavated approximately 4 inches (100 mm) deep by 4 inches (100 mm) wide on the upslope side of the silt fence. The trench shall be backfilled and the soil compacted over the silt fence fabric. The Contractor shall remove and dispose of silt that accumulates during construction and prior to establishment of permanent erosion control. The fence shall be maintained in good working condition until permanent erosion control is established. Silt fence shall be removed upon approval of the Engineer.

METHOD OF MEASUREMENT

156-4.1 Temporary erosion and pollution control work required will be performed as scheduled or directed by the Engineer. Completed and accepted work will be measured as follows:

a. Temporary seeding and mulching will be measured by the square yard (square meter).

b. Temporary slope drains will be measured by the linear foot (meter).
c. Temporary benches, dikes, dams, and sediment basins will be measured by the linear foot and cubic yard (cubic meter) of excavation performed, including necessary cleaning of sediment basins, and the cubic yard (cubic meter) of embankment placed as directed by the Engineer.

d. All fertilizing will be measured by the ton (kg).

e. Installation and removal of silt fence will be measured by the linear foot (meter) [Lump sum].

f. Temporary inlet and outlet protection will be measured per each.

g. Soil erosion control blanket will be measured by the square yard.

156-4.2 Control work performed for protection of construction areas outside the construction limits, such as borrow and waste areas, haul roads, equipment and material storage sites, and temporary plant sites, will not be measured and paid for directly but shall be considered as a subsidiary obligation of the Contractor.

BASIS OF PAYMENT

156-5.1 Accepted quantities of temporary water pollution, soil erosion, and siltation control work ordered by the Engineer and measured as provided in paragraph 156-4.1 will be paid for under:

- Item P-156-5.1a Temporary Seeding and Mulching – per square yard (square meter)
- Item P-156-5.1b Temporary Slope Drains – per linear foot (meter)
- Item P-156-5.1c Temporary Benches, Dikes, Dams and Sediment Basins – per cubic yard (cubic meter)
- Item P-156-5.1d Fertilizing – per ton (kg)
- Item P-156-5.1 Erosion and Sedimentation – per lump sum
- Item P-156-5.2 Silt Fence – per linear feet
- Item P-156-5.3 Inlet and Outlet Protection, Stage 1 – per each
- Item P-156-5.4 Inlet and Outlet Protection, Stage 2 – per each
- Item P-156-5.5 Rock Filter Dam, Type 2 – per linear foot
- Item P-156-5.6 Soil Stabilization Mat – per square yard

Where other directed work falls within the specifications for a work item that has a contract price, the units of work shall be measured and paid for at the contract unit price bid for the various items.

Temporary control features not covered by contract items that are ordered by the Engineer will be paid for in accordance with Section 90-05 Payment for Extra work.

MATERIAL REQUIREMENTS

- ASTM D6461 Standard Specification for Silt Fence Materials
- AC 150/5200-33 Hazardous Wildlife Attractants

END OF ITEM P-156
ITEM P-155 LIME-TREATED SUBGRADE

DESCRIPTION
155-1.1 This item shall be used for soil modification to achieve specific needs that require strength gain to a specific level. This item shall consist of constructing one or more courses of a mixture of soil, lime, and water in accordance with this specification, and in conformity with the lines, grades, thicknesses, and typical cross-sections shown on the plans.

MATERIALS
155-2.1 Lime. Quicklime and hydrated lime, either high-calcium dolomitic, or magnesium lime, as defined by ASTM C51, shall conform to the requirements of ASTM C977. Lime not produced from calcining limestone shall not be permitted.

155-2.2 Commercial lime slurry. Commercial lime slurry shall be a pumpable suspension of solids in water. The water or liquid portion of the slurry shall not contain dissolved material in sufficient quantity naturally injurious or objectionable for the purpose intended. The solids portion of the mixture, when considered on the basis of "solids content," shall consist principally of hydrated lime of a quality and fineness sufficient to meet the following requirements as to chemical composition and residue.

a. Chemical composition. The "solids content" of the lime slurry shall consist of a minimum of 70%, by weight, of calcium and magnesium oxides.

b. Residue. The percent by weight of residue retained in the "solids content" of lime slurry shall conform to the following requirements:
 (1) Residue retained on a No. 6 (3360 micron) sieve = maximum 0.0%
 (2) Residue retained on a No. 10 (2000 micron) sieve = maximum 1.0%
 (3) Residue retained on a No. 30 (590 micron) sieve = maximum 2.5%

c. Grade. Commercial lime slurry shall conform to one of the following two grades:
 (1) Grade 1. The "dry solids content" shall be at least 31% by weight, of the slurry.
 (2) Grade 2. The "dry solids content" shall be at least 35%, by weight, of the slurry.

155-2.3 WATER.
Water used for mixing or curing shall be potable, reasonably clean and free of oil, salt, acid, alkali, sugar, vegetable, or other substances injurious to the finished product.

155-2.4 SOIL.
The soil for this work shall consist of inorganic natural materials on the site or selected materials from other sources; uniform in quality and gradation; and shall be approved by the Engineer. The soil shall be free of roots, sod, weeds, and stones larger than 2-1/2 inches (60 mm).

COMPOSITION
155-3.1 SOIL-LIME MIXTURE.
Lime shall be applied at the rate of 3 percent of dry weight with fly ash applied at a rate of 7 percent of dry weight as specified on the plans for an eight inch depth of subgrade treatment shown. Refer to Item P-158 for fly ash requirements.

155-3.2 TOLERANCES.

At final compaction, the lime and water content for each course of subgrade treatment shall conform to the following tolerances:

<table>
<thead>
<tr>
<th>Material</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>+ 0.5%</td>
</tr>
<tr>
<td>Water</td>
<td>+ 2%, -0%</td>
</tr>
</tbody>
</table>

WEATHER LIMITATIONS

155-4.1 WEATHER LIMITATION.

Do not construct subgrade when weather conditions detrimentally affect the quality of the materials. Do not apply lime unless the air temperature is at least 40°F (4°C) and rising. Do not apply lime to soils that are frozen or contain frost. If the air temperature falls below 35°F (2°C), protect completed lime-treated areas by approved methods against the detrimental effects of freezing. Remove and replace any damaged portion of the completed soil-lime treated area with new soil-lime material in accordance with this specification.

EQUIPMENT

155-5.1 EQUIPMENT.

The equipment required shall include all equipment necessary to complete this item such as: grading and scarifying equipment, a spreader for the lime or lime slurry, mixing or pulverizing equipment, sheepsfoot and pneumatic or vibrating rollers, sprinkling equipment, and trucks.

CONSTRUCTION METHODS

155-6.1 GENERAL.

This specification is to construct a subgrade consisting of a uniform lime mixture which shall be free from loose or segregated areas. The subgrade shall be of uniform density and moisture content, well mixed for its full depth, and have a smooth surface suitable for placing subsequent courses. The Contractor shall be responsible to meet the above requirements.

Before beginning lime treatment, the subgrade shall be constructed as specified in Item P-152, Excavation, Subgrade and Embankment, and shaped to conform to the typical sections, lines, and grades as shown on the plans. If the Contractor elects to use a cutting and pulverizing machine that will remove the subgrade material accurately to the secondary grade and pulverize the material at the same time, he will not be required to expose the secondary grade nor windrow the material. The machine must give visible indication at all times that it is cutting the material uniformly to the proper depth over the entire width of the cut.

If a cutting and pulverizing machine is not used, the material to be treated shall be excavated to the secondary grade (proposed bottom of lime treatment) and removed or windrowed to expose the secondary grade. The excavated material shall then be spread to the desired cross-section and uniformly mixed and compacted.
155-6.2 APPLICATION.

Lime shall be spread only over an area where the initial mixing operations can be completed during the same work day. The application and mixing of lime with the soil shall be accomplished by the methods described as “Dry Placing” or “Slurry Placing.” The Contractor may use either method when hydrated lime is specified.

a. **Dry placing.** The lime shall be spread uniformly over the subgrade by an approved screw type spreader box or other approved spreading equipment. The amount of lime spread shall be the amount required for mixing to the specified depth that will result in the amount determined in the soil-lime mixture or as specified on the plans. The material shall be sprinkled until the specified moisture content has been reached.

The lime shall be distributed in a manner that will minimize scattering by wind. Lime shall not be applied when wind conditions, in the opinion of the Engineer, are detrimental to proper application. A motor grader shall not be used to spread the lime.

b. **Slurry placing.** The lime shall be mixed with water in trucks with approved distributors and applied as a thin water suspension or slurry. Commercial lime slurry shall be applied with a lime percentage not less than that applicable for the grade used. The distribution of lime shall be by successive passes over a measured section of subgrade until the specified amount of lime has been spread. The amount of lime spread shall be the amount required for mixing to the specified depth that will result in the amount determined in the soil-lime mixture or as shown on the plans. The distributor truck shall continually agitate the slurry to keep the mixture uniform.

155-6.3 MIXING.

The mixing procedure shall be the same for “Dry Placing” or “Slurry Placing” as described below:

a. **Preliminary mixing.** The full depth of the treated subgrade shall be mixed with an approved mixing machine. Lime shall not be left exposed for more than six (6) hours. The mixing machine shall make two coverages. Water shall be added to the subgrade during mixing to provide a moisture content approximately 5% above the optimum moisture of the material and to ensure chemical action of the lime and subgrade. After mixing, the subgrade shall be lightly rolled to seal the surface and help prevent evaporation of moisture. The water content of the subgrade mixture shall be maintained at a moisture content above the optimum moisture content for a minimum of 48 hours or until the material becomes friable. During the curing period, the material shall be sprinkled as directed by the Engineer.

b. **Final mixing.** After the required curing time, the material shall be uniformly mixed by approved methods. If the mixture contains clods, they shall be reduced in size by blading, discing, harrowing, scarifying, or the use of other approved pulverization methods so that the remainder of the clods shall meet the following requirements when tested dry by laboratory sieves. After curing, pulverize lime treated material until soil particles pass a one inch (25 mm) sieve and 60% pass the No. 4 (4.75 mm) sieve. If resultant mixture contains clods, reduce their size by scarifying, remixing, or pulverization to meet specified gradation.

155-6.4 COMPACTION.

Compaction of the mixture shall immediately follow the final mixing operation with no part of the mixture uncompacted more than 30 minutes after final mixing. The material shall be aerated or sprinkled as necessary to provide the optimum moisture content during compaction. The field density of the compacted mixture shall be at least 95% of the maximum density of laboratory specimens prepared from samples taken from the material in place. The specimens shall be compacted and tested in accordance with ASTM D698 to determine maximum density and optimum moisture content. The in-place field density shall be determined in accordance with ASTM D1556. Testing frequency shall be a minimum of one compaction test per 1000 square yards (840 square meters) of stabilized base or as directed by the Engineer.

The material shall be sprinkled and rolled as directed by the Engineer. All irregularities, depressions, or weak spots that develop shall be corrected immediately by scarifying the areas affected, adding or removing...
material as required, and reshaping and recompacting. The surface of the subgrade shall be maintained in a smooth condition, free from undulations and ruts, until other work is placed on it or the work is accepted by the Engineer.

The full depth of the material shown on the plans shall be compacted to remain firm and stable under construction equipment. All testing shall be done by the Owner. Perform in-place density test to determine degree of compaction between 24 and 72 hours after final compaction and 24 hour moist cure period. If the material fails to meet the density requirements, it shall be reworked to meet the density requirements. The shape of the course shall be maintained smooth and shall conform to the typical section shown on the plans and the established lines and grades. If the material loses the specified stability, density, and finish before the next course is placed or the work is accepted by the Engineer, the material shall be recompacted and refinshed by the Contractor, and the cost shall be incidental to this item.

155-6.5 FINISHING AND CURING.

After the final layer or course of lime-treated subgrade has been compacted, it shall be brought to the required lines and grades in accordance with the typical sections. The completed section shall then be finished by rolling, as directed by the Engineer, with a pneumatic or other suitable roller sufficiently light to prevent hairline cracking. The finished surface shall not vary more than 3/8 inch (9 mm) when tested with a 12 feet (3.7 m) straightedge applied parallel with and at right angles to the pavement centerline. Any variations in excess of this tolerance shall be corrected by the Contractor in a manner satisfactory to the Engineer, and the cost shall be incidental to this item. Straight edge testing will not be applied in irregular or odd shaped areas where the span of the entire completed area will not allow 12 feet (3.7m) parallel to pavement centerline.

The completed section shall be moist-cured for a minimum of seven (7) days before further courses are added or any traffic is permitted, unless otherwise directed by the Engineer. Subsequent courses shall be applied within 14 days after the lime-treated subgrade is cured.

155-6.6 THICKNESS CONTROL.

The thickness of the final lime-treated subgrade shall be not less than the thickness specified. Thickness shall be determined by depth tests or cores taken at intervals so that each test shall represent no more than 300 square yards (250 sq m). When the base deficiency is more than 1/2 inch (12 mm), the Contractor shall correct such areas in a manner satisfactory to the Engineer. The Contractor shall replace the base material where borings are taken for test purposes. This cost shall be incidental to this item.

155-6.7 MAINTENANCE.

The Contractor shall protect and maintain the lime-treated subgrade from yielding until the lime-treated subgrade is covered by placement of the next layer. The cost of this maintenance shall be incidental to this item.

155-6.8 HANDLING AND SAFETY.

The Contractor shall obtain and enforce the lime supplier's instructions for proper safety and handling of the lime to prevent physical eye or skin contact with lime during transport or application.

METHOD OF MEASUREMENT

155-7.1 Lime treated subgrade shall be paid for by the square yard (square meter) in the completed and accepted work. Lime treated subgrade shall be measured and paid for under Item P-158-7.1

155-7.2 Lime shall be paid by the number of tons (kg) of Hydrated Lime, or the calculated equivalent, used in the completed and accepted work. “Calculated Equivalent” will be determined by the Engineer as follows:

a. Hydrated lime delivered to the project in dry form will be measured according to the actual tonnage either spread on the subgrade or batched on site into a slurry, whichever is applicable.
b. Lime delivered to the project in slurry form will be paid for on the basis of certified chemical composition tickets and batch weight tickets. The Owner shall reserve the right to have the dry lime content verified by an independent testing laboratory. If the chemical composition is reported on the basis of Pebble Quicklime, the equivalent hydrated lime will be determined in accordance with paragraph c. below.

c. If Pebble Quicklime is delivered to the project in dry form it will be measured for payment on the basis of the following formula:

\[
\text{Equivalent Hydrated Lime (Ca(OH)}_2\text{(Tons)}} = \text{Total Quicklime (CaO)(Tons)} \times \frac{\% \text{ Purity}}{1.32 \text{ Factor}} + \text{Total Quicklime (CaO)(Tons)} \times \frac{\% \text{ Impurities}}{1.00 \text{ Factor}}
\]

The above will apply whether the quicklime is spread dry (if allowed) or batched into a slurry.

BASIS OF PAYMENT

155-8.1 Payment shall be made at the contract unit price per square yard for the lime-treated subgrade at the thickness specified. The price shall be full compensation for furnishing all material, except the lime, and for all preparation, delivering, placing and mixing these materials, and all labor, equipment, tools and incidentals necessary to complete this item.

155-8.2 Payment shall be made at the contract unit price per ton of lime (application rate is based on dry weight of soil). This price shall be full compensation for furnishing, delivery, and placing this material.

Payment will be made under:

- **Item P-155-8.1** X" Lime-treated subgrade - per square yard
- **Item P-155-8.2** Lime (3%) - per ton

TESTING REQUIREMENTS

- **ASTM D698** Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft\(^3\)) (600 kN-m/m\(^3\))
- **ASTM D1556** Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
- **ASTM D6938** Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

MATERIAL REQUIREMENTS

- **ASTM C51** Standard Terminology Relating to Lime and Limestone (as used by the Industry)
- **ASTM C977** Standard Specification for Quicklime and Hydrated Lime for Soil Stabilization
- **ASTM D3551** Standard Practice for Laboratory Preparation of Soil-Lime Mixtures Using Mechanical Mixer

END OF ITEM P-155
Item P-158
FLY ASH TREATED SUBGRADE

DESCRIPTION

158-1.1 This item shall consist of constructing one or more courses of a mixture of soil, fly ash, and water in accordance with this specification, and in conformity with the lines, grades, thicknesses, and typical cross-sections shown on the plans.

MATERIALS

158-2.1 FLY ASH.
Fly ash shall meet ASTM C618, when sampled and tested in accordance with ASTM C311, unless otherwise shown on the plans. Fly ash shall be Class C containing a minimum of 25% CaO. The source of the fly ash shall be identified by the Contractor and approved by the Engineer in advance of stabilization operations so laboratory tests can be completed prior to beginning work.
Fly ash shall be handled and stored in closed weatherproof containers until immediately before distribution. Temporary storage (less than 12 hours) in open pits may be allowed, however wetting of the fly ash by rain or ground water is not allowed. Fly ash exposed to moisture prior to mixing with soils shall be discarded.

158-2.2 WATER.
Water used for mixing or curing shall be potable, reasonably clean and free of oil, salt, acid, alkali, sugar, vegetable, or other substances injurious to the finished product.

158-2.3 SOIL.
The soil for this work shall consist of materials on the site or selected materials from other sources and shall be uniform in quality and gradation, and shall be approved by the Engineer. The soil shall be free of roots, sod, weeds, and stones larger than 2-1/2 inches (60 mm).

COMPOSITION

158-3.1 FLY ASH.
Fly ash shall be applied at the rate of 7 percent of dry weight with lime applied at a rate of 3 percent of dry weight as specified on the plans for an eight inch depth of subgrade treatment as shown. Refer to Item P-155 for lime requirements.

158-3.2 TOLERANCES.
At final compaction, the fly ash and water content for each course of subgrade treatment shall conform to the following tolerances:

<table>
<thead>
<tr>
<th>Material</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly ash</td>
<td>+ 0.5%</td>
</tr>
<tr>
<td>Water</td>
<td>+ 2%, -0%</td>
</tr>
</tbody>
</table>
AC 150/5370-10G

158-3.3 SOIL-FLY ASH MIXTURE.
Ten days prior to the commencement of the work, the Contractor shall submit a soil-fly ash mixture showing the amount of fly ash and water required per cubic yard (cubic meter), and procedures for blending the fly ash/subgrade mixture for each type of existing soil. The soil-fly ash mixture shall include process type and number of fly ash applications, stages of mixing, slurry injection depths, mixing depths and depths of compaction lifts. Also, the Contractor shall submit a list of equipment to be used and their relation to method of mixing proportioning, spreading, pulverizing and compacting subgrade, slurry injection, jet slurry mixing and other related work. The soil-fly ash mixture shall also contain amount of fly ash, either in sacks or pounds per cubic yard (kg per cubic meter) and the amount of water to be used, if slurry method is used.

WEATHER LIMITATIONS

158-4.1 WEATHER LIMITATION.
Do not construct subgrade when weather conditions detrimentally affect the quality of the materials. Do not apply fly ash unless the air temperature is at least 40°F (4°C) and rising. Do not apply fly ash to soils that are frozen or contain frost. If the air temperature falls below 35°F (2°C), protect completed fly ash-treated areas by approved methods against the detrimental effects of freezing. Remove and replace any damaged portion of the completed soil-fly ash treated area with new soil-fly ash material in accordance with this specification.

EQUIPMENT

158-5.1 EQUIPMENT.
The equipment required shall include all equipment necessary to complete this item such as: grading and scarifying equipment, a spreader for the fly ash, mixing or pulverizing equipment, sheepsfoot and pneumatic or vibrating rollers, sprinkling equipment, and trucks.

CONSTRUCTION METHODS

158-6.1 GENERAL.
This specification is to construct a complete subgrade with a uniform lime-fly ash/soil mixture which shall be free from loose or segregated areas. The subgrade shall be of uniform density and moisture content well mixed for its full depth, and have with a smooth surface suitable for placing subsequent courses. The Contractor shall be responsible to meet these above requirements.

Before beginning any lime-fly ash treatment, the subgrade shall be constructed as specified in Item P-152 “Excavation, Subgrade, and Embankment” and shaped to conform to the typical sections, lines, and grades as shown on the plans.

If the Contractor chooses to use a cutting and pulverizing machine which can remove the subgrade material accurately to the secondary grade (proposed bottom of lime-fly ash treatment) and pulverize the material at the same time, he will not be required to expose the secondary grade nor windrow the material. The machine must give visible indication at all times that it is cutting the material uniformly to the proper depth over the entire width of the cut.

If a cutting and pulverizing machine is not used, the material to be treated shall be excavated to the secondary grade (proposed bottom of fly ash treatment) and removed or windrowed to expose the secondary grade. The excavated material shall then be spread to the desired cross-section and uniformly mixed and compacted. Any wet or unstable materials below the secondary grade shall be corrected, as directed by the Engineer.
158-6.2 APPLICATION.

Fly ash shall be spread only over an area where the initial mixing operations can be completed within two (2) hours. The application and mixing of fly ash with the soil shall be accomplished by the “Dry Placing” method described below.

a. **Dry placing.** The fly ash shall be spread uniformly over the subgrade by an approved screw-type spreader box or other approved spreading equipment. The amount of fly ash spread shall be the amount required for mixing to the specified depth which will result in the percentage determined in the fly ash-soil mixture or as specified on the plans. The material shall be sprinkled until the specified moisture content has been reached.

 The fly ash shall be distributed in a manner that will minimize scattering by wind. Fly ash shall not be applied when wind conditions are detrimental to proper application. A motor grader shall not be used to spread the fly ash. Begin fly ash application within 4 days after the lime mixing operation has been completed unless otherwise approved by the Engineer.

b. **Slurry placing.** The fly ash and lime shall be mixed with water in trucks with approved distributors and applied as a thin water suspension or slurry. Commercial lime slurry and fly ash shall be applied with a lime percentage not less than that applicable for the grade used. The distribution of lime and fly ash shall be by successive passes over a measured section of subgrade until the specified amounts of lime and fly ash has been spread. The amount of lime and fly ash spread shall be the amount required for mixing to the specified depth that will result in the amount determined in the soil-lime-fly ash mixture or as shown on the plans. The distributor truck shall continually agitate the slurry to keep the mixture uniform.

158-6.3 MIXING.

The mixing procedure shall be as follows. The full depth of the treated subgrade shall be mixed with a rotary pulverizer that uses a direct hydraulic drive. Fly ash shall not be left exposed for more than 30 minutes after distribution. The mixing machine shall make two coverages. Water shall be added through the use of a pulverizer equipped with a spray bar in the mixing drum. The spray bar shall be capable of applying sufficient quantities of water to achieve the required moisture content of the soil-fly ash mixture. The system placement procedures shall be capable of being regulated to maintain moisture content within the recommended range.

The required moisture content shall be established based on laboratory tests using the on-site soils and specified fly ash used for the treatment per paragraph 158-3.1. Final moisture content of the mix, immediately prior to compaction shall be determined in accordance with ASTM D698 and shall be within ±2% of the optimum moisture content for maximum density of the mix. If moisture contents exceed the specified limits, additional fly ash may be added to lower the moisture content to the required limits. Lowering moisture contents by aeration following addition of the fly ash will not be permitted.

If the soil fly ash mixture contains clods greater than 1-1/2 inches (38 mm) in size, the clods shall be reduced in size by additional pulverization.

158-6.4 COMPACTION.

Compaction of the soil-fly ash mixture shall begin immediately after mixing of the fly ash and be completed within two hours following addition of the fly ash. The field density of the compacted mixture shall be at least 95% of the maximum density of laboratory specimens prepared from samples taken from the material in place. The specimens shall be compacted and tested in accordance with ASTM D698. The in-place density shall be determined in accordance with ASTM D1556, ASTM D2167 or ASTM D6938 Procedure A, direct transmission method and the machines shall be calibrated in accordance with ASTM D6938. Testing frequency shall be a minimum of one (1) compaction test per 1000 square yards (840 square meters) of stabilized subgrade or as directed by the Engineer.
All irregularities, depressions, or weak spots shall be corrected immediately by scarifying the affected areas, adding or removing material as required, and reshaping and re-compacting. The subgrade surface shall be maintained smooth, free from undulations and ruts, until other work is placed on the subgrade or the work is accepted by the Engineer.

The full depth of the subgrade material shown on the plans shall be compacted as necessary to stay firm and stable under construction equipment. After each section is complete, tests will be made by the Owner. If the material fails to meet the density requirements, it shall be reworked to meet the density requirements. The shape of the course shall be maintained smooth and conform to the typical section shown on the plans and to the established lines and grades. If the material, due to any reason or cause, loses the specified stability, density, and finish before the next course is placed or the work is accepted, it shall be recompacted and refinished by the Contractor and the cost shall be incidental to this item.

158-6.5 FINISHING AND CURING.

After the final layer or course of the fly ash treated subgrade has been compacted, it shall be brought to the required lines and grades in accordance with the typical sections. The finished surface shall not vary more than 3/8 inch (9 mm) when tested with a 12 feet (3.7 m) straightedge applied parallel with and at right angles to the pavement centerline. Any variations greater than this tolerance shall be corrected by the Contractor in a manner satisfactory to the Engineer and the cost shall be incidental to this item. Straight edge testing will not be applied in irregular or odd shaped areas where the span of the entire completed area will not allow 12 feet (3.7m) parallel to pavement centerline.

After the fly ash treated subgrade has been finished as specified, the surface shall be protected against rapid drying for a period of not less than three days or until the pavement section is placed. Either of the following methods may be used to protect the surface against rapid drying:

a. Sprinkling to maintain the surface in a thorough and continuously moist condition or

b. Appling a 2 inch (50 mm) layer of earth over the complete course and maintaining it in a moist condition.

158-6.6 THICKNESS CONTROL.

The thickness of the fly ash treated subgrade shall be determined by depth tests or cores taken every 300 square yard (250 sq m) or less. When the base deficiency is more than 1/2 inch (12 mm), the Contractor shall correct such areas in a manner satisfactory to the Engineer. The Contractor shall replace the base material where depth tests or cores are taken and the cost shall be incidental to this item.

158-6.7 MAINTENANCE.

The Contractor shall maintain the fly ash treated subgrade in good condition until all the work has been completed, cured, and accepted by the Engineer. The cost is incidental to this item.

158-6.8 HANDLING AND SAFETY.

The Contractor shall obtain and enforce the fly ash supplier’s instructions for proper safety and handling of the fly ash to prevent physical eye or skin contact with fly ash during transport or application.

METHOD OF MEASUREMENT

158-7.1 Lime-fly ash treated subgrade shall be paid for by the number of square yards completed and accepted.

158-7.2 Fly ash shall be paid for by the number of tons of fly ash used as authorized.
BASIS OF PAYMENT

158-8.1 Payment shall be made at the contract unit price per square yard for the lime-fly ash treated subgrade at the specified thickness. The price shall be full compensation for furnishing all materials, except the lime and fly ash, and for all preparation, delivering, placing and mixing these materials, and all labor, equipment, tools and incidentals necessary to complete this item.

158-8.2 Payment shall be made at the contract unit price per ton of fly ash. This price shall be full compensation for furnishing this material; for all delivery, placing and incorporation of this material; and for all labor, equipment, tools, and incidentals necessary to complete this item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item P-158-8.1</th>
<th>8" Lime-fly ash treated subgrade - per square yard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item P-158-8.2</td>
<td>Fly ash (7%) - per ton</td>
</tr>
</tbody>
</table>

TESTING REQUIREMENTS

ASTM C311 Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))

ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method

ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D6938 Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

MATERIAL REQUIREMENTS

ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

END OF ITEM P-158
Item P-219

RECYCLED CONCRETE AGGREGATE BASE COURSE

DESCRIPTION

219-1.1 This item consists of a base course composed of recycled concrete aggregate, crushed to meet a particular gradation, constructed on a prepared course per these specifications and in conformity to the dimensions and typical cross-sections shown on the plans.

MATERIALS

219-2.1 Aggregate. Recycled concrete aggregate shall consist of portland cement concrete (PCC) or other concrete containing pozzolanic binder material. The recycled concrete material shall be free of reinforcing steel and expansion material. Asphalt concrete overlays shall be removed from the PCC surface prior to pavement removal and crushing. Any full slab asphalt concrete panels (used as a replacement for a removed PCC slab) shall also be removed. An incidental amount of recycled asphalt concrete pavement and other foreign material may be present in the recycled concrete aggregate.

Recycled concrete aggregate base course shall consist of at least 90%, by weight, Portland cement concrete, with the remaining 10% consisting of the following materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>0.1% max</td>
</tr>
<tr>
<td>Brick, mica, schist, or other friable materials</td>
<td>4% max</td>
</tr>
<tr>
<td>Asphalt concrete</td>
<td>10% max</td>
</tr>
</tbody>
</table>

Virgin aggregates may be added to meet the 90% minimum PCC requirement.

The percentage of wood, brick, mica, schist, other friable materials, and asphalt concrete shall be determined by weighing that material retained on the No. 4 sieve, and dividing by the total weight of recycled concrete aggregate material retained on the No. 4 sieve.

The fine aggregate shall be produced by crushing stone, gravel, slag, or recycled concrete that meet the requirements for wear and soundness specified for coarse aggregate. Fine aggregate may be added to produce the correct gradation.

The amount of flat and elongated particles in recycled concrete aggregate shall not exceed 20% for the fraction retained on the 1/2 inch (12 mm) sieve nor 20% for the fraction passing the 1/2 inch (12 mm) sieve when tested per ASTM D4791. A flat particle is one having a width to thickness ratio greater than 3; an elongated particle is one having a length to width ratio greater than 3.

The percentage of wear shall not be greater than 45% when tested per ASTM C131. The sodium sulfate soundness test (ASTM C88) requirement is waived for recycled concrete aggregate.

The fraction passing the No. 40 (0.42-mm) sieve shall have a liquid limit no greater than 25 and a plasticity index of not more than four (4) when tested per ASTM D4318. The fine aggregate shall have a minimum sand equivalent value of 35 when tested per ASTM D2419.

a. Sampling and testing. Recycled concrete aggregate samples for preliminary testing shall be furnished by the Contractor prior to the start of base construction. All tests for initial aggregate submittals necessary to determine compliance with the specification requirements will be made by the Engineer at no expense to the Contractor.

Samples of recycled concrete aggregate shall be furnished by the Contractor at the start of production and at intervals during production. The sampling points and intervals will be designated by the Engineer. The samples will be the basis of approval of specific lots of recycled concrete aggregate for the quality requirements.
Samples of recycled concrete aggregate to check gradation shall be taken at least once daily. Sampling shall be per ASTM D75, and testing shall be per ASTM C136 and ASTM C117.

b. **Gradation requirements.** The gradation (job mix) of the final mixture shall fall within the design range indicated in the following table, when tested per ASTM C117 and ASTM C136. The final gradation shall be continuously graded from coarse to fine and shall not vary from the low limit on one sieve to the high limit on an adjacent sieve or vice versa.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage by Weight Passing Sieves</th>
<th>Job Mix Tolerances Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inch (50 mm)</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>1-1/2 inch (38 mm)</td>
<td>95 - 100</td>
<td>±5</td>
</tr>
<tr>
<td>1 inch (25 mm)</td>
<td>70 - 95</td>
<td>±8</td>
</tr>
<tr>
<td>3/4 inch (19 mm)</td>
<td>55 - 85</td>
<td>±8</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>30 - 60</td>
<td>±8</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>12 - 30</td>
<td>±5</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
<td>0 - 5</td>
<td>±3</td>
</tr>
</tbody>
</table>

The job mix tolerances in the table shall be applied to the job mix gradation to establish a job control gradation band. The full tolerance still will apply if application of the tolerances results in a job control gradation band outside the design range.

EQUIPMENT

219-3.1 General. All equipment necessary to mix, transport, place, compact, and finish the recycled concrete aggregate base course shall be furnished by the Contractor. The Contractor shall provide written certification to the Engineer that all equipment meets the requirements for this section. The equipment shall be inspected by the Engineer at the job site prior to the start of construction operations.

219-3.2 Mixing equipment. Base course shall be thoroughly mixed in a plant suitable for recycled concrete aggregate. The mixer shall be a batch or continuous-flow type equipped with a calibrated metering and feeding device that introduce the aggregate and water into the mixer in specified quantities. If necessary, a screening device shall be installed to remove oversized material greater than 2 inches from the recycled concrete aggregate feed.

The Engineer shall have access to the plant at all times for inspection of the plant’s equipment and operation and for sampling the mixed recycled concrete aggregate materials.

219-3.3 Hauling equipment. The mixed recycled concrete aggregate base course shall be transported from the plant to the job site in hauling equipment having beds that are smooth, clean, and tight. Truck bed covers shall be provided and used to protect the mixed recycled concrete aggregate base course from rain during transport.

219-3.4 Placing equipment. Recycled concrete aggregate shall be placed using a mechanical spreader or machine capable of receiving, spreading, and shaping the material into a uniform layer or lift without segregation. The placing equipment shall be equipped with a strike off plate that can be adjusted to the layer thickness. The placing equipment shall have two end gates or cut off plates, so that the recycled concrete aggregate may be spread up to a lane width.

219-3.5 Compaction equipment. Recycled concrete aggregate base course shall be compacted using one or a combination of the following pieces of equipment: steel-wheeled roller; vibratory roller; pneumatic-tire roller; and/or hand-operated power tampers (for areas inaccessible to rollers).

219-3.6 Finishing equipment. Trimming of the compacted recycled concrete aggregate to meet surface requirements shall be accomplished using a self-propelled grader or trimming machine, with a mold board cutting edge of 12 feet minimum width automatically controlled by sensors in conjunction with an
independent grade control from a taut stringline. Stringline will be required on both sides of the sensor controls for all lanes.

CONSTRUCTION METHODS

219-4.1 Weather limitations. Construction is allowed only when the atmospheric temperature is at or above 35°F. When the temperature falls below 35°F, the Contractor shall protect all completed areas against detrimental effects of freezing. The Contractor shall repair any areas damaged by freezing, rainfall, or other weather conditions.

219-4.2 Preparing underlying course. The underlying course shall be checked by the Engineer before placing and spreading operations are started. Any ruts or soft yielding places caused by improper drainage conditions, hauling, or any other cause shall be corrected at the Contractor’s expense before the base course is placed there. Material shall not be placed on frozen material.

To protect the existing layers and to ensure proper drainage, the spreading of the recycled concrete aggregate base course shall begin along the centerline of the pavement on a crowned section or on the greatest contour elevation of a pavement with a variable uniform cross slope.

219-4.3 Grade control. Grade control between the edges of the recycled concrete aggregate base course lanes shall be accomplished by grade stakes, steel pins, or forms placed in lanes parallel to the centerline and at intervals of 50 feet or less on the longitudinal grade and 25 feet or less on the transverse grade.

219-4.4 Mixing. The recycled concrete shall be uniformly blended during crushing operations and mixed with water in a mixing plant suitable for recycled concrete aggregate. The plant shall blend and mix the materials to meet the specifications and to secure the proper moisture content for compaction.

219-4.5 Placing. The recycled concrete aggregate base material shall be placed on the moistened subgrade or base in layers of uniform thickness with an approved mechanical spreader.

The maximum depth of a compacted layer shall be 6 inches. If the total depth of the compacted material is more than 6 inches, it shall be constructed in two or more layers. In multi-layer construction, the material shall be placed in approximately equal-depth layers.

The previously constructed layer shall be cleaned of loose and foreign material prior to placing the next layer. The surface of the compacted material shall be kept moist until covered with the next layer.

Adjustments in placing procedures or equipment shall be made to obtain grades, to minimize segregation grading, to adjust the water content, and to ensure an acceptable recycled concrete aggregate base course.

219-4.6 Compaction. Immediately after completion of the spreading operations, the recycled concrete aggregate shall be compacted. The number, type, and weight of rollers shall be sufficient to compact the material to the required density.

Each layer of the recycled concrete aggregate base course shall be compacted to the required density using the compaction equipment. The moisture content of the material during placing operations shall be within ±1-1/2 percentage points of the optimum moisture content as determined by ASTM D1557.

The compaction shall continue until each layer has reached compaction that is at least 100% of the laboratory maximum density through the full depth of the layer. The Contractor shall make adjustments in compacting or finishing techniques to obtain true grades, to minimize segregation and degradation, to reduce or increase water content and to ensure a satisfactory base course. Any unsatisfactory materials shall be removed and replaced with satisfactory material or reworked, to meet the requirements of this specification.

219-4.7 Acceptance sampling and testing for density. Contractor’s laboratory shall perform all density tests in the Engineer’s presence and provide the test results upon completion daily to the Engineer for acceptance. Recycled concrete aggregate shall be accepted for density on a lot basis. A lot will consist of one day’s production where it does not exceed 2,400 square yards per lift. A lot will consist of one-half day’s production, where a day’s production is between 2,400 and 4,800 square yards per lift.
Each lot shall be divided into two equal sublots. One density test shall be made for each sublot and shall consist of the average of two random locations for density determination. Sampling locations will be determined by the Engineer on a random basis per ASTM D3665.

Each lot will be accepted for gradation when it falls within the limits and tolerances shown in the table above when tested per ASTM C117 and ASTM C131. If the proper gradation is not attained the gradation test will be repeated. If the re-test does not indicate gradations within the limits of the table above, the entire lot shall be rejected and replaced by the Contractor at the Contractor’s expense.

Each lot will be accepted for density when the field density is at least 100% of the maximum density of laboratory specimens prepared from samples of the base course material. The specimens shall be compacted and tested per ASTM D1557. The in-place field density shall be determined per ASTM D6938. The field density shall be determined in accordance with ASTM D6938 using Procedure A, the direct transmission method and the machines shall be calibrated in accordance with per ASTM D6938. When using the nuclear method, ASTM D4643 shall be used to determine the moisture content of the material. If the specified density is not attained, the entire lot shall be reworked and two additional random tests made. This procedure shall be followed until the specified density is reached.

219-4.8 Finishing. The surface of the recycled concrete aggregate base course shall be finished by equipment designed for this purpose.

Adding a thin layer of material to the top of the base course to meet grade shall not be allowed. If the elevation of the layer is 1/2 inch or more below grade, the layer shall be scarified to a depth of at least 3 inches, new material added, and the layer shall be recompacted. If the finished surface is above plan grade, it shall be cut back to grade and rerolled. The grade shall be measured on a maximum 25-foot grid (longitudinal and transverse). Thickness results shall be furnished to the Engineer daily for acceptance determination.

Should the surface become rough, corrugated, uneven in texture, or traffic marked prior to completion, the unsatisfactory portion shall be scarified, and recompacted or replaced at the Contractor’s expense.

219-4.9 Surface tolerances. The finished surface shall not vary more than 3/8 inch when tested with a 12-foot straightedge applied parallel with or at right angles to the centerline. The Contractor shall correct any deviation in excess of this amount, at the Contractor’s expense.

219-4.10 Thickness control. The completed thickness of the base course shall be within 1/2 inch of the design thickness. Four thickness determinations shall be made for each lot of material placed. Each lot shall be divided into four equal sublots and one test shall be made for each sublot. Sampling locations will be determined per ASTM D3665. Where the thickness is more than 1/2 inch deficient, the Contractor, at his or her expense, shall correct the areas by excavating to the required depth and replacing with new material. Additional test holes may be required to identify the limits of deficient areas.

219-4.11 Traffic. Equipment used in construction may be routed over completed portions of the base course, provided there is no damage to the base course. The equipment shall be routed evenly over the full width of the base course to avoid rutting or uneven compaction.

219-4.12 Maintenance. The base course shall be maintained until the base course is completed and accepted. Maintenance will include immediate repairs to any defects and shall be repeated as often as necessary to keep the completed work intact. The Contractor, at his or her expense, will rework any area of the recycled concrete aggregate base course that is damaged.

METHOD OF MEASUREMENT

219-5.1 The quantity of variable thickness (12-inch minimum) or 22-inch thick recycled concrete aggregate base course will be determined by measurement of the number of square yards of material actually constructed and accepted as complying with the plans and specifications. The quantity of crushed Recycled Concrete Aggregate base course for IAH Operations use shall be determined by measurement of the number cubic yards of material produced and delivered as required by IAH Operations.
BASIS OF PAYMENT

219-6.1 Payment shall be made at the contract unit price per square yard for variable thickness (12-inch minimum) or 22-inch thick recycled concrete aggregate base course. This price shall be full compensation for furnishing all materials, for preparing and placing these materials, and for all labor, equipment tools, and incidentals necessary to complete the item.

Payment shall be made at the contract unit price per cubic yard for crushed Recycled Concrete Aggregate base course for IAH Operations use. This price shall be full compensation for producing and furnishing all materials as well as for delivery of those materials to those locations as required by IAH Operations and all incidentals necessary to complete the item.

Payment will be made under:

Item P-219-6.1 Recycled Concrete Aggregate Base Course, Variable Thickness (12-Inch min) -- per square yard
Item P-219-6.2 Recycled Concrete Aggregate Base Course (22-Inch) -- per square yard
Item P-219-6.3 Crushing Operations for IAH Operations Use -- per cubic yard

TESTING REQUIREMENTS

ASTM C29 Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate
ASTM C88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM D75 Standard Practice for Sampling Aggregates
ASTM C117 Standard Test Method for Materials Finer than 75 μm (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C136 Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate
ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))
ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand Cone Method
ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN-m/m³))
ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber-Balloon Method
ASTM D3665 Standard Practice for Random Sampling of Construction Materials
ASTM D4643 Standard Test Method for Determination of Water (Moisture) Content of Soil by Microwave Oven Heating
ASTM D4718 Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles
ASTM D4791 Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM D6938 Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

END OF ITEM P-219
Item P-304

CEMENT-TREATED BASE COURSE

DESCRIPTION

304-1.1 This item shall consist of a cement-treated base (CTB) course composed of mineral aggregate and cement, uniformly blended and mixed with water. The mixed material shall be spread and shaped with a mechanical spreader, and compacted with rollers in accordance with these specifications and in conformance to the lines, grades, dimensions, and cross-sections shown on the plans.

MATERIALS

304-2.1 Aggregate. The aggregate shall be select granular materials, comprised of crushed or uncrushed gravel and/or stone, or recycled crushed and graded portland cement concrete (PCC). The material shall be free of wood, roots, sod, and weeds. The crushed or uncrushed aggregate shall consist of hard, durable particles of accepted quality, free from an excess of soft, flat, elongated, or disintegrated pieces, and objectionable matter. The method used to produce the aggregate shall ensure the finished product is as consistent as practicable. All inferior quality stones and rocks shall be wasted. If recycled PCC is used as the aggregate, it must meet the requirements for virgin aggregate.

The percentage of wear of the crushed aggregate retained on the No. 4 (4.75-mm) sieve shall not be greater than 45% when tested in accordance with ASTM C131. The sodium sulfate soundness loss shall not exceed 10%, or the magnesium sulfate soundness loss shall not exceed 15%, after five cycles, when tested in accordance with ASTM C88.

When tested in accordance with ASTM C136, the aggregate shall conform to the gradation(s) shown in the table below (titled Aggregate Gradation for CTB Material). An aggregate blend that meets the requirements of the table shall be selected by the Contractor and used in the final mix design. The final aggregate blend shall be well graded from coarse to fine within the limits designated in the table and shall not vary from the low limit on one sieve to the high limit on adjacent sieves, or vice versa. The portion of final aggregate blend passing the No. 40 (425 µm) sieve shall have a liquid limit of not more than 25 and a plasticity index of not more than six (6) when tested in accordance with ASTM D4318.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradation A</td>
</tr>
<tr>
<td></td>
<td>Gradation B</td>
</tr>
<tr>
<td>2 inch (50 mm)</td>
<td>100 ^</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>45 - 100</td>
</tr>
<tr>
<td>No. 10 (1.80 mm)</td>
<td>37 - 80</td>
</tr>
<tr>
<td>No. 40 (450 µm)</td>
<td>15 - 50</td>
</tr>
<tr>
<td>No. 80 (210 µm)</td>
<td>0 - 25</td>
</tr>
</tbody>
</table>

^ Maximum nominal size of aggregate is 1 inch (25 mm).

All aggregate samples required for testing shall be furnished by the Contractor at the expense of the Contractor. Sampling shall be performed by the Contractor in accordance with ASTM D75.

304-2.2 Cement. Cement shall conform to the requirements of ASTM C150, Type II.
304-2.3 Cementitious additives. Pozzolanic and slag cement may be added to the CTB mix. If used, each material must meet the following requirements:

a. Pozzolan. Pozzolanic materials must meet the requirements of ASTM C618, Class F, or N with the exception of loss of ignition, where the maximum shall be less than 6%. The supplementary optional physical requirements of Table 3 contained in ASTM C618 shall apply.

b. Slag Cement. Slag shall conform to ASTM C989, Grade 80, 100, or 120.

304-2.4 Water. Water used in mixing or curing shall be potable, clean and free of oil, salt, acid, alkali, sugar, vegetable, or other deleterious substances injurious to the finished product.

304-2.5 Curing materials. For curing CTB placed under PCC pavement, use white-pigmented, liquid membrane-forming compound conforming to ASTM C309, Type 2, Class A or Class B (wax-based).

For curing CTB placed under HMA pavement, use emulsified asphalt conforming to [___].

304-2.6 Sand blotter. Sand shall be applied, when required, to prevent tracking of the emulsion curing materials. The sand material shall be clean, dry, and non-plastic.

COMPOSITION OF MIXTURE

304-3.1 General. The CTB material shall be composed of a mixture of aggregate, cementitious material, and water. Fly ash or slag cement may be used as a partial replacement for Portland cement.

304-3.2 Mix design. The mix design shall use a cement content that, when tested in the laboratory per ASTM D1633, produces a 7-day compressive strength between 400 pounds per square inch (2758 kPa) minimum and 800 pounds per square inch (5516 kPa) maximum. The 28-day strength shall not exceed 1000 pounds per square inch (6895 kPa).

If the 3-day strength is greater than 500 pounds per square inch (3,447 kPa), the contractor shall construct transverse joints in the cement treated base layer in accordance with paragraph 304-5.9. The joints shall be made by sawcutting the hardened cement treated base to a depth of at least one-third of the thickness of the cement treated base.

Wet-dry tests shall be performed in accordance with AASHTO T135 and American Association of State Highway and Transportation Officials (AASHTO) T136 respectively by the Contractor. The weight loss for each type of test shall not exceed 14% after 12 cycles.

The mix design shall be provided by the Contractor including all aggregate material tests, a complete list of materials, including type, brand, source, and amount of cement, fine aggregate, coarse aggregate, water, and cementitious additives.

The mix design shall also include the amount of cement needed and the moisture-density relations of the composite aggregate mixture in accordance with ASTM D558. The mix design shall include certified test reports showing results of tests and results of 3-day, 7-day and 28-day compressive tests.

Mold a minimum of three cylinders of each cement mixture in accordance with ASTM D1632, except that test specimen molds shall be 4 inches in diameter by 4.6 inches high. Cure and test specimens in accordance with ASTM D1633 with the following exceptions: (1) cure specimens in moist room at 100 percent relative humidity for 3, 7 days; and 28 days (2) after curing, cap specimens and immerse in water at room temperature for a period of 4 hours prior to testing.

Should a change be made in aggregate sources or type of cement, or if cementitious additives are added or deleted from the mix, production of the CTB mix shall be stopped and a new mix design shall be submitted.

304-3.3 Submittals. At least 30 days prior to the placement of the CTB, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction, as well as the mix design information for the CTB material. Tests older than six (6) months shall not be used. The certification shall show the ASTM or AASHTO specifications or tests for the material, the name of the company...
performing the tests, the date of the tests, the test results, and a statement that the material did or did not comply with the applicable specifications. The submittal package shall include the following:

a. Source(s) of materials, including aggregate, cement, cementitious additives, curing, and bond-breaking materials.

b. Physical properties of the aggregates, cement, cementitious additives, curing, and bond-breaking materials.

c. Mix design:
 - Mix identification number
 - Aggregate gradation
 - Cement content
 - Water content
 - Cementitious materials content

d. Laboratory test results:
 - Compaction and strength test procedures
 - Laboratory compaction characteristics (maximum dry density and optimum moisture content)
 - Compressive strength at three (3) days, seven (7) days and twenty-eight (28) days.
 - Wet-dry and/or freeze-thaw weight loss, if applicable

No CTB material shall be placed until the submittal is accepted in writing by the Engineer. During production, the Contractor shall submit batch tickets for each delivered load.

EQUIPMENT

All equipment necessary to mix, transport, place, compact, and finish the CTB material shall be furnished by the Contractor. The equipment shall be inspected and approved by the Engineer at the job site prior to the start of construction operations.

304-4.1 Mixing. The mixer shall be a batch or continuous-flow type stationary mixer. The mixer shall be equipped with calibrated metering and feeding devices with calibrations performed at a minimum of at least every 6 months; that introduce the aggregate, cement, water, and cementitious additives (if used) into the mixer in the specified quantities. If necessary, a screening device shall be used to remove oversized material greater than 2 inches (50 mm) from the raw aggregate feed prior to mixing.

The Engineer shall have free access to the plant at all times for inspection of the plant’s equipment and operation and for sampling the CTB mixture and its components.

304-4.2 Hauling. The mixed CTB material shall be transported from the plant to the job site in trucks or other hauling equipment having beds that are smooth, clean, and tight. Truck bed covers shall be provided and used to protect the CTB from rain. CTB material that becomes wet during transport shall be rejected.

304-4.3 Placing. CTB material shall be placed using a mechanical spreader or a machine capable of receiving, spreading, and shaping the mixture without segregation into a uniform layer or lift. The equipment shall be equipped with a strike-off plate capable of being adjusted to the specified layer thickness. It shall also be equipped with two end gates or cut off plates, so that the CTB may be spread in widths varying up to lane width.

304-4.4 Compaction. Compaction of the CTB layer shall be accomplished using one or a combination of the following pieces of equipment: tamping or grid roller; steel-wheeled roller; vibratory roller; pneumatic-tire roller, and/or vibrating plate compactor (for areas inaccessible to rollers). The number, type, and weight of rollers and/or compactors shall be sufficient to compact the mixture to the required density.
304-4.5 Finishing. Final trimming of the compacted CTB to meet surface requirements shall be accomplished using a self-propelled grader or trimming machine, with a mold board cutting edge, which is at least 12 feet (3.7 m) wide and is automatically controlled by sensors in conjunction with an independent grade control from a taut stringline. Stringline will be required on both sides of the sensor controls for the pilot lane. For all other lanes, a single stringline on the outside and grade matching with previously completed adjacent lanes is permissible.

CONSTRUCTION METHODS

304-5.1 Weather limitations.

304-5.1.1 Cold weather. Do not construct base when weather conditions will detrimentally affect quality of the finished course. Apply cement when the ambient temperature is a minimum of 40°F (4°C) and rising. Do not apply cement to aggregate materials that are frozen or contain frost. If ambient temperature falls below 40°F (4°C), protect completed cement-treated areas against freezing. Reprocess, reshape, and recompact damaged material. The CTB shall not be placed on frozen surfaces. Provide drainage to prevent water from collecting or standing on stabilized areas, and on the pulverized, mixed, or partially mixed materials.

304-5.1.2 Rain. The CTB may not be placed when it is raining. If unexpected rain occurs during placement, the layer should be quickly compacted. CTB material that becomes wet by rain during transport or placement shall be evaluated by the Engineer, and may be rejected.

304-5.2 Preparation of underlying course. The underlying course shall be checked by the Engineer before placing and spreading operations are started, to ensure that it is free of any ruts, depressions, or bumps and is finished to the correct grade. Any ruts or soft yielding places shall be corrected before the CTB mixture is placed. The underlying course shall be wetted in advance of placing the CTB layer. The final prepared grade prior to placing the CTB should be in a firm and moist condition free of frost. Use of chemicals to eliminate frost will not be permitted.

To ensure proper drainage, placement of the base shall begin along the centerline of the pavement on a crowned section or on the highest elevation contour of a pavement with variable cross slope.

304-5.3 Grade control. Grade control between the edges of the CTB shall be accomplished at intervals of 50 feet (15 m) or less on the longitudinal grade and at 25 feet (7.5 m) or less on the transverse grade.

304-5.4 Handling, measuring, and batching. The continuous flow central plant site, layout, equipment, and provisions for transporting material shall assure a continuous supply of material to the work. Aggregate stockpiles shall be constructed in a manner that prevents segregation and intermixing of deleterious materials. Aggregates that are segregated or mixed with earth or foreign material will not be accepted.

Continuous flow plants shall be equipped with feeders to automatically and accurately proportion aggregates and bulk cement, by weight. When bulk cement is used, the Contractor shall use a suitable method of handling the cement such as a chute, boot or other device, to prevent loss of cement between the weigh hopper and mixer. The device shall provide positive assurance that the specified cement content is present in each batch.

304-5.5 Mixing. Aggregate and cement may be proportioned either by weight or volume, and shall be mixed sufficiently to prevent the forming of cement balls when water is added. The mixing time shall be that required to secure a well-blended, uniform mixture of aggregate, cement, water, and pozzolan (if used). The minimum mixing time will be based on the uniformity and consistency of the mixture.

304-5.6 Placing. The CTB mixture shall be deposited on the moistened subgrade or subbase and spread into a uniform layer of specified width and thickness that, when compacted and trimmed, conforms to the required line, grade, and cross-section. The Contractor may install the CTB layer in single or multiple compacted lifts; however, each compacted lift must be no greater than 6 inches (150 mm) thick. In multi-lift construction, the surface of the compacted lift shall be kept moist until covered with the next lift. Successive lifts shall be placed and compacted so that the required total depth of the CTB layer is completed within 12 hours.
A single spreader may be used, provided it is capable of placing a uniform, full-depth layer of material across the full width of the base in one pass. Otherwise, two or more spreaders will be required, and shall be operated so that spreading progresses along the full width of the base in a uniform manner.

304-5.7 Compaction. Immediately upon completion of the spreading operations, the CTB material shall be thoroughly compacted using approved compaction equipment. At the start of compaction, the moisture content shall be within ±2 percentage points of the specified optimum moisture.

304-5.8 Finishing. After completing compaction, the surface of the CTB layer shall be shaped to the specified lines, grades, and cross-section. During the finishing process, the surface shall be kept moist by means of fog-type sprayers. Compaction and finishing shall produce a smooth, dense surface, free of ruts, cracks, ridges, and loose material. All placement, compaction, and finishing operations shall be completed within two (2) hours from the start of mixing. Material not completed within the 2-hour time limit shall be removed and replaced at the Contractor's expense.

CTB layer limits that extend beyond the edges of the new PCC surface course shall be rolled down or shaped to ensure the drainage is away from the new PCC surface course edge.

304-5.9 Construction joints. At the end of each day’s construction, a transverse construction joint shall be formed that is a true vertical face (perpendicular to the centerline) and is free of loose material. Transverse construction joints shall be within 3 inches (75mm) of the planned joints in the overlying P-501 concrete surface. Longitudinal construction joints (parallel to the centerline) shall be formed to a consistent, well-defined vertical edge that is free of loose material. The longitudinal joints shall be located so there is a 2-foot (0.6 m) minimum offset from planned joints in any overlying layer.

While forming construction joints, the Contractor shall make sure the material in the joint area is adequately compacted and that the joints are finished level and even with the remainder of the CTB layer.

304-5.10 Curing. The compacted and finished CTB shall be cured with the approved curing agents as soon as possible and in no case later than two (2) hours after completion of the finishing operations. The layer shall be kept moist using a moisture-retaining cover or a light application of water until the curing material is applied.

When a liquid membrane-forming curing compound is used as the curing agent, the surface of the CTB layer shall be uniformly sprayed with the curing compound at the rate of one gallon (3.8 liters) to not more than 200 square feet (18.6 m²) to obtain a uniform cover over the surface. The spraying equipment shall be of the fully atomizing type equipped with a tank agitator. The curing compound shall be thoroughly and uniformly mixed with the pigment in the storage tank. During application, the compound shall be stirred continuously by mechanical means. Hand spraying of odd widths or shapes and CTB surfaces exposed by the removal of forms is permitted.

The curing seal shall be maintained and protected until the pavement is placed. If the surface of the finished CTB and/or the curing seal becomes damaged, additional curing material shall be applied at the time it is damaged or when the damage is first observed.

304-5.11 Protection. Completed portions of the cement-stabilized area may be opened to local traffic provided the curing process is not impaired and to other traffic after the curing period has elapsed, provided that the cement-stabilized course has hardened sufficiently to prevent surface marring or distortion by equipment or traffic. Do not permit construction equipment on the area during protection and curing periods. Necessary cement and water may be hauled over the area with pneumatic-tired equipment on approval of the Engineer. Protect finished portions of cement stabilized base from traffic of equipment used in constructing adjoining sections in a manner to prevent marring or damaging completed work. The CTB shall also be protected from freezing at all times.

304-5.12 Bond-breaker. When the CTB is to be placed directly beneath PCC, the entire surface of the CTB shall be coated with a de-bonding compound applied in a quality sufficient to prevent bonding of the PCC pavement to the base course. The bond-breaker shall be a second application of the same compound from P304-2.5 and at the same rate per P304-5.10. If the film becomes damaged from any cause, the damaged portions shall be repaired immediately with additional compound or other approved methods. If an impervious membrane or asphalt emulsion is used as a curing material, additional applications of curing
materials may be required. The Contractor shall be responsible for selecting the de-bonding compound and determining the necessary application rate. The de-bonding compound shall be approved by the Engineer prior to being incorporated into the work.

MATERIAL ACCEPTANCE

304-6.1 Acceptance sampling and testing. All acceptance sampling and testing, with the exception of coring for thickness determination, necessary to determine conformance with the requirements specified in this section will be performed by the Engineer. The Contractor shall provide the required CTB samples during construction for acceptance testing purposes. The samples shall be taken by in the presence of the Engineer, or the Engineer’s authorized representative.

Testing organizations performing these tests shall meet the requirements of ASTM D3666. All test equipment in Contractor-furnished laboratories shall be calibrated by the testing organization prior to the start of operations.

The CTB layer shall be tested for density, thickness, grade, and surface tolerance on a lot basis, with a lot consisting of either (1) one day’s production not to exceed 2,000 square yards (1700 sq m), or (2) a half day’s production, where a day’s production consists of 2,000 to 4,000 square yards (1675 to 3350 m²).

Each lot shall be divided into four equal sublots. Within each sublot, one density test, one thickness measurement, and continuous surface straightedge tests (surface tolerance testing) shall be performed, as described below. Sampling locations shall be determined by the Engineer per ASTM D3665.

If only three sublots are produced, the three sublots shall constitute a complete lot. If one or two sublots are produced for the same reason, they shall be incorporated into the next or previous lot, and the total number of sublots shall be used in the acceptance criteria calculation.

End-of-production sublots (that is, sublots associated with the final placement of CTB for the project and are less than a complete lot) shall be handled as (1) three sublots shall constitute a lot, or (2) one or two sublots shall be incorporated into the previous lot.

304-6.1.1 Density testing. CTB samples shall be taken from each sublot and used to create laboratory test specimens representing the various sublots. The specimens shall be compacted and tested for density and moisture content per ASTM D558. The density for each sublot comprising a lot, shall be used to determine an average density for the lot, which will serve as the basis for acceptance of the lot for density.

Within each sublot in the field, one in-place density test shall be performed in accordance with ASTM D6938. The location of the test shall be randomly selected per ASTM D3665. The in-place density for each sublot comprising the lot shall be averaged and compared with the corresponding average lot density. Acceptance criteria for CTB density are provided in paragraph 304-6.2.1. All testing shall be done by the Contractor’s laboratory in the presence of the Engineer or the Engineer’s authorized representative and density test results shall be furnished upon completion to the Engineer for acceptance determination.

304-6.1.2 Thickness testing. The CTB shall be tested for thickness using the same lot and sublots established for density testing. After three (3) days of curing, one 3-inch (75 mm) diameter core per sublot shall be obtained from a random location, per ASTM D3665. The thickness of each sampled core shall be determined using the caliper measurement procedures provided in ASTM C174. The average thickness for the lot shall be determined using the individual sublot core thicknesses. Acceptance criteria for CTB thickness are provided in paragraph 304-6.2.2. At all locations where cores have been drilled, the resulting core holes shall be filled by the Contractor with CTB or non-shrink grout.

304-6.1.3 Grade testing. The elevations of the finished CTB shall be surveyed every 25 feet (7.5 m) on both sides of the CTB lane as soon as it has hardened sufficiently. Acceptance criteria for CTB grade are provided in paragraph 306-6.2.3.

304-6.1.4 Surface tolerance testing. After the CTB has hardened sufficiently, it shall be tested for surface tolerance with a 12-foot (3.7 m) straightedge or other approved measuring device for tolerances outlined in paragraph 304-6.2.
304-6.2 Acceptance criteria. Acceptance of CTB will be based on density, thickness, grade, and surface tolerance, as described in the paragraphs below.

304-6.2.1 Density requirements. For density, each lot of compacted material will be accepted without adjustment if the average in-place density of the lot is equal to or greater than 98% of the average laboratory density determined for the lot. Each lot of compacted CTB shall be accepted and payment adjusted in accordance with the table below.

<table>
<thead>
<tr>
<th>Average Dry Density (%)</th>
<th>Payment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.0 and greater</td>
<td>100</td>
</tr>
<tr>
<td>97.0 - 97.9</td>
<td>95</td>
</tr>
<tr>
<td>96.0 - 96.9</td>
<td>90</td>
</tr>
<tr>
<td>95.0 - 95.9</td>
<td>75</td>
</tr>
<tr>
<td>Less than 95.0</td>
<td>Reject</td>
</tr>
</tbody>
</table>

If the average density is below 95%, the lot will be rejected and shall be removed and replaced at the Contractor's expense. In multi-layer construction, density shall be tested for each lift, and all lifts within a rejected lot shall be removed and replaced. No payment shall be made for removed lifts. Replacement lifts shall be paid in accordance with this section.

304-6.2.2 Thickness requirements. The completed thickness shall be as shown on the plans. When the average lot thickness is not deficient by more than 1/2 inch (12 mm) from the plan thickness, full payment shall be made. If the average lot thickness is deficient by more than one inch (25 mm), it shall be removed and replaced at the Contractor's expense. When such measurement is deficient by more than 1/2 inch (12 mm) but less than one inch (25 mm) from the plan thickness, one additional core shall be taken at random from each sublot within the lot. The thickness of these additional cores shall be determined as indicated in paragraph 304-6.1.2. A new average lot thickness shall be recomputed based on these additional cores and the original cores taken from each sublot. If the recomputed average lot thickness is not deficient by more than 1/2 inch (12 mm) from the plan thickness, full payment shall be made. If the average lot thickness is deficient by more than 1/2 inch (12 mm) from the plan thickness, the entire lot shall be removed and replaced at the Contractor's expense or shall be permitted to remain in-place at an adjusted payment of 75% of the contract unit price.

When the measured thickness is more than that indicated on the plans, it will be considered as conforming to the requirements, provided the surface of the completed CTB layer is within the established grade and surface tolerance requirements.

304-6.2.3 Grade requirements. When the completed surface is higher than 1/2 inch (12 mm) above the grade shown in the plans, the surface shall be trimmed, at the Contractor's expense, with an approved grinding machine to an elevation that falls within a tolerance of 1/4 inch (6 mm) or less.

304-6.2.4 Surface tolerance requirements. The finished surface shall not vary more than 3/8 inch (9 mm) when tested with a 12-foot (3.7 m) straightedge applied parallel with, or at right angles to, the centerline of the CTB area. Areas in the CTB showing high spots greater than 3/8 inch (9 mm) over 12 feet (3.7 m) shall be marked and immediately trimmed with an approved grinding machine. Such trimming shall be at the Contractor's expense.

304-6.2.5 Compression Strength. The thickness cores from 304-6.2.2 shall be tested for compressive strength at 3 days. If more than 20% of the individual cores for the Lot, have 3-days strengths greater than 500 pounds per square foot (3,447 kPa), the contractor shall construct transverse joints in the cement treated base layer in accordance with paragraph 304-5.9. The joints shall be made by sawcutting the hardened cement treated base to a depth of at least one-third of the thickness of the cement treated base. Sawcuts due to exceeding the strength limit will be incidental to the item.
METHOD OF MEASUREMENT

304-7.1 Cement-treated base course. The quantity of cement-treated base course will be determined by measurement of the number of square yards (m^2) of CTB actually constructed and accepted by the Engineer as complying with the plans and specifications.

BASIS OF PAYMENT

304-8.1 Cement-treated base course. Payment shall be made at the contract unit price per square yard (m^2) for cement-treated base course. This price shall be full compensation for furnishing all materials, including cement; for all preparation, manipulation, placing, and curing of these materials; and for all labor, equipment, tools, and incidentals necessary to complete the item.

Each lot of CTB material will be accepted for density at the full contract price adjusted in accordance with paragraph 304-6.2.1.

Payment will be made under:

Item P-304-8.1 Cement Treated Base Course (6-Inch) - per Square Yard

TESTING REQUIREMENTS

ASTM C88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM C136 Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregate
ASTM C174 Standard Test Method for Measuring Thickness of Concrete Elements Using Drilled Concrete Cores
ASTM D75 Standard Practice for Sampling Aggregates
ASTM D558 Standard Test Methods for Moisture-Density (Unit Weight) Relations of Soil-Cement Mixtures
ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D1633 Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders
ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
ASTM D6938 Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
ASTM D3665 Standard Practice for Random Sampling of Construction Materials
ASTM D3666 Standard Specification for Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials
AASHTO T135
Standard Method of Test for Wetting-and-Drying Test of Compacted Soil-Cement Mixtures

AASHTO T136
Standard Method of Test for Freezing-and-Thawing Tests of Compacted Soil-Cement Mixtures

MATERIAL REQUIREMENTS

<table>
<thead>
<tr>
<th>ASTM C150</th>
<th>Standard Specification for Portland Cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C309</td>
<td>Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete</td>
</tr>
<tr>
<td>ASTM C595</td>
<td>Standard Specification for Blended Hydraulic Cements</td>
</tr>
<tr>
<td>ASTM C618</td>
<td>Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete</td>
</tr>
<tr>
<td>ASTM C989</td>
<td>Standard Specification for Slag Cement for Use in Concrete and Mortars</td>
</tr>
<tr>
<td>ASTM D977</td>
<td>Standard Specification for Emulsified Asphalt</td>
</tr>
<tr>
<td>ASTM D2397</td>
<td>Standard Specification for Cationic Emulsified Asphalt</td>
</tr>
</tbody>
</table>

END OF ITEM P-304
Item P-306 Lean Concrete Base Course

DESCRIPTION

306-1.1 This item shall consist of a subbase material, herein termed lean concrete, that is composed of aggregate and cement uniformly blended together and mixed with water. The mixture may also include approved cementitious additives, in the form of fly ash or slag, and chemical admixtures. The mixed material shall be spread, shaped, and consolidated using concrete paving equipment in accordance with these specifications and in conformity to the lines, grades, dimensions, and typical cross-sections shown on the plans.

MATERIALS

306-2.1 Aggregate. The coarse aggregate fraction shall be crushed stone, crushed or uncrushed gravel, crushed and adequately seasoned, air-cooled, iron blast furnace slag, crushed recycled concrete, or a combination thereof. The fine aggregate fraction may be part of the natural aggregate blend as obtained from the borrow source or it may be natural sand that is added at the time of mixing.

The aggregate shall consist of hard, durable particles, free from an excess of flat, elongated, soft, or disintegrated pieces, or objectionable matter such as roots, sod, weeds, organic impurities, etc. A flat particle is one having a ratio of width to thickness greater than five; an elongated particle is one having a ratio of length to width greater than five.

The design aggregate blend shall conform to the gradation(s) shown in the table below, when tested in accordance with ASTM C136. The aggregates shall be within the limits for deleterious material contained in ASTM C33 Table 3 type 4S. Aggregates shall not contain any substance which may be deleteriously reactive with the alkalies in the cement, except as permitted in ASTM C33.

<table>
<thead>
<tr>
<th>Sieve Size (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradation A</td>
</tr>
<tr>
<td>2 inch (50 mm)</td>
<td>--</td>
</tr>
<tr>
<td>1-1/2 inch (38 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 inch (25 mm)</td>
<td>70 - 95</td>
</tr>
<tr>
<td>3/4 inch (19 mm)</td>
<td>55 - 85</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>30 - 60</td>
</tr>
<tr>
<td>No. 40 (425 µm)</td>
<td>10 - 30</td>
</tr>
<tr>
<td>No. 200 (75 µm)</td>
<td>0 - 15</td>
</tr>
</tbody>
</table>

306-2.2 Cement. Cement shall conform to the requirements of ASTM C150 Type I or II.

306-2.3 Cementitious additives. Pozzolanic may be added to the lean concrete mix. If used, each material must meet the following requirements:

a. Pozzolan. Pozzolanic materials must meet the requirements of ASTM C618, Class N, F, or C Fly Ash, except the loss on ignition shall be 6% for Class N and F.

306-2.4 Chemical admixtures. The Contractor shall submit certificates indicating that the material to be furnished meets all the requirements listed below. In addition, the Engineer may require the Contractor to submit complete test data showing that the material to be furnished meets all the requirements of the cited specification.
a. **Air-entraining admixtures.** Air-entraining admixtures shall meet the requirements of ASTM C260.

b. **Water-reducing admixtures.** Water-reducing, set-controlling admixtures shall meet the requirements of ASTM C494, Type A, D, E, F, or G. Water-reducing admixtures shall be added at the mixer separately from air-entraining admixtures in accordance with the manufacturer’s printed instructions. The air entrainment agent and the water-reducing admixture shall be compatible.

c. **Retarding admixtures.** Retarding admixtures shall meet the requirements of ASTM C494, Type B or D.

d. **Accelerating admixtures.** Accelerating admixtures shall meet the requirements of ASTM C494, Type C.

306-2.5 Water

Water used in mixing or curing shall be potable, clean and free of oil, salt, acid, alkali, sugar, vegetable, or other deleterious substances injurious to the finished product.

306-2.6 Curing materials

For curing lean concrete, use white-pigmented, liquid membrane-forming compound conforming to ASTM C309, Type 2, Class B, or clear or translucent Type 1-D, Class B with white fugitive dye.

COMPOSITION OF MIXTURE

306-3.1 Mix design

The lean concrete mix design shall be based on trial batch results conducted in the laboratory. The lean concrete shall be designed to meet the criteria in this section.

306-3.1.1 Compressive strength

Compressive strength shall not be less than 500 pounds per square inch (3,445 kPa) nor greater than 800 pounds per square inch (5,516 kPa) at seven (7) days. Three-day and seven-day strengths shall be taken as the average of two compressive strength test results. All compressive strength specimens shall be prepared and tested in accordance with ASTM C192 and ASTM C39, respectively.

If the 3-day strength is greater than 500 pounds per square inch (3,447 kPa), the Contractor shall construct transverse joints in the lean concrete layer in accordance with paragraph 306-5.10.2.

If there is a change in aggregate sources, type of cement used, or pozzolanic materials, a new mix design must be submitted.

306-3.1.2 Air content

The percentage of air entrainment shall be 6%, ±1/2%. Air content shall be determined by testing in accordance with ASTM C231 for gravel and stone coarse aggregate and ASTM C173 for slag and other highly porous coarse aggregate.

306-3.2 Submittals

At least 30 days prior to the placement of the lean concrete, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction, as well as the mix design information for the lean concrete material. Tests older than six (6) months shall not be used. The certification shall show the appropriate ASTM or AASHTO specifications or tests for the material, the name of the company performing the tests, the date of the tests, the test results, and a statement that the material did or did not comply with the applicable specifications. The submittal package shall include the following:

- **a. Sources of materials**, including aggregate, cement, admixtures, and curing and bond breaking materials.
- **b. Physical properties** of the aggregates, cement, admixtures, curing and bond breaking materials.
- **c. Mix design:**
 - Mix identification number
 - Weight of saturated surface-dry aggregates (fine and coarse)
 - Combined aggregate gradation
 - Cement factor
 - Water content
• Water-cementitious material ratio (by weight)
• Volume of admixtures and yield for one cubic yard (cubic meter) of lean concrete

d. Laboratory test results:
• Slump
• Air content
• Compressive strength at 3, 7, and 28 days (average values)
• Freeze-thaw weight loss (when applicable)

In addition, where applicable, the Contractor shall submit for approval by the Engineer a jointing plan for transverse joints in the lean concrete layer.

During production, the Contractor shall submit batch tickets for each delivered load.

EQUIPMENT

306-4.1 All equipment necessary to mix, transport, place, compact, and finish the lean concrete material shall be furnished by the Contractor. The equipment shall be subject to inspection and approval by the Engineer.

306-4.2 Mixing. Lean concrete may be mixed in a stationary mixer (central batch plant or at the site), or in a truck mixer. The mixer type and capacity shall be inspected and approved by the Engineer before production begins. Each mixer shall have attached in a prominent place a manufacturer’s nameplate showing the capacity of the drum in terms of volume of mixed concrete and the speed of rotation of the mixing drum or blades.

306-4.2.1 Stationary plant mixer. The batch plant and equipment shall conform to the requirements of ASTM C94. The Engineer shall have unrestricted access to the plant at all times for inspection of the plant’s equipment and operation and for sampling the lean concrete mixture and its components.

The mixers shall be examined daily for changes in condition due to accumulation of hard concrete or mortar or wear of blades.

306-4.2.2 Truck mixers. Truck mixers used for mixing lean concrete shall conform to the requirements of ASTM C94. Lean concrete may be entirely mixed in a truck mixer or partially mixed in a stationary mixer with mixing completed in a truck mixer. Truck mixers shall be equipped with an accurate continuous registering electronically or mechanically activated revolution counter, to verify the number of drum revolutions.

306-4.3 Hauling. Mixed lean concrete shall be hauled from the stationary plant to the job site in a truck agitator, a truck mixer operating at agitating speed, or a non-agitating truck. All equipment shall conform to the requirements of ASTM C94. When truck mixers are used to mix lean concrete, they may be transported to the job site in the same truck operating at agitating speeds, truck agitators, or a non-agitating truck. The bodies of non-agitating trucks shall be smooth, metal containers and shall be capable of discharging the concrete at a controlled rate without segregation.

306-4.4 Placing and finishing.

306-4.4.1 Forms. Straight side forms shall be made of steel and shall be furnished in sections not less than 10 feet (3 m) in length. Forms shall have a depth equal to the pavement thickness at the edge. Flexible or curved forms of proper radius shall be used for curves of 100 feet (30 m) radius or less. Forms shall be provided with adequate devices for secure settings so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms with battered top surfaces and bent, twisted or broken forms shall not be used. Built-up forms shall not be used, except as approved by the Engineer.

The top face of the form shall not vary from a true plane more than 1/8 inch (3 mm) in 10 feet (3 m), and the upstanding leg shall not vary more than 1/4 inch (6 mm). The forms shall contain provisions for
locking the ends of abutting sections together tightly for secure setting. Wood forms may be used under special conditions, when accepted by the Engineer.

306-4.4.2 **Fixed form or slip-form pavers.** Lean concrete can be placed using fixed form or slip-form pavers. The paver shall be fully energized, self-propelled and capable of spreading, consolidating, and finishing the lean concrete material, true to grade, tolerances, and cross-sections. The paver shall be capable of finishing the surface so that hand finishing is not required. The paver shall be of sufficient weight and power to construct the maximum specified concrete paving lane width, at adequate forward speed, without transverse, longitudinal or vertical instability or without displacement. The slip-form paver shall be equipped with electronic or hydraulic horizontal and vertical control devises using guide wires or stringlines on both sides of the machine. Slope control will not be allowed.

 a. Concrete pavers. Concrete pavers are approved as paver-finishing machines for lean concrete, providing they are capable of handling the amount of lean concrete required for the full-lane width specified, and consolidating the lean concrete full depth. A concrete paver is a power-driven machine with augers, strike-off and tamper bars ahead of a pan screed, with at least one trailing oscillating screed or belt finisher.

 b. Bridge deck pavers. Bridge deck pavers are approved as paver-finishing machines for lean concrete, providing they are capable of handling the amount of lean concrete required for the full-lane width specified, and consolidating the lean concrete full depth. A bridge deck paver is an automatic truss paving machine, with paving carriage that strikes off, vibrates, paves, and textures the lean concrete with augers, internal vibration, paving rollers, and drag pan.

306-4.5 **Consolidation.** For side-form construction, vibrators may be either the surface pan type for pavements less than 8 inches (200 mm) thick or the internal type with either immersed tube or multiple spuds for the full width of the slab. They may be attached to the spreader or the finishing machine, or they may be mounted on a separate carriage. They shall not come in contact with the joint, subgrade, or side forms.

For slip-form construction, the paver shall vibrate the lean concrete for the full width and depth of the strip of pavement being placed. Vibration shall be accomplished by internal vibrators.

The number, spacing, frequency, and eccentric weights of vibrators shall be provided to achieve acceptable consolidation without segregation and finishing quality. Adequate power to operate all vibrators at the weight and frequency required for a satisfactory finish shall be available on the paver. The internal vibrators may be supplemented by vibrating screeds operating on the surface of the lean concrete. The Contractor shall constantly monitor the frequency of each of the individual vibrators and shall provide constant monitoring of the consolidation process to avoid honeycombing or segregation. Areas that are visually determined to be honeycombed or segregated shall be corrected at the Contractor’s expense.

The vibrators and tamping elements shall be automatically controlled so that they stop operation as forward motion ceases. Any override switch shall be of the spring-loaded, momentary-contact type.

Hand held vibrators may be used in irregular areas.

306-4.6 **Jointing.** The Contractor shall provide sawing equipment adequate in number of units and power to produce contraction or construction joints of the required dimensions as shown on the plans. The Contractor shall provide at least one standby saw in good working order and a supply of saw blades at the site of the work at all times during sawing operations.
temperature may fall below 35°F (2°C) within 24 hours. Under no circumstances shall the lean concrete be placed on frozen underlying courses or mixed when the aggregate is frozen.

When mixing and placing is authorized during cold weather, the Engineer may require the water and/or the aggregates to be heated to not less than 70°F (21°C) nor more than 150°F (66°C). The aggregates may be heated by either steam or dry heat prior to being placed in the mixer. The apparatus used shall heat the mass uniformly and shall be arranged to preclude the possible occurrence of overheated areas which might be detrimental to the materials. The Contractor shall adhere to the practices recommended in American Concrete Institute (ACI) 306R, Guide to Cold Weather Concreting.

306-5.1.2 Hot weather. To prevent rapid drying of newly constructed lean concrete, the lean concrete temperature from initial mixing through final cure shall not exceed 90°F (32°C). The aggregates and/or mixing water shall be cooled as necessary to maintain the lean concrete temperature at or not more than the specified maximum. Ice or ice water may be substituted for the mixing water for this purpose. The Contractor shall adhere to the practices recommended in ACI 305R.

In addition, during periods of warm weather when the maximum daily air temperature exceeds 85°F (30°C), the forms and/or the underlying material shall be sprinkled with water immediately before placing the lean concrete.

306-5.1.3 Rain. All mixing and batching operations should be halted during rain showers and any plastic lean concrete placed should be covered immediately. The lean concrete shall be kept covered with plastic sheeting or other waterproof material until such time that the rain does not make any surface indentation on the lean concrete layer. Areas damaged by rain shall be refinished or replaced.

306-5.2 Form setting. Forms shall be set sufficiently in advance of the lean concrete placement to ensure continuous paving operation. After the forms have been set to correct grade, the grade shall be thoroughly tamped, either mechanically or by hand, at both the inside and outside edges of the base of the forms. Forms shall be staked into place with not less than three (3) pins for each 10 feet (3 m) section. A pin shall be placed at each side of every joint.

Form sections shall be tightly locked and shall be free from play or movement in any direction. The forms shall not deviate from true line by more than 1/4 inch (6 mm) at any joint. Forms shall be so set that they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms shall be cleaned and oiled prior to the placing of lean concrete.

The alignment and grade elevations of the forms shall be checked and corrections made by the Contractor immediately before placing the lean concrete. When any form has been disturbed or any grade has become unstable, the form shall be reset and rechecked.

306-5.3 Preparation of underlying course. The underlying course shall be checked by the Engineer before placing and spreading operations are started, to ensure it is free of any ruts, depressions, or bumps and is finished to the correct grade. Any ruts or soft yielding places in the underlying course shall be corrected at the Contractor’s expense before the lean concrete mixture is placed. The underlying course should be wetted down in advance of placing the lean concrete to ensure a firm, moist condition at the time of lean concrete placement. The underlying course shall be protected from frost. Usage of chemicals to eliminate frost is not permissible.

306-5.4 Grade control. Grade control between the edges of the pavement shall be accomplished at intervals of 50 feet (15 m) or less on the longitudinal grade and at 25 feet (7.5 m) or less on the transverse grade. To protect the underlying course and ensure proper drainage, the lean concrete paving shall begin along the centerline of the pavement on a crowned section or on the greatest contour elevation of a pavement with variable cross slope.

306-5.5 Handling, measuring, and batching material. The batch plant site, layout, equipment, and provisions for transporting material shall assure a continuous supply of material to the work. Stockpiles shall be constructed in a manner that prevents segregation and intermixing of deleterious materials. Aggregates that have become segregated or mixed with earth or foreign material shall not be used. All aggregates produced or handled by hydraulic methods, and washed aggregates, shall be stockpiled or
binned for draining at least 12 hours before being batched. Rail shipments requiring more than 12 hours transit will be accepted as adequate binning if the car bodies permit free drainage.

Batching plants shall be equipped to proportion aggregates and bulk cement, by weight, automatically using approved interlocked proportioning devises. When bulk cement is used, the Contractor shall use a suitable method such as a chute, boot or other device approved by the Engineer to handle the cement between the weighing hopper and the transporting container or into the batch itself for transportation to the mixer, to prevent loss of cement. The device shall provide positive assurance that each batch has the specified cement content.

306-5.6 Mixing. All lean concrete shall be mixed and delivered to the site per the requirements of ASTM C94. The mixing time should be adequate to produce lean concrete that is uniform in appearance, with all ingredients evenly distributed. Mixing time shall be measured from the time all materials are emptied into the drum (provided all the water is added before one-fourth the preset mixing time has elapsed) and continues until the time the discharge chute is opened to deliver the lean concrete.

If mixing in a plant, the mixing time shall not be less than 50 or greater than 90 seconds. If mixing in a truck, the mixing time shall not be less than 70 or more than 125 truck-drum revolutions at a mixing speed of not less than six (6) or more than 18 truck-drum revolutions per minute.

Re-tempering lean concrete by adding water or by other means will not be permitted, except when lean concrete is delivered in truck mixers. With truck mixers, additional water may be added to the batch materials and additional mixing performed to allow proper placement of the material, provided (a) the addition of water is performed within 45 minutes after the initial mixing operations and (b) the slump and water/cementitious ratio specified in the mix design is not exceeded.

306-5.7 Hauling. The elapsed time from the addition of cementitious material to the mix until the lean concrete is deposited in place at the work site shall not exceed 45 minutes when the concrete is hauled in nonagitating trucks, or 90 minutes when it is hauled in truck mixers or truck agitators.

306-5.8 Placing, consolidating, and finishing. Prior to placement of the lean concrete layer, the prepared underlying course shall be moistened with water, without saturating, to prevent rapid loss of moisture from the lean concrete. In cold weather, the underlying course shall be protected so that it will be entirely free of frost when lean concrete is placed.

The Contractor has the option of side-form or slip-form paving. Either option shall require the hauled lean concrete material to be discharged onto the prepared underlying course such that segregation of the mix is minimized and minimum handling of the mix is needed. The lean concrete shall be placed continuously at a uniform rate without unscheduled stops except for equipment failure or other emergencies. Avoid contamination of plastic lean concrete with foreign material on construction equipment, workman’s footwear, or any other sources. Lean concrete shall not be mixed, placed, or finished when the natural light is insufficient, unless an adequate artificial lighting system is provided.

306-5.8.1 Side-form construction. For side-form placement, the Contractor shall verify the elevations of the fixed forms so the thickness and finished grade of the lean concrete layer will be in accordance with the requirements of the project plans and specifications. The lean concrete shall be spread uniformly between the forms immediately after it is placed using a spreading machine. Necessary hand spreading shall be done with shovels. Rakes shall not be allowed for spreading lean concrete.

The spreading shall be followed immediately by thorough consolidation using vibrating screeds or spud vibrators. Vibrators may be external or internal type, depending on the thickness of the lean concrete layer. The surface vibrators may be attached to the spreader or they may be mounted on a separate carriage. They shall not come in contact with the joint, subgrade, or side forms. When spud vibrators are used, the lean concrete shall be thoroughly consolidated against and along the faces of all forms and previously placed lean concrete. Vibrators shall not be permitted to come in contact with a joint assembly, the grade, or a side form. In no case shall the vibrator be operated longer than 20 seconds in any one location, nor shall the vibrators be used to move the lean concrete.

Hand finishing will not be permitted except in areas where the mechanical finisher cannot operate.
306-5.8.2 Slip-form construction. For slip-form construction, the Contractor shall verify the elevations of the guide wires controlling slip-form pavers such that the thickness and finished grade of the lean concrete will be in accordance with the requirements of the project plans and specifications. The slip-form paver should spread, consolidate, and shape the freshly placed lean concrete in one complete pass of the machine. The machine shall vibrate and finish the lean concrete for the full width and depth of the layer.

306-5.9 Final finishing. Final finishing shall be accomplished while the lean concrete is still in the plastic state. Limited surface refinishing by hand is acceptable to meet the grade and surface tolerance established in paragraphs 306-6.2.3 and 306-6.2.4, after strike off and consolidation.

If the overlying layer is to be PCC pavement, the surface of the lean concrete shall not be textured. If the overlying layer is to be HMA pavement, and if the bond between the HMA layer and the lean concrete is considered important for pavement performance, tining or scarifying the surface to provide a coarse texture may be permitted.

306-5.10 Joints. Joints shall be constructed as shown on the plans.

306-5.10.1 Construction joints. Locate all longitudinal and transverse construction joints as shown on the plans. If longitudinal joints are not shown, locate longitudinal joints within 6 inches (150 mm) from planned joints in the PCC to be placed over the lean concrete.

306-5.10.2 Contraction joints. If required by paragraph 306-3.1.1 or if shown on the plans, transverse contraction joints shall be constructed by sawing the hardened lean concrete to a depth of at least one-third the thickness of the lean concrete base. These joints shall match within 3 inches (75 mm) the planned joints of the overlying concrete surface.

306-5.10.3 Concrete saws. When sawing of joints are specified, the Contractor shall provide sawing equipment adequate in number of units and power to complete the sawing to the required dimensions and at the required rate. The Contractor shall provide at least one standby saw in good working order. An ample supply of saw blades shall be maintained at the site of the work at all times during sawing operations. The Contractor shall provide adequate artificial lighting facilities for night sawing. All equipment shall be on the job at all times during lean concrete placement.

306-5.11 Curing. Immediately after the finishing operations are complete and within two (2) hours of placement of the lean concrete, the entire surface and edges of the newly placed lean concrete shall be sprayed uniformly with white pigmented, liquid membrane forming curing compound. The layer should be kept moist using a moisture-retaining cover or a light application of water until the curing material is applied. The curing compound shall not be applied during rainfall.

The curing material shall be applied at a maximum rate of 200 square feet per gallon (5.0 m²/l) using pressurized mechanical sprayers. The spraying equipment shall be a fully atomizing type equipped with a tank agitator. At the time of use, the curing compound in the tank shall be thoroughly and uniformly mixed with the pigment. During application the curing compound shall be continuously stirred by mechanical means.

Hand spraying of odd widths or shapes and lean concrete surfaces exposed by the removal of forms is permitted.

If the film of curing material becomes damaged from any cause, including sawing operations, within the required 7-day curing period or until the overlying course is constructed, the damaged portions shall be repaired immediately with additional compound or other approved means as quickly as practical.

Edges of the lean concrete layer shall be sprayed with curing compound immediately following placement with slip-form pavers or when side-forms are removed.

306-5.11.1 Curing in cold weather. The lean concrete shall be maintained at a temperature of at least 50°F (10°C) during curing. Cover lean concrete and provide with a source of heat sufficient to maintain 50°F (10°C) minimum while curing. The Contractor shall adhere to the practices recommended in ACI 306R. The Contractor shall be responsible for the quality and strength of the lean concrete placed during cold weather, and any lean concrete injured by frost action shall be removed and replaced at the Contractor’s expense.
306-5.11.2 Curing in hot weather. Lean concrete temperature from initial mixing through final cure shall not exceed 90°F (32°C). Shade the fresh lean concrete and start curing as soon as the surface is sufficiently hard to permit curing without damage. The Contractor shall adhere to the practices recommended in ACI 305R.

306-5.12 Protection. The Contractor shall protect the lean concrete from injurious action by sun, rain, flowing water, frost, or mechanical injury. Protect lean concrete surfaces from foot and vehicular traffic and other sources of abrasion for a minimum of 72 hours. The Engineer shall decide when the pavement shall be opened to traffic. Traffic shall not be allowed on the pavement until test specimens made per ASTM C31 have attained a compressive strength of 350 psi (2,413 kPa) when tested per ASTM C39. The Contractor shall maintain continuity of applied curing method for the entire curing period.

306-5.13 Bond-breaker. When the lean concrete is placed directly beneath PCC pavement, a bond-breaker shall be used. The entire surface of the lean concrete shall be coated with a de-bonding compound applied in a sufficient quantity to prevent bonding between the PCC pavement and the lean concrete. The Contractor shall be responsible for selecting the de-bonding compound and determining the appropriate application rate. This application shall be made at least eight (8) hours and not more than 24 hours before placement of the PCC pavement. If an impervious membrane is used as a bond breaker, a second application of curing materials is required and shall be placed no more than 24 hours prior to placement of the PCC pavement. After application of the bond-breaker coat, traffic will be limited to that required for placement of the PCC pavement.

MATERIAL ACCEPTANCE

306-6.1 Acceptance sampling and testing. All acceptance sampling and testing, with the exception of coring for thickness determination, necessary to determine conformance with the requirements specified in this section will be performed by the Engineer. The Contractor shall provide the required lean concrete samples during construction for acceptance testing purposes. The samples shall be taken in the presence of the Engineer.

The lean concrete layer shall be tested for air content, strength, thickness, grade, and surface tolerance. Sampling and testing for air shall be as specified in paragraph 306-6.1.1. Sampling and testing for strength, thickness, grade, and surface tolerance shall be on a lot basis, with a lot consisting of either: (1) one day’s production not to exceed 2,000 square yards (1700 sq m), or (2) a half day’s production, where a day’s production is expected to consist of between 2,000 and 4,000 square yards (1675 and 3350 m²).

Each lot will be divided into four equal sublots. In the event that only three sublots are produced, the three sublots shall constitute a complete lot. If only one or two sublots are produced, they shall be incorporated into the next lot, and the total number of sublots shall be used in the acceptance plan calculation.

End-of-production sublots (sublots associated with the final placement of lean concrete for the project which are less than a complete lot) shall be handled as (1) three sublots shall constitute a lot, or (2) one or sublots shall be incorporated into the previous lot.

306-6.1.1 Air content testing. Air content tests shall be performed on the first three truckloads of lean concrete produced at the start of operations each day and the first three truckloads produced after any scheduled or non-scheduled shutdown. Additional tests shall be performed each time a sample is taken for a strength test and when requested by the Engineer.

Air content tests shall be made in accordance with ASTM C231. Air content test results shall be between 4% and 8%.

If the first test on a truckload of lean concrete is not within the specification limits, a second test on the same truckload shall be made. If the second test is within the specification limits, the lean concrete will be accepted with respect to entrained air content. If the second test is not within the specification limits, the truckload shall be rejected.
306-6.1.2 Compressive strength testing. One sample of freshly delivered lean concrete shall be taken from each sublot for compressive strength testing. The lean concrete shall be sampled in accordance with ASTM C172. Sampling locations shall be determined per ASTM D3665.

At least two test cylinders shall be made from each sample per ASTM C31. The 7-day compressive strength of each cylinder shall be determined per ASTM C39.

The Contractor shall provide adequate facilities for the initial curing of cylinders. During the 24 hours after molding, the temperature immediately adjacent to the specimens must be maintained in the range of 60 to 80°F (16 to 27°C), and loss of moisture from the specimens must be prevented. The specimens may be stored in tightly constructed wooden boxes, damp sand pits, temporary buildings at construction sites, under wet burlap in favorable weather or in heavyweight closed plastic bags, or use other suitable methods, provided the temperature and moisture loss requirements are met.

The compressive strength for each sublot shall be computed by averaging the 7-day compressive strengths of the two test cylinders representing that sublot. The compressive strength of the lot shall be the average compressive strength of the individual sublots comprising the lot.

Specimens that are noticeably defective shall not be considered in the determination of the strength. If the test specimens fail to conform to the requirements for strength, the Engineer shall request changes in the lean concrete mixture to increase the strength to meet the requirements.

If the maximum 7-day compressive strength values exceed the maximum strength requirements when evaluated in accordance with paragraph 306-6-2.1, the Contractor shall propose a jointing plan for approval by the Engineer.

306-6.1.3 Thickness testing. After the lean concrete base has cured for three (3) days, one 4-inch (100 mm) diameter core per sublot shall be obtained per ASTM D3665. The thickness of each sampled core shall be determined using the caliper measurement procedures per ASTM C174. The average thickness for the lot shall be determined using the individual sublot core thicknesses. Acceptance criteria for lean concrete thickness are provided in paragraph 306-6.2.2.

When such measurement is deficient more than 1/2 inch (12 mm) and not more than 1 inch (25 mm) from the plan thickness, two additional cores shall be taken at random and used in determining the average thickness for that lot. The thickness of the cores shall be determined by average caliper measurement of cores tested in accordance with ASTM C174.

At all locations where cores have been drilled, the resulting holes shall be filled with lean concrete or non-shrink grout material, as approved by the Engineer.

306-6.1.4 Grade testing. The elevations of the finished lean concrete shall be surveyed on both sides of the lean concrete lane, every 25 feet (7.5 m).

306-6.1.5 Surface tolerance testing. After the lean concrete has hardened sufficiently, it shall be tested for surface tolerance with a 12 feet (3.7 m) straightedge provided by the Contractor.

306-6.2 Acceptance criteria. Acceptance of lean concrete will be based on compressive strength, thickness, grade, and surface tolerance, as described in the paragraphs below.

306-6.2.1 Compressive strength requirements. The lean concrete shall meet all of the following compressive strength requirements on a lot basis:

- The compressive strength of the lot, tested at seven (7) days, shall be greater than 500 pounds per square inch (3,445 kPa). When a given lot of lean concrete fails to meet the minimum compressive strength requirements, the entire lot shall be replaced at the Contractor’s expense.

- Not more than 20% of the individual cylinders in a given lot, tested at seven (7) days, shall have a compressive strength greater than 800 pounds per square inch (5,512 kPa). When greater than 20% of the individual cylinders in a given lot have 7-day compressive strengths in excess of 800 pounds per square inch (5,512 kPa), and transverse joints have not been constructed, a bond-breaker shall be used.
306-6.2.2 Thickness requirements. The completed thickness shall be as shown on the plans. When the average lot thickness is not deficient by more than 1/2 inch (12 mm) from the plan thickness, full payment shall be made. If the lot average thickness is deficient by more than one inch (25 mm), it shall be removed and replaced at the Contractor’s expense. When such measurement is deficient more than 1/2 inch (12 mm) and not more than one inch (25 mm) from the plan thickness, one additional core shall be taken at random from each sublot within the lot. The thickness of these additional cores shall be determined as indicated in paragraph 304-6.1.2. A new lot average thickness shall be recomputed based on these additional cores and the original cores taken from each sublot. When the recomputed average lot thickness is not deficient by more than 1/2 inch (12 mm) from the plan thickness, full payment shall be made. If the average lot thickness is deficient by more than 1/2 inch (12 mm) from the plan thickness, the entire lot shall be removed and replaced at the Contractor’s expense or shall be permitted to remain in place at an adjusted payment of 75% of the contract unit price.

When the measured thickness is more than that indicated on the plans, it will be considered as conforming to the requirements, provided the surface of the completed lean concrete layer is within the established grade and surface tolerance requirements.

306-6.2.3 Grade requirements. When the completed surface is more than 1/2 inch (12 mm) above the grade shown in the plans, the surface shall be trimmed at the Contractor’s expense using an approved grinding machine to an elevation that falls within a tolerance of 1/4 inch (6 mm).

306-6.2.4 Surface tolerance requirements. Surface deviations shall not exceed 3/8 inch (9 mm) from a 12-foot (3.7-m) straightedge laid in any location parallel with or at right angles to the longitudinal axis of the centerline (includes along all edges of the paving lane). Any high spots of more than 3/8 inch (9 mm) in 12-foot (3.7-m) shall be marked and immediately trimmed with an approved grinding machine. If the overlying layer is PCC pavement, the ground surface shall be sprayed with a double application of the curing compound at the specified rate prior to paving.

METHOD OF MEASUREMENT

306-7.1 The quantity of lean concrete will be determined by the number of square yard (m²) of lean concrete actually constructed and accepted by the Engineer as complying with the plans and specifications.

BASIS OF PAYMENT

306-8.1 The accepted quantities of lean concrete will be paid for at the contract unit price per square yard (m²) for lean concrete base. The price and payment shall be full compensation for furnishing and placing all materials, provided; however, for any pavement found deficient in thickness as specified in paragraph 306-6.2.2, the reduced unit price shall be paid.

Item P-306-8.1 Payment will be made for lean concrete base course - per Square Yard.

TESTING REQUIREMENTS

ASTM C31 Standard Practice for Making and Curing Concrete Test Specimens in the Field
ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
ASTM C136 Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates
ASTM C172 Standard Practice for Sampling Freshly Mixed Concrete
ASTM C173 Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
ASTM C174 Standard Test Method for Measuring Thickness of Concrete Elements Using Drilled Concrete Cores
ASTM C192 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
ASTM C231 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
AASHTO T136 Standard Method of Test for Freezing-and-Thawing Tests of Compacted Soil-Cement Mixtures
ASTM D3665 Standard Practice for Random Sampling of Construction Materials

MATERIAL REQUIREMENTS
ACI 305R Guide to Hot Weather Concreting
ACI 306R Guide to Cold Weather Concreting
ASTM C33 Standard Specification for Concrete Aggregates
ASTM C94 Standard Specification for Ready-Mixed Concrete
ASTM C150 Standard Specification for Portland Cement
ASTM C260 Standard Specification for Air-Entraining Admixtures for Concrete
ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete
ASTM C494 Standard Specification for Chemical Admixtures for Concrete
ASTM C595 Standard Specification for Blended Hydraulic Cements
ASTM C618 Specification for Coal Fly Ash and Raw and Calcined Natural Pozzolans for Use in Concrete
ASTM C989 Standard Specification for Slag Cement for Use in Concrete and Mortars

END OF ITEM P-306
Item P-401

HOT MIX ASPHALT (HMA) PAVEMENTS

(Marshall Mix Design)

DESCRIPTION

401-1.1 This item shall consist of pavement courses composed of mineral aggregate and asphalt cement binder (asphalt binder) mixed in a central mixing plant and placed on a prepared course in accordance with these specifications and shall conform to the lines, grades, thicknesses, and typical cross-sections shown on the plans. Each course shall be constructed to the depth, typical section, and elevation required by the plans and shall be rolled, finished, and approved before the placement of the next course.

MATERIALS

401-2.1 Aggregate. Aggregates shall consist of crushed stone, crushed gravel, screenings, natural sand and mineral filler, as required. The aggregates should be free of ferrous sulfides, such as pyrite, that would cause “rust” staining that can bleed through pavement markings. The portion retained on the No. 4 (4.75 mm) sieve is coarse aggregate. The portion passing the No. 4 (4.75 mm) sieve and retained on the No. 200 (0.075 mm) sieve is fine aggregate, and the portion passing the No. 200 (0.075 mm) sieve is mineral filler.

a. Coarse aggregate. Coarse aggregate shall consist of sound, tough, durable particles, free from films of matter that would prevent thorough coating and bonding with the bituminous material and free from organic matter and other deleterious substances. The percentage of wear shall not be greater than 40% when tested in accordance with ASTM C131. The sodium sulfate soundness loss shall not exceed 12%, or the magnesium sulfate soundness loss shall not exceed 18%, after five cycles, when tested in accordance with ASTM C88. Clay lumps and friable particles shall not exceed 1.0% when tested in accordance with ASTM C142.

Aggregate shall contain at least 75% percent by weight of individual pieces having two or more fractured faces and 85% percent by weight having at least one fractured face. The area of each face shall be equal to at least 75% of the smallest midsectional area of the piece. When two fractured faces are contiguous, the angle between the planes of fractures shall be at least 30 degrees to count as two fractured faces. Fractured faces shall be achieved by crushing.

The aggregate shall not contain more than a total of 8%, by weight, of flat particles, elongated particles, and flat and elongated particles, when tested in accordance with ASTM D4791 with a value of 5:1.

Slag shall be air-cooled, blast furnace slag, and shall have a compacted weight of not less than 70 pounds per cubic foot (1.12 mg/cubic meter) when tested in accordance with ASTM C29.

b. Fine aggregate. Fine aggregate shall consist of clean, sound, tough, durable, angular shaped particles produced by crushing stone or gravel that meets the requirements for wear and soundness specified for coarse aggregate. The aggregate particles shall be free from coatings of clay, silt, or other objectionable matter.

The fine aggregate, including any blended material for the fine aggregate, shall have a plasticity index of not more than six (6) and a liquid limit of not more than 25 when tested in accordance with ASTM D4318.

The soundness loss shall not exceed 10% when sodium sulfate is used or 15% when magnesium sulfate is used, after five cycles, when tested per ASTM C88.

Clay lumps and friable particles shall not exceed 1.0%, by weight, when tested in accordance with ASTM C142.

Natural (non-manufactured) sand may be used to obtain the gradation of the aggregate blend or to improve the workability of the mix. The amount of sand to be added will be adjusted to produce mixtures
conforming to requirements of this specification. The fine aggregate shall not contain more than 15% natural sand by weight of total aggregates. If used, the natural sand shall meet the requirements of ASTM D1073 and shall have a plasticity index of not more than six (6) and a liquid limit of not more than 25 when tested in accordance with ASTM D4318.

The aggregate shall have sand equivalent values of 45 or greater when tested in accordance with ASTM D2419.

c. Sampling. ASTM D75 shall be used in sampling coarse and fine aggregate, and ASTM C183 shall be used in sampling mineral filler.

401-2.2 Mineral filler. If filler, in addition to that naturally present in the aggregate, is necessary, it shall meet the requirements of ASTM D242.

401-2.3 Asphalt cement binder. Asphalt cement binder shall conform to ASTM D6373 Performance Grade (PG) 76-22. A certificate of compliance from the manufacturer shall be included with the mix design submittal.

The supplier's certified test report with test data indicating grade certification for the asphalt binder shall be provided to the Engineer for each load at the time of delivery to the mix plant. A certified test report with test data indicating grade certification for the asphalt binder shall also be provided to the Engineer for any modification of the asphalt binder after delivery to the mix plant and before use in the HMA.

401-2.4 Preliminary material acceptance. Prior to delivery of materials to the job site, the Contractor shall submit certified test reports to the Engineer for the following materials:

a. Coarse aggregate:

1. Percent of wear
2. Soundness
3. Clay lumps and friable particles
4. Percent fractured faces
5. Flat and elongated particles
6. Unit weight of slag

b. Fine aggregate:

1. Liquid limit and Plasticity index
2. Soundness
3. Clay lumps and friable particles
4. Percent natural sand
5. Sand equivalent

c. Mineral filler.

d. Asphalt binder. Test results for asphalt binder shall include temperature/viscosity charts for mixing and compaction temperatures.

The certifications shall show the appropriate ASTM tests for each material, the test results, and a statement that the material meets the specification requirement.

The Engineer may request samples for testing, prior to and during production, to verify the quality of the materials and to ensure conformance with the applicable specifications.

401-2.5 Anti-stripping agent. Any anti-stripping agent or additive if required shall be heat stable, shall not change the asphalt cement viscosity beyond specifications, shall contain no harmful ingredients, shall be
added in recommended proportion by approved method, and shall be a material approved by the Department of Transportation of the State in which the project is located.

COMPOSITION

401-3.1 Composition of mixture. The HMA mix shall be composed of a mixture of well-graded aggregate, filler and anti-strip agent if required, and asphalt binder. The several aggregate fractions shall be sized, handled in separate size groups, and combined in such proportions that the resulting mixture meets the grading requirements of the job mix formula (JMF).

401-3.2 Job mix formula (JMF). No hot-mixed asphalt (HMA) for payment shall be produced until a JMF has been approved in writing by the Engineer. The asphalt mix-design and JMF shall be prepared by an accredited laboratory that meets the requirements of paragraph 401-3.4. The HMA shall be designed using procedures contained in Asphalt Institute MS-2 Mix Design Manual, 7th Edition. ASTM D6926 shall be used for preparation of specimens using the manually held and operated hammer for the mix design procedure. ASTM D6927 shall be used for testing for Marshall stability and flow.

If material variability exceeds the standard deviations indicated, the JMF and subsequent production targets shall be based on a stability greater than shown in Table 1 and the flow shall be targeted close to the mid-range of the criteria in order to meet the acceptance requirements.

Tensile strength ratio (TSR) of the composite mixture, as determined by ASTM D4867, shall not be less than 75 when tested at a saturation of 70-80% or an anti-stripping agent shall be added to the HMA, as necessary, to produce a TSR of not less than 75 when tested at a saturation of 70-80%. If an anti-strip agent is required, it shall be provided by the Contractor at no additional cost to the Owner.

The JMF shall be submitted in writing by the Contractor at least 30 days prior to the start of paving operations. The JMF shall be developed within the same construction season using aggregates currently being produced.

The submitted JMF shall be stamped or sealed by the responsible professional Engineer of the laboratory and shall include the following items as a minimum:

a. Percent passing each sieve size for total combined gradation, individual gradation of all aggregate stockpiles and percent by weight of each stockpile used in the job mix formula.

b. Percent of asphalt cement.

c. Asphalt performance grade and type of modifier if used.

d. Number of blows per side of molded specimen.

e. Laboratory mixing temperature.

f. Laboratory compaction temperature.

g. Temperature-viscosity relationship of the PG asphalt cement binder showing acceptable range of mixing and compaction temperatures; and for modified binders include supplier recommended mixing and compaction temperatures.

h. Plot of the combined gradation on a 0.45 power gradation curve.

i. Graphical plots of stability, flow, air voids, voids in the mineral aggregate, and unit weight versus asphalt content.

j. Specific Gravity and absorption of each aggregate.

k. Percent natural sand.

l. Percent fractured faces.

m. Percent by weight of flat particles, elongated particles, and flat and elongated particles (and criteria).

n. Tensile Strength Ratio (TSR).

o. Anti-strip agent (if required).
p. Date the JMF was developed. Mix designs that are not dated or which are from a prior construction season shall not be accepted.

q. Percentage and properties (asphalt content, binder properties, and aggregate properties) of reclaimed asphalt pavement (RAP) in accordance with paragraph “Reclaimed Hot-Mix Asphalt,” if RAP is used.

The Contractor shall submit to the Engineer the results of verification testing of three (3) asphalt samples prepared at the optimum asphalt content. The average of the results of this testing shall indicate conformance with the JMF requirements specified in Tables 1 and 3.

When the project requires asphalt mixtures of differing aggregate gradations, a separate JMF and the results of JMF verification testing shall be submitted for each mix.

The JMF for each mixture shall be in effect until a modification is approved in writing by the Engineer. Should a change in sources of materials be made, a new JMF must be submitted within 15 days and approved by the Engineer in writing before the new material is used. After the initial production JMF has been approved by the Engineer and a new or modified JMF is required for whatever reason, the subsequent cost of the Engineer’s approval of the new or modified JMF, including a new test strip when required by the Engineer, will be borne by the Contractor. There will be no time extension given or considerations for extra costs associated with the stoppage of production paving or restart of production paving due to the time needed for the Engineer to approve the initial, new or modified JMF.

The Marshall Design Criteria applicable to the project shall meet the criteria specified in Table 1.

Table 1. Marshall Design Criteria

<table>
<thead>
<tr>
<th>Test Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of blows</td>
<td>75</td>
</tr>
<tr>
<td>Stability, pounds (Newtons) minimum</td>
<td>2150</td>
</tr>
<tr>
<td>Flow, 0.01 in. (0.25 mm)</td>
<td>10-16</td>
</tr>
<tr>
<td>Air voids (%)</td>
<td>3.5</td>
</tr>
<tr>
<td>Percent voids in mineral aggregate, minimum</td>
<td>See Table 2</td>
</tr>
</tbody>
</table>

Table 2. Minimum Percent Voids In Mineral Aggregate (VMA)

<table>
<thead>
<tr>
<th>Aggregate (See Table 3)</th>
<th>Minimum VMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation 3</td>
<td>16%</td>
</tr>
<tr>
<td>Gradation 2</td>
<td>15%</td>
</tr>
<tr>
<td>Gradation 1</td>
<td>14%</td>
</tr>
</tbody>
</table>

The mineral aggregate shall be of such size that the percentage composition by weight, as determined by laboratory sieves, will conform to the gradation or gradations specified in Table 3 when tested in accordance with ASTM C136 and ASTM C117.

The gradations in Table 3 represent the limits that shall determine the suitability of aggregate for use from the sources of supply; be well graded from coarse to fine and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve, or vice versa.
Table 3. Aggregate - HMA Pavements

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage by Weight Passing Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradation 3 (Allowed only for Shoulder Pavement Surface Course and Taxiway WB Emergency Repair)</td>
</tr>
<tr>
<td>1 inch (25 mm)</td>
<td>--</td>
</tr>
<tr>
<td>3/4 inch (19 mm)</td>
<td>--</td>
</tr>
<tr>
<td>1/2 inch (12 mm)</td>
<td>100</td>
</tr>
<tr>
<td>3/8 inch (9 mm)</td>
<td>79-99</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>58-78</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>39-59</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>26-46</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>19-35</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>12-24</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>7-17</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
<td>3-6</td>
</tr>
</tbody>
</table>

Asphalt Percent:
- Stone or gravel: 5.5-8.0
- Slag: 7.0-10.5

The aggregate gradations shown are based on aggregates of uniform specific gravity. The percentages passing the various sieves shall be corrected when aggregates of varying specific gravities are used, as indicated in the Asphalt Institute MS-2 Mix Design Manual, 7th Edition.

401-3.3 Reclaimed asphalt pavement (RAP). Reclaimed HMA shall consist of reclaimed asphalt pavement (RAP), coarse aggregate, fine aggregate, mineral filler, and asphalt cement. Recycled asphalt shingles (RAS) shall not be allowed. The RAP shall be of a consistent gradation and asphalt content and properties. When RAP is fed into the plant, the maximum RAP chunk size shall not exceed 1-1/2 inches (38 mm). The reclaimed asphalt pavement mix shall be designed using procedures contained in the Asphalt Institute MS-2 Mix Design Manual, 7th Edition. The percentage of asphalt in the RAP shall be established for the mixture design according to ASTM D2172 using the appropriate dust correction procedure. The JMF shall meet the requirements of paragraph 401-3.2. RAP shall only be used for shoulder surface course mixes and for any intermediate courses. The use of RAP containing Coal Tar shall not be allowed. Coal Tar surface treatments must be removed prior to recycling underlying asphalt material. The amount of RAP shall be limited to 30 percent. In addition to the requirements of paragraph 401-3.2, the JMF shall indicate the percent of reclaimed asphalt pavement and the percent and grade of new asphalt binder. For the PG graded asphalt binder selected in 401-2.3, adjust as follows:

a. For 0-20% RAP, there is no change in virgin binder content.

b. For >20 to 30% RAP, select binder one grade softer, i.e., PG 64-22 would soften to PG 58-28.

401-3.4 Job mix formula (JMF) laboratory. The Contractor’s laboratory used to develop the JMF shall be accredited in accordance with ASTM D3666. The laboratory accreditation must be current and listed on the accrediting authority’s website. All test methods required for developing the JMF must be listed on the lab accreditation. A copy of the laboratory’s current accreditation and accredited test methods shall be submitted to the Engineer prior to start of construction.
401-3.5 Test section. Prior to full production, the Contractor shall prepare and place a quantity of HMA according to the JMF. The amount of HMA shall be sufficient to construct a test section 300 feet long and 25 feet wide, placed in two lanes, with a longitudinal cold joint, and shall be of the same depth specified for the construction of the course which it represents. A cold joint for this test section is an exposed construction joint at least four (4) hours old or whose mat has cooled to less than 160°F (71°C). The cold joint must be cut back using the same procedure that will be used during production in accordance with 401-4.13. The underlying grade or pavement structure upon which the test section is to be constructed shall be the same as the remainder of the course represented by the test section. The equipment used in construction of the test section shall be the same type and weight to be used on the remainder of the course represented by the test section.

The test section shall be evaluated for acceptance as a single lot in accordance with the acceptance criteria in paragraph 401-5.1 and 401-5.2. The test section shall be divided into equal sublots. As a minimum the test section shall consist of three (3) sublots.

The test section shall be considered acceptable if (1) stability, flow, mat density, air voids, and joint density are 90% or more within limits, (2) gradation and asphalt content are within the action limits specified in paragraphs 401-6.5a and 5b, and (3) the voids in the mineral aggregate are within the limits of Table 2.

If the initial test section should prove to be unacceptable, the necessary adjustments to the JMF, plant operation, placing procedures, and/or rolling procedures shall be made. A second test section shall then be placed. If the second test section also does not meet specification requirements, both sections shall be removed at the Contractor’s expense. Additional test sections, as required, shall be constructed and evaluated for conformance to the specifications. Any additional sections that are not acceptable shall be removed at the Contractor’s expense. Full production shall not begin until an acceptable test section has been constructed and accepted in writing by the Engineer. Once an acceptable test section has been placed, payment for the initial test section and the section that meets specification requirements shall be made in accordance with paragraph 401-8.1.

Job mix control testing shall be performed by the Contractor at the start of plant production and in conjunction with the calibration of the plant for the JMF. If aggregates produced by the plant do not satisfy the gradation requirements or produce a mix that meets the JMF, it will be necessary to reevaluate and redesign the mix using plant-produced aggregates. Specimens shall be prepared and the optimum asphalt content determined in the same manner as for the original JMF tests.

Contractor will not be allowed to place the test section until the Contractor Quality Control Program, showing conformance with the requirements of Paragraph 401-6.1, has been approved, in writing, by the Engineer.

403-3.6 Paving Plan. The Contractor shall submit a Paving Plan prior to the start of paving operations. The Paving Plan shall clearly indicate paving lanes, paving lane width, length of pulls (stations of starts and stops) and direction of pulls. The Contractor shall not begin paving operations until the Engineer has reviewed and provided approval of the submitted Paving Plan.

The Contractor shall select his paving distance each day in accordance with the provisions of this specification to allow for the entire width of each shoulder area to be paved. The Contractor shall match up each lane so that a single transverse joint is made at the end of each day’s installation.

CONSTRUCTION METHODS

401-4.1 Weather limitations. The HMA shall not be placed upon a wet surface or when the surface temperature of the underlying course is less than specified in Table 4. The temperature requirements may be waived by the Engineer, if requested; however, all other requirements including compaction shall be met.
Table 4. Surface Temperature Limitations of Underlying Course

<table>
<thead>
<tr>
<th>Mat Thickness</th>
<th>Base Temperature (Minimum) °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 inches or greater</td>
<td>40</td>
</tr>
<tr>
<td>Greater than 2 inches but less than 3 inches</td>
<td>45</td>
</tr>
</tbody>
</table>

401-4.2 HMA plant. Plants used for the preparation of HMA shall conform to the requirements of American Association of State Highway and Transportation Officials (AASHTO) M156 with the following changes:

Requirements for all plants include:

a. Truck scales. The HMA shall be weighed on approved scales furnished by the Contractor, or on certified public scales at the Contractor’s expense. Scales shall be inspected and sealed as often as the Engineer deems necessary to assure their accuracy. Scales shall conform to the requirements of the General Provisions, subsection 90-01.

In lieu of scales, and as approved by the Engineer, HMA weight may be determined by the use of an electronic weighing system equipped with an automatic printer that weighs the total HMA production and as often thereafter as requested by the Engineer.

b. Testing facilities. The Contractor shall ensure laboratory facilities are provided at the plant for the use of the Engineer. The lab shall have sufficient space and equipment so that both testing representatives (Engineer’s and Contractor’s) can operate efficiently. The lab shall meet the requirements of ASTM D3666 including all necessary equipment, materials, calibrations, current reference standards to comply with the specifications and a masonry saw with diamond blade for trimming pavement cores and samples.

The plant testing laboratory shall have a floor space area of not less than 200 square feet (18.5 sq m), with a ceiling height of not less than 7-1/2 feet (2.3 m). The laboratory shall be weather tight, sufficiently heated in cold weather, air-conditioned in hot weather to maintain temperatures for testing purposes of 70°F ±5°F (21°C ±2.3°C). The plant testing laboratory shall be located on the plant site to provide an unobstructed view, from one of its windows, of the trucks being loaded with the plant mix materials. In addition, the facility shall include the minimum:

1. Adequate artificial lighting.
2. Electrical outlets sufficient in number and capacity for operating the required testing equipment and drying samples.
3. A minimum of two (2) Underwriter’s Laboratories approved fire extinguishers of the appropriate types and class.
4. Work benches for testing.
5. Desk with chairs and file cabinet.
6. Sanitary facilities convenient to testing laboratory.
7. Exhaust fan to outside air.
8. Sink with running water.

Failure to provide the specified facilities shall be sufficient cause for disapproving HMA plant operations. Laboratory facilities shall be kept clean, and all equipment shall be maintained in proper working condition. The Engineer shall be permitted unrestricted access to inspect the Contractor’s laboratory facility and witness quality control activities. The Engineer will advise the Contractor in writing of any noted deficiencies concerning the laboratory facility, equipment, supplies, or testing personnel and
procedures. When the deficiencies are serious enough to be adversely affecting the test results, the incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are satisfactorily corrected.

c. **Inspection of plant.** The Engineer, or Engineer’s authorized representative, shall have access, at all times, to all areas of the plant for checking adequacy of equipment; inspecting operation of the plant: verifying weights, proportions, and material properties; and checking the temperatures maintained in the preparation of the mixtures.

d. **Storage bins and surge bins.** The HMA stored in storage and surge bins shall meet the same requirements as HMA loaded directly into trucks and may be permitted under the following conditions:

1. Stored in non-insulated bins for a period of time not to exceed three (3) hours.
2. Stored in insulated bins for a period of time not to exceed eight (8) hours.

If the Engineer determines that there is an excessive amount of heat loss, segregation, or oxidation of the HMA due to temporary storage, no temporary storage will be allowed.

401-4.3 Hauling equipment. Trucks used for hauling HMA shall have tight, clean, and smooth metal beds. To prevent the HMA from sticking to the truck beds, the truck beds shall be lightly coated with a minimum amount of paraffin oil, lime solution, or other material approved by the Engineer. Petroleum products shall not be used for coating truck beds. Each truck shall have a suitable cover to protect the mixture from adverse weather. When necessary, to ensure that the mixture will be delivered to the site at the specified temperature, truck beds shall be insulated or heated and covers shall be securely fastened.

401-4.3.1 Material transfer vehicle (MTV). Material transfer vehicles are not required.

401-4.4 HMA pavers. HMA pavers shall be self-propelled with an activated heated screed, capable of spreading and finishing courses of HMA that will meet the specified thickness, smoothness, and grade. The paver shall have sufficient power to propel itself and the hauling equipment without adversely affecting the finished surface. The paver shall be capable of operating at forward speeds consistent with satisfactory laying of the mixture.

The paver shall have a receiving hopper of sufficient capacity to permit a uniform spreading operation. The hopper shall be equipped with a distribution system to place the HMA uniformly in front of the screed without segregation. The screed shall effectively produce a finished surface of the required evenness and texture without tearing, shoving, or gouging the mixture.

If, during construction, it is found that the spreading and finishing equipment in use leaves tracks or indented areas, or produces other blemishes in the pavement that are not satisfactorily corrected by the scheduled operations, the use of such equipment shall be discontinued and satisfactory equipment shall be provided by the Contractor.

401-4.4.1 Automatic grade controls. The HMA paver shall be equipped with a control system capable of automatically maintaining the specified screed elevation. The control system shall be automatically actuated from either a reference line and/or through a system of mechanical sensors or sensor-directed mechanisms or devices that will maintain the paver screed at a predetermined transverse slope and at the proper elevation to obtain the required surface. The transverse slope controller shall be capable of maintaining the screed at the desired slope within ±0.1%.

The controls shall be capable of working in conjunction with any of the following attachments:

a. Ski-type device of not less than 30 feet (9 m) in length.

b. Taut string-line (wire) set to grade.

c. Short ski or shoe.

d. Laser control.

401-4.5 Rollers. Rollers of the vibratory, steel wheel, and pneumatic-tired type shall be used. They shall be in good condition, capable of operating at slow speeds to avoid displacement of the HMA. The number, type, and weight of rollers shall be sufficient to compact the HMA to the required density while it is still in a
workable condition. A vibrating roller will be required for compaction on cold joints, on hot joints, or on fresh joints.

All rollers shall be specifically designed and suitable for compacting HMA concrete and shall be properly used. Rollers that impair the stability of any layer of a pavement structure or underlying soils shall not be used. Depressions in pavement surfaces caused by rollers shall be repaired by the Contractor at their own expense.

The use of equipment that causes crushing of the aggregate will not be permitted.

401-4.6. Density device. The Contractor shall have on site a density gauge during all paving operations in order to assist in the determination of the optimum rolling pattern, type of roller and frequencies, as well as to monitor the effect of the rolling operations during production paving. The Contractor shall also supply a qualified technician during all paving operations to calibrate the gauge and obtain accurate density readings for all new HMA. These densities shall be supplied to the Engineer upon request at any time during construction. No separate payment will be made for supplying the density gauge and technician.

401-4.7 Preparation of asphalt binder. The asphalt binder shall be heated in a manner that will avoid local overheating and provide a continuous supply of the asphalt binder to the mixer at a uniform temperature. The temperature of unmodified asphalt binder delivered to the mixer shall be sufficient to provide a suitable viscosity for adequate coating of the aggregate particles, but shall not exceed 325°F when added to the aggregate. The temperature of modified asphalt binder shall be no more than 350°F when added to the aggregate.

401-4.8 Preparation of mineral aggregate. The aggregate for the HMA shall be heated and dried. The maximum temperature and rate of heating shall be such that no damage occurs to the aggregates. The temperature of the aggregate and mineral filler shall not exceed 350°F when the asphalt binder is added. Particular care shall be taken that aggregates high in calcium or magnesium content are not damaged by overheating. The temperature shall not be lower than is required to obtain complete coating and uniform distribution on the aggregate particles and to provide a mixture of satisfactory workability.

401-4.9 Preparation of HMA. The aggregates and the asphalt binder shall be weighed or metered and introduced into the mixer in the amount specified by the JMF. The combined materials shall be mixed until the aggregate obtains a uniform coating of asphalt binder and is thoroughly distributed throughout the mixture. Wet mixing time shall be the shortest time that will produce a satisfactory mixture, but not less than 25 seconds for batch plants. The wet mixing time for all plants shall be established by the Contractor, based on the procedure for determining the percentage of coated particles described in ASTM D2489, for each individual plant and for each type of aggregate used. The wet mixing time will be set to achieve 95% of coated particles. For continuous mix plants, the minimum mixing time shall be determined by dividing the weight of its contents at operating level by the weight of the mixture delivered per second by the mixer. The moisture content of all HMA upon discharge shall not exceed 0.5%.

401-4.10 Preparation of the underlying surface. Immediately before placing the HMA, the underlying course shall be cleaned of all dust and debris. A prime coat or tack coat shall be applied in accordance with Item P-602 or P-603, if shown on the plans.

401-4.11 Laydown plan, transporting, placing, and finishing. Prior to the placement of the HMA, the Contractor shall prepare a laydown plan for approval by the Engineer. This is to minimize the number of cold joints in the pavement. The laydown plan shall include the sequence of paving laydown by stations, width of lanes, temporary ramp locations, and laydown temperature. The laydown plan shall also include estimated time of completion for each portion of the work (that is, milling, paving, rolling, cooling, etc.). Modifications to the laydown plan shall be approved by the Engineer.

The HMA shall be transported from the mixing plant to the site in vehicles conforming to the requirements of paragraph 401-4.3. Deliveries shall be scheduled so that placing and compacting of HMA is uniform with minimum stopping and starting of the paver. Hauling over freshly placed material shall not be permitted until the material has been compacted, as specified, and allowed to cool to atmospheric temperature.

The alignment and elevation of the paver shall be regulated from outside reference lines established for this purpose for the first lift of all runway and taxiway pavements. Successive lifts of HMA surface course
may be placed using a ski, or laser control per paragraph 401-4.4.1, provided grades of the first lift of HMA surface course meet the tolerances of paragraphs 401-5.2b(6) as verified by a survey. Contractor shall survey each lift of HMA surface course and certify to Engineer that every lot of each lift meets the grade tolerances of paragraph 401-5.2b(6) before the next lift can be placed.

The initial placement and compaction of the HMA shall occur at a temperature suitable for obtaining density, surface smoothness, and other specified requirements but not less than 250°F. Placing of the mixture shall be continuous at a desired rate of 100 tons per hour, unless otherwise approved by the Engineer.

The first pass shall be made using a taut stringline on both sides of the paver. Subsequent passes shall be made using a short ski or shoe on the previously placed lane and taut stringline on the other side. The stringline shall be mounted on sensor brackets every 25-feet on straight sections and laid out in cords along curves. Cord length will be dependent on the radius of the curve. The shorter radius curves shall have closer spacing of sensor brackets. The stringline shall extend onto the existing pavement, or the previous mat, at least 50-feet prior to pullout, so that the paver runs on automation.

Setting grade stakes and taut stringline includes establishing all of the conditions necessary for the stringline to adequately serve for grade referencing. The factors include but are not limited to:

a. Setting grades away from the mat edge an additional distance to compensate for the extended distance of the wire from the stake.

b. Setting the stringline at an established height, or relative height above finished grade.

c. Stringline shall be anchored at both ends of the wire to reduce sagging.

d. Additional anchors shall be used along curved sections to assist in keeping the stringline attached to the crossarm of the grade stake.

e. Stringline shall be set as low as practical to help avoid disturbance by workers.

Edges of existing HMA pavement abutting the new work shall be saw cut and carefully removed as shown on the drawings and coated with asphalt tack coat before new material is placed against it.

Upon arrival, the HMA shall be placed to the full width by a HMA paver. It shall be struck off in a uniform layer of such depth that, when the work is completed, it shall have the required thickness and conform to the grade and contour indicated. The speed of the paver shall be regulated to eliminate pulling and tearing of the HMA mat. Unless otherwise permitted, placement of the HMA shall begin along the centerline of a crowned section or on the high side of areas with a one-way slope. The HMA shall be placed in consecutive adjacent strips having a minimum width of 15 feet (m) except where edge lanes require less width to complete the area. Additional screed sections shall not be attached to widen paver to meet the minimum lane width requirements specified above unless additional auger sections are added to match. The longitudinal joint in one course shall offset the longitudinal joint in the course immediately below by at least 1 foot; however, the joint in the surface top course shall be at the centerline of crowned pavements. Transverse joints in one course shall be offset by at least 10 feet from transverse joints in the previous course.

Transverse joints in adjacent lanes shall be offset a minimum of 10 feet.

On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the HMA may be spread and luted by hand tools.

Areas of segregation in the surface course, as determined by the Engineer, shall be removed and replaced at the Contractor’s expense. The area shall be removed by saw cutting and milling a minimum of 2 inches deep. The area to be removed and replaced shall be a minimum width of the paver and a minimum of 10 feet long.

401-4.12 Compaction of HMA. After placing, the HMA shall be thoroughly and uniformly compacted by power rollers. The surface shall be compacted as soon as possible when the HMA has attained sufficient stability so that the rolling does not cause undue displacement, cracking or shoving. The sequence of rolling operations and the type of rollers used shall be at the discretion of the Contractor. The speed of the roller shall, at all times, be sufficiently slow to avoid displacement of the hot mixture and be effective in
compaction. Any displacement occurring as a result of reversing the direction of the roller, or from any other cause, shall be corrected at once.

Sufficient rollers shall be furnished to handle the output of the plant. Rolling shall continue until the surface is of uniform texture, true to grade and cross-section, and the required field density is obtained. To prevent adhesion of the HMA to the roller, the wheels shall be equipped with a scraper and kept properly moistened but excessive water will not be permitted.

In areas not accessible to the roller, the mixture shall be thoroughly compacted with approved power driven tampers. Tampers shall weigh not less than 275 pounds, have a tamping plate width not less than 15 inches, be rated at not less than 4,200 vibrations per minute, and be suitably equipped with a standard tamping plate wetting device.

Any HMA that becomes loose and broken, mixed with dirt, contains check-cracking, or in any way defective shall be removed and replaced with fresh hot mixture and immediately compacted to conform to the surrounding area. This work shall be done at the Contractor’s expense. Skin patching shall not be allowed.

401-4.13 Joints. The formation of all joints shall be made in such a manner as to ensure a continuous bond between the courses and obtain the required density. All joints shall have the same texture as other sections of the course and meet the requirements for smoothness and grade.

The roller shall not pass over the unprotected end of the freshly laid HMA except when necessary to form a transverse joint. When necessary to form a transverse joint, it shall be made by means of placing a bulkhead or by tapering the course. The tapered edge shall be cut back to its full depth and width on a straight line to expose a vertical face prior to placing the adjacent lane. In both methods, all contact surfaces shall be coated with an asphalt tack coat before placing any fresh HMA against the joint.

Longitudinal joints which have been left exposed for more than four (4) hours; the surface temperature has cooled to less than 175°F; or are irregular, damaged, uncompacted or otherwise defective shall be cut back 3 inches to 6 inches to expose a clean, sound, uniform vertical surface for the full depth of the course. All cutback material shall be removed from the project. Asphalt tack coat or other product approved by the Engineer shall be applied to the clean, dry joint, prior to placing any additional fresh HMA against the joint. Any laitance produced from cutting joints shall be removed by vacuuming and washing. The cost of this work shall be considered incidental to the cost of the HMA. While the surface is being compacted and finished, the Contractor shall carefully trim the outside edges of the pavement to the proper alignment. Edges so formed shall be beveled while still hot with the back of a rake or a smoothing iron and thoroughly compacted by tampers or by other satisfactory methods, providing a neat, smooth and straight edge.

401-4.14 Saw-cut grooving. If shown on the plans, saw cut grooves shall be provided as specified in Item P-621. Not applicable to this item.

401-4.15 Diamond grinding. When required, diamond grinding shall be accomplished by sawing with saw blades impregnated with industrial diamond abrasive. The saw blades shall be assembled in a cutting head mounted on a machine designed specifically for diamond grinding that will produce the required texture and smoothness level without damage to the pavement. The saw blades shall be 1/8-inch wide and there shall be a minimum of 55 to 60 blades per 12 inches of cutting head width; the actual number of blades will be determined by the Contractor and depend on the hardness of the aggregate. Each machine shall be capable of cutting a path at least 3 feet wide. Equipment that causes raveling, aggregate fractures, spalls or disturbance to the pavement will not be permitted. The depth of grinding shall not exceed 1/2 inch and all areas in which diamond grinding has been performed will be subject to the final pavement thickness tolerances specified. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. Areas that have been ground will be sealed with a P-608 surface treatment as directed by the Engineer. It may be necessary to seal a larger area to avoid surface treatment creating any conflict with runway or taxiway markings.

401-4.16 Nighttime paving requirements. Paving during nighttime construction shall require the following:

a. All paving machines, rollers, distribution trucks and other vehicles required by the Contractor for his operations shall be equipped with artificial illumination sufficient to safely complete the work.
b. Minimum illumination level shall be twenty (20) horizontal foot-candles and maintained in the following areas:

1. An area of 30 feet wide by 30 feet long immediately behind the paving machines during the operations of the machines.
2. An area 15 feet wide by 30 feet long immediately in front and back of all rolling equipment, during operation of the equipment.
3. An area 15 feet wide by 15 feet long at any point where an area is being tack coated prior to the placement of pavement.

c. As partial fulfillment of the above requirements, the Contractor shall furnish and use, complete artificial lighting units with a minimum capacity of 3,000 watt electric beam lights, affixed to all equipment in such a way to direct illumination on the area under construction.

d. A lighting plan must be submitted by the Contractor and approved by the Engineer prior to the start of any nighttime work.

MATERIAL ACCEPTANCE

401-5.1 Acceptance sampling and testing. Unless otherwise specified, all acceptance sampling and testing necessary to determine conformance with the requirements specified in this section will be performed by the Engineer at no cost to the Contractor except that coring as required in this section shall be completed and paid for by the Contractor.

Testing organizations performing these tests shall be accredited in accordance with ASTM D3666. The laboratory accreditation must be current and listed on the accrediting authority’s website. All test methods required for acceptance sampling and testing must be listed on the lab accreditation. A copy of the laboratory’s current accreditation and accredited test methods shall be submitted to the Engineer prior to start of construction. All equipment in Contractor furnished laboratories shall be calibrated by an independent testing organization prior to the start of operations at the Contractor’s expense.

a. Hot mixed asphalt. Plant-produced HMA shall be tested for air voids and stability and flow on a lot basis. Sampling shall be from material deposited into trucks at the plant or from trucks at the job site. Samples shall be taken in accordance with ASTM D979.

A standard lot shall be equal to one day’s production or 2000 tons whichever is smaller. If the day’s production is expected to exceed 2000 tons, but less than 4000 tons, the lot size shall be 1/2 day’s production. If the day’s production exceeds 4000 tons, the lot size shall be an equal sized fraction of the day’s production, but shall not exceed 2000 tons.

Where more than one plant is simultaneously producing HMA for the job, the lot sizes shall apply separately for each plant.

1. Sampling. Each lot will consist of four equal sublots. Sufficient HMA for preparation of test specimens for all testing will be sampled by the Engineer on a random basis, in accordance with the procedures contained in ASTM D3665. Samples will be taken in accordance with ASTM D979.

The sample of HMA may be put in a covered metal tin and placed in an oven for not less than 30 minutes nor more than 60 minutes to stabilize to compaction temperature. The compaction temperature of the specimens shall be as specified in the JMF.

2. Testing. Sample specimens shall be tested for stability and flow in accordance with ASTM D6927. Air voids will be determined by the Engineer in accordance with ASTM D3203. One set of laboratory compacted specimens will be prepared for each sublot in accordance with ASTM D6926 at the number of blows required by paragraph 401-3.2, Table 1. Each set of laboratory compacted specimens will consist of three test specimens prepared from the same sample. The manual hammer in ASTM D6926 shall be used, however mechanical hammers may be used if they are approved by the engineer and calibrated to the same manual hammer density by varying the number of blows and for each specific mix. When calibrating the mechanical hammer, at least 5 samples should be compacted with the manual hammer (50 or 75 blows as specified) to establish an average density. Five samples should also be compacted at various blow counts with the...
mechanical hammer and plotted to give a curve that shows density vs blows. Where the average density of the manual hammer intersects the curve developed from the mechanical hammer, the number of blows required for the mechanical hammer is identified. The guide to control the vertical axis of the hammer shall not be used during compaction.

Prior to testing, the bulk specific gravity of each test specimen shall be measured by the Engineer in accordance with ASTM D2726 using the procedure for laboratory-prepared thoroughly dry specimens for use in computing air voids and pavement density.

For air voids determination, the theoretical maximum specific gravity of the mixture shall be measured one time for each subplot in accordance with ASTM D2041. The value used in the air voids computation for each subplot shall be based on theoretical maximum specific gravity measurement for the subplot.

The stability and flow for each subplot shall be computed by averaging the results of all test specimens representing that subplot.

(3) Acceptance. Acceptance of plant produced HMA for stability, flow, and air voids shall be determined by the Engineer in accordance with the requirements of paragraph 401-5.2b.

b. In-place HMA. HMA placed in the field shall be tested for mat and joint density on a lot basis. A standard lot shall be equal to one day's production or 2000 tons whichever is smaller. If the day's production is expected to exceed 2000 tons, but less than 4000 tons, the lot size shall be 1/2 day's production. If the day's production exceeds 4000 tons, the lot size shall be an equal sized fraction of the day's production, but shall not exceed 2000 tons.

(1) Mat density. The lot size shall be the same as that indicated in paragraph 401-5.1a and shall be divided into four equal sublots. One core of finished, compacted HMA shall be taken by the Contractor from each subplot. Core locations will be determined by the Engineer on a random basis in accordance with procedures contained in ASTM D3665. Cores for mat density shall not be taken closer than one foot from a transverse or longitudinal joint.

(2) Joint density. The lot size shall be the total length of longitudinal joints constructed by a lot of HMA as defined in paragraph 401-5.1a. The lot shall be divided into four equal sublots. One core of finished, compacted HMA shall be taken by the Contractor from each subplot. Core locations will be determined by the Engineer on a random basis in accordance with procedures contained in ASTM D3665. All cores for joint density shall be taken centered on the joint. The minimum core diameter for joint density determination shall be 5 inches.

(3) Sampling. Samples shall be neatly cut with a diamond core drill bit. Samples will be taken in accordance with ASTM D979. The minimum diameter of the sample shall be 5 inches. Samples that are clearly defective, as a result of sampling, shall be discarded and another sample taken. The Contractor shall furnish all tools, labor, and materials for cutting samples, cleaning, and filling the cored pavement. Cored pavement shall be cleaned and core holes shall be filled in a manner acceptable to the Engineer and within one day after sampling. Laitance produced by the coring operation shall be removed immediately.

The top most lift of HMA shall be completely bonded to the underlying layer. If any of the cores reveal that the surface is not bonded to the layer immediately below the surface then additional cores shall be taken as directed by the Engineer in accordance with paragraph 401-5.1b to determine the extent of any delamination. All delaminated areas shall be completely removed by milling to the limits and depth and replaced as directed by the Engineer at no additional cost.

(4) Testing. The bulk specific gravity of each cored sample will be measured by the Engineer in accordance with ASTM D2726. Samples will be taken in accordance with ASTM D979. The percent compaction (density) of each sample will be determined by dividing the bulk specific gravity of each subplot sample by the average bulk specific gravity of all laboratory prepared specimens for the lot, as determined in paragraph 401-5.1a(2). The bulk specific gravity used to determine the joint density at joints formed between different lots shall be the lowest of the bulk specific gravity values from the two different lots.
(5) **Acceptance.** Acceptance of field placed HMA for mat density will be determined by the Engineer in accordance with the requirements of paragraph 401-5.2b(1). Acceptance for joint density will be determined by the Engineer in accordance with the requirements of paragraph 401-5.2b(3).

c. **Partial lots.** When operational conditions cause a lot to be terminated before the specified number of tests have been made for the lot, or when the Contractor and Engineer agree in writing to allow overages or other minor tonnage placements to be considered as partial lots, the following procedure will be used to adjust the lot size and the number of tests for the lot.

The last batch produced where production is halted will be sampled, and its properties shall be considered as representative of the particular sublot from which it was taken. In addition, an agreed to minor placement will be sampled, and its properties shall be considered as representative of the particular sublot from which it was taken. Where three sublots are produced, they shall constitute a lot. Where one or two sublots are produced, they shall be incorporated into the next lot, and the total number of sublots shall be used in the acceptance plan calculation, that is, n = 5 or n = 6, for example. Partial lots at the end of asphalt production on the project shall be included with the previous lot. The lot size for field placed material shall correspond to that of the plant material, except that, in no cases, shall less than three (3) cored samples be obtained, that is, n = 3.

401-5.2 **Acceptance criteria.**

a. **General.** Acceptance will be based on the following characteristics of the HMA and completed pavement as well as the implementation of the Contractor Quality Control Program and test results:

1. Air voids
2. Mat density
3. Joint density
4. Thickness
5. Smoothness
6. Grade
7. Stability
8. Flow

Mat density and air voids will be evaluated for acceptance in accordance with paragraph 401-5.2b(1). Stability and flow will be evaluated for acceptance in accordance with paragraph 401-5.2b(2). Joint density will be evaluated for acceptance in accordance with paragraph 401-5.2b(3).

Thicknes will be evaluated by the Engineer for compliance in accordance with paragraph 401-5.2b(4). Acceptance for smoothness will be based on the criteria contained in paragraph 401-5.2b(5). Acceptance for grade will be based on the criteria contained in paragraph 401-5.2b(7).

The Engineer may at any time, reject and require the Contractor to dispose of any batch of HMA which is rendered unfit for use due to contamination, segregation, incomplete coating of aggregate, or improper mix temperature. Such rejection may be based on only visual inspection or temperature measurements. In the event of such rejection, the Contractor may take a representative sample of the rejected material in the presence of the Engineer, and if it can be demonstrated in the laboratory, in the presence of the Engineer, that such material was erroneously rejected, payment will be made for the material at the contract unit price.

b. **Acceptance criteria.**

1. **Mat density and air voids.** Acceptance of each lot of plant produced material for mat density and air voids shall be based on the percentage of material within specification limits (PWL). If the PWL of the lot equals or exceeds 90%, the lot shall be acceptable. Acceptance and payment shall be determined in accordance with paragraph 401-8.1.
(2) Stability and flow. Acceptance of each lot of plant produced HMA for stability and flow shall be based on the PWL. If the PWL of the lot equals or exceeds 90%, the lot shall be acceptable. If the PWL is less than 90%, the Contractor shall determine the reason and take corrective action. If the PWL is below 80%, the Contractor must stop production until the reason for poor stability and/or flow has been determined and adjustments to the HMA are made.

(3) Joint density. Acceptance of each lot of plant produced HMA for joint density shall be based on the PWL. If the PWL of the lot is equal to or exceeds 90%, the lot shall be considered acceptable. If the PWL is less than 90%, the Contractor shall evaluate the reason and act accordingly. If the PWL is less than 80%, the Contractor shall cease operations and until the reason for poor compaction has been determined. If the PWL is less than 71%, the pay factor for the lot used to complete the joint shall be reduced by five (5) percentage points. This lot pay factor reduction shall be incorporated and evaluated in accordance with paragraph 401-8.1.

(4) Thickness. Thickness of each lift of surface course shall be evaluated by the Engineer for compliance to the requirements shown on the plans. Measurements of thickness shall be made by the Engineer using the cores extracted for each sublot for density measurement. The maximum allowable deficiency at any point shall not be more than 1/4 inch (6 mm) less than the thickness indicated for the lift. Average thickness of lift, or combined lifts, shall not be less than the indicated thickness. Where the thickness tolerances are not met, the lot or sublot shall be corrected by the Contractor at his expense by removing the deficient area and replacing with new pavement. The Contractor, at his expense, may take additional cores as approved by the Engineer to circumscribe the deficient area.

(5) Smoothness. The final surface shall be free from roller marks. After the final rolling, but not later than 24 hours after placement, the surface of each lot shall be tested in both longitudinal and transverse directions for smoothness to reveal all surface irregularities exceeding the tolerances specified. The Contractor shall furnish paving equipment and employ methods that produce a surface for each pavement lot having an average profile index meeting the requirements of paragraph 401-8.1d when evaluated with a profilograph, and meeting the following smoothness criteria: the finished surface course of the pavement shall not vary more than 1/4 inch when evaluated with a 12-foot straightedge. When the surface course smoothness exceeds specification tolerances which cannot be corrected by diamond grinding of the surface course, full depth removal and replacement of surface course corrections shall be to the limit of the longitudinal placement. Corrections involving diamond grinding will be subject to the final pavement thickness tolerances specified. The Contractor shall apply an approved surface treatment per Item P-608 or P-609 to all areas that have been subject to grinding as directed by the Engineer.

(a) Transverse measurements. Transverse measurements will be taken for each lot placed. Transverse measurements will be taken perpendicular to the pavement centerline each 50 feet (15m) or more often as determined by the Engineer.

(i) Testing shall be continuous across all joints, starting with one-half the length of the straightedge at the edge of pavement section being tested and then moved ahead one-half the length of the straightedge for each successive measurement. Smoothness readings will not be made across grade changes or cross slope transitions; at these transition areas, the straightedge position shall be adjusted to measure surface smoothness and not design grade or cross slope transitions. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points. High spots on final surface course > 1/4 inch in transverse direction shall be corrected with diamond grinding per paragraph 401-4.15 or by removing and replacing full depth of surface course. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.
(ii) The joint between lots shall be tested separately to facilitate smoothness between lots. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface, with half the straightedge on one side of the joint and the other half of the straightedge on the other side of the joint. Measure the maximum gap between the straightedge and the pavement surface in the area between these two high points. One measurement shall be taken at the joint every 50 feet (15m) or more often if directed by the Engineer. Deviations on final surface course > 1/4 inch (6mm) in transverse direction shall be corrected with diamond grinding per paragraph 401-4.15 or by removing and replacing full depth of surface course. Each measurement shall be recorded and a copy of the data shall be furnished to the Engineer at the end of each days testing.

(b) Longitudinal measurements. Longitudinal measurements will be taken for each lot placed. Longitudinal tests will be parallel to the centerline of paving; at the center of paving lanes when widths of paving lanes are less than 20 feet; and at the third points of paving lanes when widths of paving lanes are 20 ft or greater.

(i) Longitudinal Short Sections. Longitudinal Short Sections are when the longitudinal lot length is less than 200 feet and areas not requiring a profilograph. When approved by the Engineer, the first and last 15 feet of the lot can also be considered as short sections for smoothness. The finished surface shall not vary more than 1/4 inch when evaluated with a 12-foot straightedge. Smoothness readings will not be made across grade changes or cross slope transitions; at these transition areas, the straightedge position shall be adjusted to measure surface smoothness and not design grade or cross slope transitions. Testing shall be continuous across all joints, starting with one-half the length of the straightedge at the edge of pavement section being tested and then moved ahead one-half the length of the straightedge for each successive measurement. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points. Deviations on final surface course > 1/4 inch in longitudinal direction will be corrected with diamond grinding per paragraph 401-4.15 or by removing and replacing full depth of surface course. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.

(ii) Profilograph Testing. Profilograph testing shall be performed by the contractor using approved equipment and procedures as described as ASTM E1274. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must grind" bumps and the Profile Index for the pavement using a 0.2 inch (5 mm) blanking band. The bump template must span one inch (25 mm) with an offset of 0.4 inches (10 mm). The profilograph must be calibrated prior to use and operated by a factory or State DOT approved operator. Profilograms shall be recorded on a longitudinal scale of one inch (25 mm) equals 25 feet (7.5 m) and a vertical scale of one inch (25 mm) equals one inch (25 mm). A copy of the reduced tapes shall be furnished to the Engineer at the end of each days testing.

The pavement must have an average profile index meeting the requirements of paragraph 401-8.1d. High spots, or "must grind" spots, on final surface course in longitudinal direction shall be corrected with diamond grinding per paragraph 401-4.15 or by removing and replacing full depth of surface course. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.

Where corrections are necessary, second profilograph runs shall be performed to verify that the corrections produced an average profile index of 15 inches (38 cm) per mile or less. If the initial average profile index was less than 15 inches (38 cm), only those areas
representing greater than 0.4 inch (10 mm) deviation will be re-profiled for correction verification.

(iii) Final profilograph of [runway]. Final profilograph, full length of runway, shall be performed to facilitate testing of smoothness between lots. Profilograph testing shall be performed by the contractor using approved equipment and procedures as described in ASTM E1274. The pavement must have an average profile index meeting the requirements of paragraph 401-8.1d. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate “must grind” bumps and the Profile Index for the pavement using a 0.2 inch (5 mm) blanking band. The bump template must span one inch (25 mm) with an offset of 0.4 inches (10 mm). The profilograph must be calibrated prior to use and operated by a factory or State DOT approved, trained operator. Profilographs shall be recorded on a longitudinal scale of one inch (25 mm) equals 25 feet (7.5 m) and a vertical scale of one inch (25 mm) equals one inch (25 mm). A copy of the reduced tapes shall be furnished to the Engineer at the end of each day’s testing. Profilograph of final runway shall be performed one foot right and left of runway centerline and 15 feet (4.5 m) right and left of centerline. Any areas that indicate “must grind” will be corrected as directed by the Engineer.

Smoothness testing indicated in the above paragraphs except paragraph (iii) shall be performed within 24 hours of placement of material. Smoothness testing indicated in paragraph (iii) shall be performed within 48 hours of paving completion. The primary purpose of smoothness testing is to identify areas that may be prone to ponding of water which could lead to hydroplaning of aircraft. If the contractor’s machines and/or methods are producing significant areas that need corrective actions then production should be stopped until corrective measures can be implemented. If corrective measures are not implemented and when directed by the Engineer, production shall be stopped until corrective measures can be implemented.

(6) Grade. Grade shall be evaluated on the first day of placement and then as a minimum, every 2 days or less to allow adjustments to paving operations if measurements do not meet specification requirements. The Contractor must submit the survey data to the Engineer by the following day after measurements have been taken. The finished surface of the pavement shall not vary from the gradeline elevations and cross-sections shown on the plans by more than 1/2 inch (12 mm). The finished grade of each lot will be determined by running levels at intervals of 50 feet (15 m) or less longitudinally and all breaks in grade transversely (not to exceed 50 feet (15 m)) to determine the elevation of the completed pavement. The Contractor shall pay the cost of surveying of the level runs that shall be performed by a licensed surveyor. The documentation, stamped and signed by a licensed surveyor, shall be provided by the Contractor to the Engineer. The lot size shall be 2,000 square yards (m²). When more than 15% of all the measurements within a lot are outside the specified tolerance, or if any one shot within the lot deviates 3/4 inch (19 mm) or more from planned grade, the Contractor shall remove the deficient area to the depth of the final course plus 1/2 inch (12 mm) of pavement and replace with new material. Skin patching shall not be permitted. Isolated high points may be ground off provided the course thickness complies with the thickness specified on the plans. The surface of the ground pavement shall have a texture consisting of grooves between 0.090 and 0.130 inches (2 and 3.5 mm) wide. The peaks and ridges shall be approximately 1/32 inch (1 mm) higher than the bottom of the grooves. The pavement shall be left in a clean condition. The removal of all of the slurry resulting from the grinding operation shall be continuous. The grinding operation should be controlled so the residue from the operation does not flow across other lanes of pavement. High point grinding will be limited to 15 square yards (12.5 m²). Areas in excess of 15 square yards (12.5 m²) will require removal and replacement of the pavement in accordance with the limitations noted above. The Contractor shall apply a surface treatment per P-608 to all areas that have been subject to grinding.

c. Percentage of material within specification limits (PWL). The PWL shall be determined in accordance with procedures specified in Section 110 of the General Provisions. The specification tolerance limits (L) for lower and (U) for upper are contained in Table 5.
Table 5. Marshall acceptance limits for stability, flow, air voids, density

<table>
<thead>
<tr>
<th>TEST PROPERTY</th>
<th>75 blows</th>
<th>Specification Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Stability, minimum (pounds)(N)</td>
<td>1800</td>
<td>--</td>
</tr>
<tr>
<td>Flow, 0.01 inch (25 mm)</td>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>Air Voids Total Mix (%)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Surface Mat Density (%)</td>
<td>96.3</td>
<td>[101.3]</td>
</tr>
<tr>
<td>Base Mat Density (%)</td>
<td>95.5</td>
<td>[101.3]</td>
</tr>
<tr>
<td>Joint Density (%)</td>
<td>93.3</td>
<td>--</td>
</tr>
</tbody>
</table>

d. **Outliers.** All individual tests for mat density and air voids shall be checked for outliers (test criterion) in accordance with ASTM E178, at a significance level of 5%. Outliers shall be discarded, and the PWL shall be determined using the remaining test values. The criteria in Table 5 is based on production processes which have a variability with the following standard deviations: Surface Course Mat Density (%), 1.30; Base Course Mat Density (%), 1.55; Joint Density (%), 2.1.

The Contractor should note that (1) 90 PWL is achieved when consistently producing a surface course with an average mat density of at least 98% with 1.30% or less variability, (2) 90 PWL is achieved when consistently producing a base course with an average mat density of at least 97.5% with 1.55% or less variability, and (3) 90 PWL is achieved when consistently producing joints with an average joint density of at least 96% with 2.1% or less variability.

401-5.3 Resampling pavement for mat density.

a. **General.** Resampling of a lot of pavement will only be allowed for mat density, and then, only if the Contractor requests same, in writing, within 48 hours after receiving the written test results from the Engineer. A retest will consist of all the sampling and testing procedures contained in paragraphs 401-5.1b and 401-5.2b(1). Only one resampling per lot will be permitted.

(1) A redefined PWL shall be calculated for the resampled lot. The number of tests used to calculate the redefined PWL shall include the initial tests made for that lot plus the retests.

(2) The cost for resampling and retesting shall be borne by the Contractor.

b. **Payment for resampled lots.** The redefined PWL for a resampled lot shall be used to calculate the payment for that lot in accordance with Table 6.

c. **Outliers.** Check for outliers in accordance with ASTM E178, at a significance level of 5%.

CONTRACTOR QUALITY CONTROL

401-6.1 **General.** The Contractor shall develop a Quality Control Program in accordance with Section 100 of the General Provisions. The program shall address all elements that affect the quality of the pavement including, but not limited to:

a. Mix design

b. Aggregate grading

c. Quality of materials

d. Stockpile management
The Contractor shall perform quality control sampling, testing, and inspection during all phases of the work and shall perform them at a rate sufficient to ensure that the work conforms to the contract requirements, and at minimum test frequencies required by paragraph 401-6.3 and Section 100 of the General Provisions. As a part of the process for approving the Contractor’s plan, the Engineer may require the Contractor’s technician to perform testing of samples to demonstrate an acceptable level of performance.

No partial payment will be made for materials that are subject to specific quality control requirements without an approved plan.

401-6.2 Contractor testing laboratory. The lab shall meet the requirements of ASTM D3666 including all necessary equipment, materials, and current reference standards to comply with the specifications. All costs associated with the testing laboratory shall be included in the unit prices for P-401.

401-6.3 Quality control testing. The Contractor shall perform all quality control tests necessary to control the production and construction processes applicable to these specifications and as set forth in the approved Quality Control Program. The testing program shall include, but not necessarily be limited to, tests for the control of asphalt content, aggregate gradation, temperatures, aggregate moisture, field compaction, and surface smoothness. A Quality Control Testing Plan shall be developed as part of the Quality Control Program.

a. Asphalt content. A minimum of two asphalt content tests shall be performed per lot in accordance with ASTM D6307 or ASTM D2172 if the correction factor in ASTM D6307 is greater than 1.0. The asphalt content for the lot will be determined by averaging the test results.

b. Gradation. Aggregate gradations shall be determined a minimum of twice per lot from mechanical analysis of extracted aggregate in accordance with ASTM D5444, ASTM C136, and ASTM C117.

c. Moisture content of aggregate. The moisture content of aggregate used for production shall be determined a minimum of once per lot in accordance with ASTM C566.

d. Moisture content of HMA. The moisture content shall be determined once per lot in accordance with ASTM D1461.

e. Temperatures. Temperatures shall be checked, at least four times per lot, at necessary locations to determine the temperatures of the dryer, the asphalt binder in the storage tank, the HMA at the plant, and the HMA at the job site.

f. In-place density monitoring. The Contractor shall conduct any necessary testing to ensure that the specified density is being achieved. A nuclear gauge may be used to monitor the pavement density in accordance with ASTM D2950.

g. Additional testing. Any additional testing that the Contractor deems necessary to control the process may be performed at the Contractor’s option.

h. Monitoring. The Engineer reserves the right to monitor any or all of the above testing.

401-6.4 Sampling. When directed by the Engineer, the Contractor shall sample and test any material that appears inconsistent with similar material being sampled, unless such material is voluntarily removed and
replaced or deficiencies corrected by the Contractor. All sampling shall be in accordance with standard procedures specified.

401-6.5 Control charts. The Contractor shall maintain linear control charts both for individual measurements and range (that is, difference between highest and lowest measurements) for aggregate gradation, asphalt content, and VMA. The VMA for each subplot will be calculated and monitored by the Quality Control laboratory.

Control charts shall be posted in a location satisfactory to the Engineer and shall be kept current. As a minimum, the control charts shall identify the project number, the contract item number, the test number, each test parameter, the Action and Suspension Limits applicable to each test parameter, and the Contractor’s test results. The Contractor shall use the control charts as part of a process control system for identifying potential problems and assignable causes before they occur. If the Contractor’s projected data during production indicates a problem and the Contractor is not taking satisfactory corrective action, the Engineer may suspend production or acceptance of the material.

a. Individual measurements. Control charts for individual measurements shall be established to maintain process control within tolerance for aggregate gradation, asphalt content, and VMA. The control charts shall use the job mix formula target values as indicators of central tendency for the following test parameters with associated Action and Suspension Limits:

<table>
<thead>
<tr>
<th>Control Chart Limits For Individual Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve</td>
</tr>
<tr>
<td>3/4 inch (19 mm)</td>
</tr>
<tr>
<td>1/2 inch (12 mm)</td>
</tr>
<tr>
<td>3/8 inch (9 mm)</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
</tr>
<tr>
<td>Asphalt Content</td>
</tr>
<tr>
<td>VMA</td>
</tr>
</tbody>
</table>

b. Range. Control charts for range shall be established to control process variability for the test parameters and Suspension Limits listed below. The range shall be computed for each lot as the difference between the two test results for each control parameter. The Suspension Limits specified below are based on a sample size of n = 2. Should the Contractor elect to perform more than two tests per lot, the Suspension Limits shall be adjusted by multiplying the Suspension Limit by 1.18 for n = 3 and by 1.27 for n = 4.
Control Chart Limits Based On Range
(Based On n = 2)

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Suspension Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 inch (12 mm)</td>
<td>11%</td>
</tr>
<tr>
<td>3/8 inch (9 mm)</td>
<td>11%</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>11%</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>9%</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>6%</td>
</tr>
<tr>
<td>No. 200 (0.075 mm)</td>
<td>3.5%</td>
</tr>
<tr>
<td>Asphalt Content</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

c. Corrective Action. The Contractor Quality Control Program shall indicate that appropriate action shall be taken when the process is believed to be out of tolerance. The Plan shall contain sets of rules to gauge when a process is out of control and detail what action will be taken to bring the process into control. As a minimum, a process shall be deemed out of control and production stopped and corrective action taken, if:

1. One point falls outside the Suspension Limit line for individual measurements or range; or
2. Two points in a row fall outside the Action Limit line for individual measurements.

401-6.6 Quality control reports. The Contractor shall maintain records and shall submit reports of quality control activities daily, in accordance with the Contractor Quality Control Program described in General Provisions, Section 100.

METHOD OF MEASUREMENT

401-7.1 Measurement. HMA Bituminous Base and Surface courses shall be measured by the number of tons (kg) of HMA used in the accepted work. Recorded batch weights or truck scale weights will be used to determine the basis for the tonnage.

Bituminous surface course material utilized in emergency repair shall be measured by the number of square yards of material constructed and accepted. This shall include all associated demolition operations.

BASIS OF PAYMENT

401-8.1 Payment. Payment for a lot of HMA bituminous surface and base course meeting all acceptance criteria as specified in paragraph 401-5.2 shall be made based on results of tests for mat density and air voids. Payment for acceptable lots shall be adjusted according to paragraph 401-8.1a for mat density and air voids and 401-8.1c for smoothness, subject to the limitation that:

a. The total project payment for plant mix bituminous concrete pavement shall not exceed 100 percent of the product of the contract unit price and the total number of tons (kg) of HMA used in the accepted work (See Note 1 under Table 6).

b. The price shall be compensation for furnishing all materials, for all preparation, mixing, and placing of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

c. **Basis of adjusted payment.** The pay factor for each individual lot shall be calculated in accordance with Table 6. A pay factor shall be calculated for both mat density and air voids. The lot pay factor shall be the higher of the two values when calculations for both mat density and air voids are 100% or higher. The lot pay factor shall be the product of the two values when only one of the calculations for either mat density or air voids is 100% or higher. The lot pay factor shall be the lower of the two values when calculations for both mat density and air voids are less than 100%. If PWL for joint density is less than 71 percent then the lot pay factor shall be reduced by 5% but be no higher than 95%.
For each lot accepted, the adjusted contract unit price shall be the product of the lot pay factor for the lot and the contract unit price. Payment shall be subject to the total project payment limitation specified in paragraph 401-8.1. Payment in excess of 100% for accepted lots of HMA shall be used to offset payment for accepted lots of bituminous concrete pavement that achieve a lot pay factor less than 100%.

Table 6. Price adjustment schedule\(^1\)

<table>
<thead>
<tr>
<th>Percentage of material within specification limits (PWL)</th>
<th>Lot pay factor (percent of contract unit price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 – 100</td>
<td>103</td>
</tr>
<tr>
<td>90 – 93</td>
<td>PWL + 10</td>
</tr>
<tr>
<td>70 – 89</td>
<td>0.125 PWL + 88.75</td>
</tr>
<tr>
<td>40 – 69</td>
<td>0.75 PWL + 45</td>
</tr>
<tr>
<td>Below 40</td>
<td>Reject (^2)</td>
</tr>
</tbody>
</table>

\(^1\) Although it is theoretically possible to achieve a pay factor of 103% for each lot, actual payment above 100% shall be subject to the total project payment limitation specified in paragraph 401-8.1.

\(^2\) The lot shall be removed and replaced. However, the Engineer may decide to allow the rejected lot to remain. In that case, if the Engineer and Contractor agree in writing that the lot shall not be removed, it shall be paid for at 50% of the contract unit price and the total project payment shall be reduced by the amount withheld for the rejected lot.

d. **Profilograph smoothness.** When the final average profile index (subsequent to any required corrective action) does not exceed 7 inches per mile (18 cm per 1.6 km), payment will be made at the contract unit price for the completed pavement. If the final average profile index (subsequent to any required corrective action) exceeds 7 inches per mile (18 cm per 1.6 km), but does not exceed 15 inches per mile (38 cm per 1.6 m), the Contractor may elect to accept a contract unit price adjustment in lieu of reducing the profile index.

e. **Basis of adjusted payment for smoothness.** Price adjustment for pavement smoothness will be made in accordance with Table 7. The adjustment will apply to the total tonnage of HMA within a lot of pavement and shall be applied with the following equation:

\[
(Tons \text{ of asphalt concrete in lot}) \times (lot \text{ pay factor}) \times (unit \text{ price per ton}) \times (smoothness \text{ pay factor}) = payment \text{ for lot}
\]

Table 7. Profilograph Average Profile Index Smoothness Pay Factor

<table>
<thead>
<tr>
<th>Inches/miles-per-1/10-mile</th>
<th>Short Sections</th>
<th>Pay Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 – 7</td>
<td>00.0 – 15.0</td>
<td>100%</td>
</tr>
<tr>
<td>7.1 – 9</td>
<td>15.1 – 16</td>
<td>98%</td>
</tr>
<tr>
<td>9.1 – 11</td>
<td>16.1 – 17</td>
<td>96%</td>
</tr>
<tr>
<td>11.1 – 13</td>
<td>17.1 – 18</td>
<td>94%</td>
</tr>
<tr>
<td>13.1 – 14</td>
<td>18.1 – 20</td>
<td>92%</td>
</tr>
<tr>
<td>14.1 – 15</td>
<td>20.1 – 22</td>
<td>90%</td>
</tr>
<tr>
<td>15.1 and up</td>
<td>22.1 and up</td>
<td>Corrective work required(^4)</td>
</tr>
</tbody>
</table>

\(^4\) The Contractor shall correct pavement areas not meeting these tolerances by removing and replacing the defective work. If the Contractor elects to construct an overlay to correct deficiencies, the minimum thickness of the overlay should be at least three times the maximum aggregate size (approximately four (4) times the nominal maximum aggregate size). The corrective overlay shall not violate grade Criteria and butt joints shall be constructed by sawing and removing the original pavement in compliance with the thickness/maximum aggregate size ratio. Skin patching shall not be permitted.
Payment for bituminous material placed and utilized for emergency repairs shall be made at the contract unit price per square yard. This payment shall be full compensation for all associated demolition operations, for furnishing all materials, for preparing and placing these materials, and for all labor equipment, tools, and incidentals necessary to complete the item.

401-8.1.1. Payment. Payment will be made under:

- Item P-401-8.1 Bituminous Surface Course (PG 76-22) -- per ton
- Item P-401-8.2 Bituminous Base Course (PG 76-22) -- per ton
- Item P-401-8.3 Demo & Bituminous Surface Course (PG 76-22) – Emergency Repair -- per square yard
- Item P-401-8.4 Bituminous Surface Course (PG 76-22) - Haul Road Repair -- per ton
- Item P-401-8.5 HMA Binder (PG XX-XX)

TESTING REQUIREMENTS

- ASTM C29 Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate
- ASTM C88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
- ASTM C127 Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
- ASTM C136 Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates
- ASTM C566 Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying
- ASTM D75 Standard Practice for Sampling Aggregates
- ASTM D979 Standard Practice for Sampling Bituminous Paving Mixtures
- ASTM D1073 Standard Specification for Fine Aggregate for Bituminous Paving Mixtures
- ASTM D2172 Standard Test Method for Quantitative Extraction of Bitumen from Bituminous Paving Mixtures
- ASTM D1461 Standard Test Method for Moisture or Volatile Distillates in Bituminous Paving Mixtures
- ASTM D2041 Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures
- ASTM D2489 Standard Practice for Estimating Degree of Particle Coating of Bituminous-Aggregate Mixtures
- ASTM D2726 Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures
MATERIAL REQUIREMENTS

ASTM D946 Standard Specification for Penetration-Graded Asphalt Cement for Use in Pavement Construction
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D4552</td>
<td>Standard Practice for Classifying Hot-Mix Recycling Agents</td>
</tr>
<tr>
<td>ASTM D6373</td>
<td>Standard Specification for Performance Graded Asphalt Binder</td>
</tr>
</tbody>
</table>

END OF ITEM P-401
Item P-501
PORTLAND CEMENT CONCRETE (PCC) PAVEMENT

DESCRIPTION

501-1.1 This work shall consist of pavement composed of portland cement concrete (PCC), with reinforcement, constructed on a prepared underlying surface in accordance with these specifications and shall conform to the lines, grades, thickness, and typical cross-sections shown on the plans.

MATERIALS

501-2.1 Aggregates.

a. Reactivity. Fine and Coarse aggregates to be used in all concrete shall be evaluated and tested by the Contractor for alkali-aggregate reactivity in accordance with both ASTM C1260 and ASTM C1567. Aggregate and mix proportion reactivity tests shall be performed for each project.

(1) Coarse and fine aggregate shall be tested separately in accordance with ASTM C1260. The aggregate shall be considered innocuous if the expansion of test specimens, tested in accordance with ASTM C1260, does not exceed 0.10% at 28 days (30 days from casting).

(2) Combined coarse and fine aggregate shall be tested in accordance with ASTM C1567, modified for combined aggregates, using the proposed mixture design proportions of aggregates, cementitious materials, and/or specific reactivity reducing chemicals. If lithium nitrate is proposed for use with or without supplementary cementitious materials, the aggregates shall be tested in accordance with Corps of Engineers (COE) Concrete Research Division (CRD) C662. If lithium nitrate admixture is used, it shall be nominal 30% ±0.5% weight lithium nitrate in water.

(3) If the expansion of the proposed combined materials test specimens, tested in accordance with ASTM C1567, modified for combined aggregates, or COE CRD C662, does not exceed 0.10% at 28 days, the proposed combined materials will be accepted. If the expansion of the proposed combined materials test specimens is greater than 0.10% at 28 days, the aggregates will not be accepted unless adjustments to the combined materials mixture can reduce the expansion to less than 0.10% at 28 days, or new aggregates shall be evaluated and tested.

b. Fine aggregate. Fine aggregate shall conform to the requirements of ASTM C33. Grading of the fine aggregate, as delivered to the mixer, shall conform to the requirements of ASTM C33 and shall have a fineness modulus of not less than 2.50 nor more than 3.40. The soundness loss shall not exceed 10% when sodium sulfate is used or 15% when magnesium sulfate is used, after five cycles, when tested per ASTM C88.

The amount of deleterious material in the fine aggregate shall not exceed the following limits:
Limits for Deleterious Substances in Fine Aggregate for Concrete

<table>
<thead>
<tr>
<th>Deleterious material</th>
<th>ASTM</th>
<th>Percentage by Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Lumps and friable particles</td>
<td>ASTM C142</td>
<td>1.0</td>
</tr>
<tr>
<td>Material finer than 0.075mm (No. 200 sieve)</td>
<td>ASTM C117</td>
<td>3.0</td>
</tr>
<tr>
<td>Lightweight particles</td>
<td>ASTM C123 using a medium with a density of Sp. Gr. of 2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Total of all deleterious Material</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

c. **Coarse aggregate.** Gradation, within the separated size groups, shall meet the coarse aggregate grading requirements of ASTM C33 when tested in accordance with ASTM C136. When the nominal maximum size of the aggregate is greater than one inch (25 mm), the aggregates shall be furnished in two size groups.

Aggregates delivered to the mixer shall consist of crushed stone, crushed or uncrushed gravel, air-cooled iron blast furnace slag, crushed recycled concrete pavement, or a combination. The aggregates should be free of ferrous sulfides, such as pyrite, that would cause “rust” staining that can bleed through pavement markings. Steel blast furnace slag shall not be permitted. The aggregate shall be composed of clean, hard, uncoated particles. Dust and other coating shall be removed from the aggregates by washing. This shall be monitored by compliance with the minus #200 on the combined washed gradation.

The percentage of wear shall be no more than 40% when tested in accordance with ASTM C131.

The quantity of flat, elongated, and flat and elongated particles in any size group coarser than 3/8 sieve (9 mm) shall not exceed 8% by weight when tested in accordance with ASTM D4791. A flat particle is defined as one having a ratio of width to thickness greater than 5. An elongated particle is one having a ratio of length to width greater than 5.

The soundness loss shall not exceed 12% when sodium sulfate is used or 18% when magnesium sulfate is used, after five cycles, when tested per ASTM C88.

The amount of deleterious material in the coarse aggregate shall not exceed the following limits:
Limits for Deleterious Substances in Coarse Aggregate for Concrete

<table>
<thead>
<tr>
<th>Deleterious material</th>
<th>ASTM</th>
<th>Percentage by Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Lumps and friable particles</td>
<td>ASTM C142</td>
<td>1.0</td>
</tr>
<tr>
<td>Material finer than No. 200 sieve (0.075mm)</td>
<td>ASTM C117</td>
<td>1.0</td>
</tr>
<tr>
<td>Lightweight particles</td>
<td>ASTM C123 using a medium with a density of Sp. Gr. of 2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Chert (less than 2.40 Sp Gr.)</td>
<td>ASTM C123 using a medium with a density of Sp. Gr. of 2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Total of all deleterious Material</td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 1. Gradations for Coarse Aggregate (ASTM C33)

<table>
<thead>
<tr>
<th>Sieve Designations (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From 1-1/2 inch to No. 4 (38 mm - 4.75 mm)</td>
</tr>
<tr>
<td></td>
<td>#4 1-1/2 inch - 3/4 inch</td>
</tr>
<tr>
<td>inch mm</td>
<td>1-1/2 60 --- --- ---</td>
</tr>
<tr>
<td>1 inch 25</td>
<td>3/4 19 0-15 90-100 ---</td>
</tr>
<tr>
<td>3/8 9</td>
<td>No. 4 4.75 --- --- ---</td>
</tr>
<tr>
<td>No. 8 2.36</td>
<td>--- --- --- ---</td>
</tr>
</tbody>
</table>

(1) Aggregate susceptibility to durability (D) cracking. Coarse aggregate may be accepted from sources that have a 20 year service history for the same gradation to be supplied with no durability issues. Aggregates that do not have a record of 20 years of service without major repairs (less than 5% of slabs replaced) in similar conditions without D-cracking shall not be used unless it meets the following:

(a) Material currently being produced shall have a durability factor ≥ 95 using ASTM C666 procedure B. Coarse aggregates that are crushed granite, calcite cemented sandstone, quartzite, basalt, diabase, rhyolite or trap rock are considered to meet the D-cracking test but must meet all other quality tests. Aggregates meeting State Highway Department material specifications may be acceptable.
(b) The Contractor shall submit a current certification that the aggregate does not have a history of D-cracking and that the aggregate meets the state specifications for use in PCC pavement for use on interstate highways. Certifications, tests and any history reports must be for the same gradation as being proposed for use on the project. Certifications which are not dated or which are over one (1) year old or which are for different gradations will not be accepted. Test results will only be accepted when tests were performed by a State Department of Transportation (DOT) materials laboratory or an accredited laboratory.

(2) Combined aggregate gradation. If substituted for the grading requirements specified for coarse aggregate and for fine aggregate and when approved by the Engineer, the combined aggregate grading shall meet the following requirements:

(a) The materials selected and the proportions used shall be such that when the Coarseness Factor (CF) and the Workability Factor (WF) are plotted on a diagram as described in d. below, the point thus determined shall fall within the parallelogram described therein.

(b) The CF shall be determined from the following equation:

\[CF = \frac{\text{cumulative percent retained on the 3/8 in. sieve}}{\text{cumulative percent retained on the No. 8 sieve}} \times 100 \]

(c) The Workability Factor WF is defined as the percent passing the No. 8 (2.36 mm) sieve based on the combined gradation. However, WF shall be adjusted, upwards only, by 2.5 percentage points for each 94 pounds (42 kg) of cementitious material per cubic meter yard greater than 564 pounds per cubic yard (335 kg per cubic meter).

(d) A diagram shall be plotted using a rectangular scale with WF on the Y-axis with units from 20 (bottom) to 45 (top), and with CF on the X-axis with units from 80 (left side) to 30 (right side). On this diagram a parallelogram shall be plotted with corners at the following coordinates (CF-75, WF-28), (CF-75, WF-40), (CF-45, WF-32.5), and (CF-45, WF-44.5). If the point determined by the intersection of the computed CF and WF does not fall within the above parallelogram, the grading of each size of aggregate used and the proportions selected shall be changed as necessary.

501-2.2 Cement. Cement shall conform to the requirements of ASTM C150 Type II. Low alkali cements which contain less than 0.6% equivalent alkalies shall be used.

If aggregates are deemed innocuous when tested in accordance with paragraph 501-2.1.a.1 and accepted in accordance with paragraph 501-2.1.a.2, higher equivalent alkali content in the cement may be allowed if approved by the Engineer and FAA. If cement becomes partially set or contains lumps of caked cement, it shall be rejected. Cement salvaged from discarded or used bags shall not be used.

501-2.3 Cementitious materials.

a. Fly ash. Fly ash shall meet the requirements of ASTM C618, with the exception of loss of ignition, where the maximum shall be less than 6%. Fly ash for use in mitigating alkali-silica reactivity shall have a Calcium Oxide (CaO) content of less than 13% and a total available alkali content less than 3% per ASTM C311. Fly ash produced in furnace operations using liming materials or soda ash (sodium carbonate) as an additive shall not be acceptable. The Contractor shall furnish the previous three most recent, consecutive ASTM C618 reports for each source of fly ash proposed in the mix design, and shall furnish each additional report as they become available during the project. The reports can be used for acceptance or the material may be tested independently by the Engineer.

b. Slag cement (ground granulated blast furnace(GGBF)). Slag cement shall conform to ASTM C989, Grade 100 or Grade 120. Slag cement shall be used only at a rate between 25% and 55% of the total cementitious material by mass.

c. Raw or calcined natural pozzolan. Natural pozzolan shall be raw or calcined and conform to ASTM C618, Class N, including the optional requirements for uniformity and effectiveness in controlling Alkali-
Silica reaction and shall have a loss on ignition not exceeding 6%. Class N pozzolan for use in mitigating Alkali-Silica Reactivity shall have a total available alkali content less than 3%.

d. Ultrafine fly ash and ultrafine pozzolan. UltraFine Fly Ash (UFFA) and UltraFine Pozzolan (UFP) shall conform to ASTM C618, Class F or N, and the following additional requirements:

1. The strength activity index at 28 days of age shall be at least 95% of the control specimens.
2. The average particle size shall not exceed 6 microns.

501-2.4 Joint seal. The joint seal for the joints in the concrete pavement shall meet the requirements of Item P-604 or Item P-605 and shall be of the type specified in the plans.

501-2.5 Isolation joint filler. Premolded joint filler for isolation joints shall conform to the requirements of ASTM D1751 and shall be where shown on the plans. The filler for each joint shall be furnished in a single piece for the full depth and width required for the joint, unless otherwise specified by the Engineer. When the use of more than one piece is required for a joint, the abutting ends shall be fastened securely and held accurately to shape by stapling or other positive fastening means satisfactory to the Engineer.

501-2.6 Steel reinforcement. Reinforcing shall consist of Welded Wire Steel Fabric conforming to the requirements of ASTM A1064. Welded wire fabric shall be furnished in flat sheets only.

501-2.7 Dowel and tie bars. Dowel bars shall be plain steel bars conforming to ASTM A615 and shall be free from burring or other deformation restricting slippage in the concrete. Before delivery to the construction site each dowel bar shall be epoxy coated per ASTM A1078. The dowels shall be coated with a bond-breaker recommended by the manufacturer. Dowel sleeves or inserts are not permitted. Grout retention rings shall be fully circular metal or plastic devices capable of supporting the dowel until the grout hardens.

Tie bars shall be deformed steel bars and conform to the requirements of ASTM A615. Tie bars designated as Grade 60 in ASTM A615 or ASTM A706 shall be used for construction requiring bent bars.

501-2.8 Water. Water used in mixing or curing shall be potable, clean, free of oil, salt, acid, alkali, sugar, vegetable, or other substances injurious to the finished product, except that non-potable water, or water from concrete production operations, may be used if it meets the requirements of ASTM C1602.

501-2.9 Material for curing concrete. Curing materials shall conform to one of the following specifications:

a. Liquid membrane-forming compounds for curing concrete shall conform to the requirements of ASTM C309, Type 2, Class B, or Class A if wax base only.

b. White polyethylene film for curing concrete shall conform to the requirements of ASTM C171.

c. White burlap-polyethylene sheeting for curing concrete shall conform to the requirements of ASTM C171.

d. Waterproof paper for curing concrete shall conform to the requirements of ASTM C171.

501-2.10 Admixtures. The Contractor shall submit certificates indicating that the material to be furnished meets all of the requirements indicated below. In addition, the Engineer may require the Contractor to submit complete test data from an approved laboratory showing that the material to be furnished meets all of the requirements of the cited specifications. Subsequent tests may be made of samples taken by the Engineer from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved.

a. Air-entraining admixtures. Air-entraining admixtures shall meet the requirements of ASTM C260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entrainment agent and any water reducer admixture shall be compatible.

b. Water-reducing admixtures. Water-reducing admixture shall meet the requirements of ASTM C494, Type A, B, or D. ASTM C494, Type F and G high range water reducing admixtures and ASTM C1017 flowable admixtures shall not be used.

c. Other admixtures. The use of set retarding, and set-accelerating admixtures shall be approved by the Engineer. Retarding shall meet the requirements of ASTM C494, Type A, B, or D and set-accelerating admixtures shall meet the requirements of ASTM C494, Type A, B, or D and set-retarding admixtures shall be approved by the Engineer.
shall meet the requirements of ASTM C494, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used.

d. Lithium Nitrate. The lithium admixture shall be a nominal 30% aqueous solution of Lithium Nitrate, with a density of 10 pounds/gallon, and shall have the approximate chemical form as shown below:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Limit (Percent by Mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNO₃ (Lithium Nitrate)</td>
<td>30 ±0.5</td>
</tr>
<tr>
<td>SO₄ (Sulfate Ion)</td>
<td>0.1 (max)</td>
</tr>
<tr>
<td>CI (Chloride Ion)</td>
<td>0.2 (max)</td>
</tr>
<tr>
<td>Na (Sodium Ion)</td>
<td>0.1 (max)</td>
</tr>
<tr>
<td>K (Potassium Ion)</td>
<td>0.1 (max)</td>
</tr>
</tbody>
</table>

Provide a trained manufacturer’s representative to supervise the lithium nitrate admixture dispensing and mixing operations.

501-2.11 Epoxy-resin. All epoxy-resin materials shall be two-component materials conforming to the requirements of ASTM C881, Class as appropriate for each application temperature to be encountered, except that in addition, the materials shall meet the following requirements:

a. Material for use for embedding dowels and anchor bolts shall be Type IV, Grade 3.

b. Material for use as patching materials for complete filling of spalls and other voids and for use in preparing epoxy resin mortar shall be Type III, Grade as approved.

c. Material for use for injecting cracks shall be Type IV, Grade 1.

d. Material for bonding freshly mixed Portland cement concrete or mortar or freshly mixed epoxy resin concrete or mortar to hardened concrete shall be Type V, Grade as approved.

501-2.12 Material acceptance. Prior to use of materials, the Contractor shall submit certified test reports to the Engineer for those materials proposed for use during construction. The certification shall show the appropriate ASTM test for each material, the test results, and a statement that the material passed or failed.

The Engineer may request samples for testing, prior to and during production, to verify the quality of the materials and to ensure conformance with the applicable specifications.

MIX DESIGN

501-3.1. General. No concrete shall be placed until the mix design has been submitted to the Engineer for review and the Engineer has taken appropriate action. The Engineer’s review shall not relieve the Contractor of the responsibility to select and proportion the materials to comply with this section.

501-3.2 Proportions. The laboratory preparing the mix design shall be accredited in accordance with ASTM C1077. The mix design for all Portland cement concrete placed under P-501 shall be stamped or sealed by the responsible professional Engineer of the laboratory. Concrete shall be proportioned to achieve a 28-day flexural strength that meets or exceeds the acceptance criteria contained in paragraph 501-5.2 for a flexural strength of 620 psi per ASTM C78. The mix shall be developed using the procedures contained in the Portland Cement Association’s (PCA) publication, “Design and Control of Concrete Mixtures”.

The minimum cementitious material shall be adequate to ensure a workable, durable mix. The minimum cementitious material (cement plus fly ash, or slag cement) shall be 470 pounds per cubic yard. The ratio of water to cementitious material, including free surface moisture on the aggregates but not including moisture absorbed by the aggregates shall not be more than 0.45 by weight.

Flexural strength test specimens shall be prepared in accordance with ASTM C192 and tested in accordance with ASTM C78. The mix determined shall be workable concrete having a maximum allowable slump between one and two inches as determined by ASTM C143. For slip-form concrete, the slump shall be between 1/2 inch and 1-1/2 inch. At the start of the project, the Contractor shall determine a maximum
allowable slump for slip-form pavement which will produce in-place pavement to control the edge slump. The selected slump shall be applicable to both pilot and fill-in lanes.

Before the start of paving operations and after approval of all material to be used in the concrete, the Contractor shall submit a mix design showing the proportions and flexural strength obtained from the concrete at seven (7) and 28 days. The mix design shall include copies of test reports, including test dates, and a complete list of materials including type, brand, source, and amount of cement, fly ash, ground slag, coarse aggregate, fine aggregate, water, and admixtures. The mix design shall be submitted to the Engineer at least 30 days prior to the start of operations. The submitted mix design shall not be more than 90 days old. Production shall not begin until the mix design is approved in writing by the Engineer.

If a change in sources is made, or admixtures added or deleted from the mix, a new mix design must be submitted to the Engineer for approval. Previously approved mix designs for airfield paving older than 90 days shall not be used without re-submitting and re-approval.

The results of the mix design shall include a statement giving the maximum nominal coarse aggregate size and the weights and volumes of each ingredient proportioned on a one cubic yard (meter) basis. Aggregate quantities shall be based on the mass in a saturated surface dry condition. The recommended mixture proportions shall be accompanied by test results demonstrating that the proportions selected will produce concrete of the qualities indicated. Trial mixtures having proportions, slumps, and air content suitable for the work shall be based on methodology described in PCA’s publication, Design and Control of Concrete Mixtures, modified as necessary to accommodate flexural strength.

The submitted mix design shall be stamped or sealed by the responsible professional Engineer of the laboratory and shall include the following items as a minimum:

a. Coarse, fine, and combined aggregate gradations and plots including fineness modulus of the fine aggregate.

b. Reactivity Test Results.

c. Coarse aggregate quality test results, including deleterious materials.

d. Fine aggregate quality test results, including deleterious materials.

e. Mill certificates for cement and supplemental cementitious materials.

f. Certified test results for all admixtures, including Lithium Nitrate if applicable.

g. Specified flexural strength, slump, and air content.

h. Recommended proportions/volumes for proposed mixture and trial water-cementitious materials ratio, including actual slump and air content.

i. Flexural and compressive strength summaries and plots, including all individual beam and cylinder breaks.

j. Correlation ratios for acceptance testing and Contractor Quality Control testing, when applicable.

k. Historical record of test results documenting production standard deviation, when applicable.

501-3.3 Cementitious materials.

a. Fly ash. When fly ash is used as a partial replacement for cement, the replacement rate shall be determined from laboratory trial mixes, and shall be between 20 and 30% by weight of the total cementitious material. If fly ash is used in conjunction with slag cement the maximum replacement rate shall not exceed 10% by weight of total cementitious material.

b. Slag cement (ground granulated blast furnace (GGBF)). Slag cement may be used. The slag cement, or slag cement plus fly ash if both are used, may constitute between 25 to 55% of the total cementitious material by weight. If the concrete is to be used for slipforming operations and the air temperature is expected to be lower than 55°F the percent slag cement shall not exceed 30% by weight.
c. **Raw or calcined natural pozzolan.** Natural pozzolan may be used in the mix design. When pozzolan is used as a partial replacement for cement, the replacement rate shall be determined from laboratory trial mixes, and shall be between 20 and 30% by weight of the total cementitious material. If pozzolan is used in conjunction with slag cement the maximum replacement rate shall not exceed 10% by weight of total cementitious material.

d. **Ultrafine fly ash (UFFA) and ultrafine pozzolan (UFP).** UFFA and UFP may be used in the mix design with the Engineer’s approval. When UFFA and UFP is used as a partial replacement for cement, the replacement rate shall be determined from laboratory trial mixes, and shall be between seven (7) and 16% by weight of the total cementitious material.

501-3.4 Admixtures.

a. **Air-entraining admixtures.** Air-entraining admixture are to be added in such a manner that will ensure uniform distribution of the agent throughout the batch. The air content of freshly mixed air-entrained concrete shall be based upon trial mixes with the materials to be used in the work adjusted to produce concrete of the required plasticity and workability. The percentage of air in the mix shall be 4.0%. Air content shall be determined by testing in accordance with ASTM C231 for gravel and stone coarse aggregate and ASTM C173 for slag and other highly porous coarse aggregate.

b. **Water-reducing admixtures.** Water-reducing admixtures shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements. Tests shall be conducted on trial mixes, with the materials to be used in the work, in accordance with ASTM C494.

c. **Other admixtures.** Set controlling, and other approved admixtures shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements. Tests shall be conducted on trial mixes, with the materials to be used in the work, in accordance with ASTM C 494.

d. **Lithium nitrate.** Lithium nitrate shall be added to the mix in the manner recommended by the manufacturer and in the amount necessary to comply with the specification requirements in accordance with paragraph 501-2.10d.

501-3.5 Concrete mix design laboratory. The Contractor's laboratory used to develop the concrete mix design shall be accredited in accordance with ASTM C1077. The laboratory accreditation must be current and listed on the accrediting authority’s website. All test methods required for developing the concrete mix design must be listed on the lab accreditation. A copy of the laboratory’s current accreditation and accredited test methods shall be submitted to the Engineer prior to start of construction. The submittal shall contain as a minimum:

a. Qualifications of personnel; laboratory manager, supervising technician, and testing technicians.

b. A statement that the equipment used in developing the mix design is in calibration.

c. A statement that each test specified in developing the mix design is offered in the scope of the laboratory's services.

d. A copy of the laboratory's quality control system.

501-3.6 Maturity Meters for early strength.

a. **Calibration during mix design.** As a part of the mix design procedure, sufficient beams shall be cast during the mix design process to adequately determine the strengths at 24 hours, 36 hours, 48 hours, 5 days, 7 days, 14 days, and 28 days, to ensure compliance with the requirements of the contract documents. The use of maturity meters may be used to monitor and determine the concrete strength. The meters shall be intelliRock Maturity Meters supplied by Engius of Stillwater, Oklahoma. Curves shall be developed during the mix design process and further proved during the concrete placement.
b. **During construction.** The Contractor shall take and make at least six (6) beams for each 200 cubic yards. Each individual three (3) day, five (5) day, and seven (7) day, flexural strength test, shall consist of the average of two (2) beam breaks. When the maturity meter curves have been developed to an acceptable level, then maturity meter readings may be used to determine strength for opening associated areas to paving traffic per P-501-4.8 and P501-4.18. Acceptable being defined as 10 consecutive tests where the difference between the meter reading and actual beams results are within the single operator precision level of ASTM C78.

c. **Monitoring and continued calibration.** After an acceptable level of calibration has been achieved per P501-3.6b, then for every fifth (5) placement at least 6 beams will be made for each 200 cubic yards as detailed above to verify continued acceptability of the maturity meter readings. If the meter readings are found to be outside the single operator precision of ASTM C78, then the procedure per P 501-3.6b will be repeated.

ACCEPTANCE TESTING WILL STILL BE BASED ON THE TWO (2) 28 DAY BEAMS CAST BY THE QUALITY ACCEPTANCE LABORATORY.

CONSTRUCTION METHODS

501-4.1 **Equipment.** Equipment necessary for handling materials and performing all parts of the work shall be approved by the Engineer, but does not relieve the Contractor of the responsibility for the proper operation of equipment and maintaining the equipment in good working condition. The equipment shall be at the jobsite sufficiently ahead of the start of paving operations to be examined thoroughly and approved.

a. **Batch plant and equipment.** The batch plant and equipment shall conform to the requirements of ASTM C94.

b. **Mixers and transportation equipment.**

 (1) **General.** Concrete may be mixed at a central plant, or wholly or in part in truck mixers. Each mixer shall have attached in a prominent place a manufacturer's nameplate showing the capacity of the drum in terms of volume of mixed concrete and the speed of rotation of the mixing drum or blades.

 (2) **Central plant mixer.** Central plant mixers shall conform to the requirements of ASTM C94. The mixer shall be examined daily for changes in condition due to accumulation of hard concrete or mortar or wear of blades. The pickup and throwover blades shall be replaced when they have worn down 3/4 inch or more. The Contractor shall have a copy of the manufacturer's design on hand showing dimensions and arrangement of blades in reference to original height and depth.

 (3) **Truck mixers and truck agitators.** Truck mixers used for mixing and hauling concrete and truck agitators used for hauling central-mixed concrete shall conform to the requirements of ASTM C94.

 (4) **Nonagitator trucks.** Nonagitating hauling equipment shall conform to the requirements of ASTM C94.

 (5) **Transfer and spreading equipment.** Equipment for transferring concrete from the transporting equipment to the paving lane in front of the paver shall be specially manufactured, self-propelled transfer equipment which will accept the concrete outside the paving lane and will transfer and spread it evenly across the paving lane in front of the paver and strike off the surface evenly to a depth which permits the paver to operate efficiently.

c. **Finishing equipment.** The standard method of constructing concrete pavements shall be with an approved slip-form paving equipment designed and operated to spread, consolidate, screed, and float-finish the freshly placed concrete in one complete pass of the machine so that the end result is a dense and homogeneous pavement which is achieved with a minimum of hand finishing. The paver-finisher shall be a heavy duty, self-propelled machine designed specifically for paving and finishing high quality concrete pavements. It shall weigh at least 2,200 lbs per foot of paving lane width and powered by an engine having at least 6.0 horsepower per foot of lane width.
On projects requiring less than 500 square yard of cement concrete pavement or requiring individual placement areas of less than 500 square yard, or irregular areas at locations inaccessible to slip-form paving equipment, concrete pavement may be placed with approved placement and finishing equipment using stationary side forms. Hand screeding and float finishing may only be used on small irregular areas as allowed by the Engineer.

d. **Vibrators.** Vibrator shall be the internal type. Operating frequency for internal vibrators shall be between 8,000 and 12,000 vibrations per minute. Average amplitude for internal vibrators shall be 0.025-0.05 inch.

The number, spacing, and frequency shall be as necessary to provide a dense and homogeneous pavement and meet the recommendations of American Concrete Institute (ACI) 309, Guide for Consolidation of Concrete. Adequate power to operate all vibrators shall be available on the paver. The vibrators shall be automatically controlled so that they shall be stopped as forward motion ceases. The Contractor shall provide an electronic or mechanical means to monitor vibrator status. The checks on vibrator status shall occur a minimum of two times per day or when requested by the Engineer.

Hand held vibrators may be used in irregular areas only, but shall meet the recommendations of ACI 309R, Guide for Consolidation of Concrete.

e. **Concrete saws.** The Contractor shall provide sawing equipment adequate in number of units and power to complete the sawing to the required dimensions. The Contractor shall provide at least one standby saw in good working order and a supply of saw blades at the site of the work at all times during sawing operations. Early-entry saws may be used, subject to demonstration and approval of the Engineer.

f. **Side forms.** Straight side forms shall be made of steel and shall be furnished in sections not less than 10 feet in length. Forms shall have a depth equal to the pavement thickness at the edge, and a base width equal to or greater than the depth. Flexible or curved forms of proper radius shall be used for curves of 100-foot radius or less. Forms shall be provided with adequate devices for secure settings so that when in place they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms with battered top surfaces and bent, twisted or broken forms shall not be used. Built-up forms shall not be used, except as approved by the Engineer. The top face of the form shall not vary from a true plane more than 1/8 inch in 10 feet, and the upstanding leg shall not vary more than 1/4 inch. The forms shall contain provisions for locking the ends of abutting sections together tightly for secure setting. Wood forms may be used under special conditions, when approved by the Engineer.

g. **Pavers.** The paver shall be fully energized, self-propelled, and designed for the specific purpose of placing, consolidating, and finishing the concrete pavement, true to grade, tolerances, and cross-section. It shall be of sufficient weight and power to construct the maximum specified concrete paving lane width as shown in the plans, at adequate forward speed, without transverse, longitudinal or vertical instability or without displacement. The paver shall be equipped with electronic or hydraulic horizontal and vertical control devices.

501-4.2 Form setting. Forms shall be set sufficiently in advance of the concrete placement to ensure continuous paving operation. After the forms have been set to correct grade, the underlying surface shall be thoroughly tamped, either mechanically or by hand, at both the inside and outside edges of the base of the forms. Forms shall be staked in place sufficiently to maintain the form in position for the method of placement.

Form sections shall be tightly locked and shall be free from play or movement in any direction. The forms shall not deviate from true line by more than 1/8 inch at any joint. Forms shall be so set that they will withstand, without visible spring or settlement, the impact and vibration of the consolidating and finishing equipment. Forms shall be cleaned and oiled prior to the placing of concrete.

The alignment and grade elevations of the forms shall be checked and corrections made by the Contractor immediately before placing the concrete.
501-4.3 Conditioning of underlying surface. The compacted underlying surface on which the pavement will be placed shall be widened approximately 3 feet to extend beyond the paving machine track to support the paver without any noticeable displacement. After the underlying surface has been placed and compacted to the required density, the areas that will support the paving machine and the area to be paved shall be trimmed or graded to the plan grade elevation and profile by means of a properly designed machine. The grade of the underlying surface shall be controlled by a positive grade control system using lasers, stringlines, or grade wires. If the density of the underlying surface is disturbed by the trimming operations, it shall be corrected by additional compaction and retested at the option of the Engineer before the concrete is placed except when stabilized subbases are being constructed. If damage occurs on a stabilized subbase, it shall be corrected full depth by the Contractor. If traffic is allowed to use the prepared grade, the grade shall be checked and corrected immediately before the placement of concrete. The prepared grade shall be moistened with water, without saturating, immediately ahead of concrete placement to prevent rapid loss of moisture from concrete. The underlying surface shall be protected so that it will be entirely free of frost when concrete is placed.

501-4.4 Conditioning of underlying surface, side-form and fill-in lane construction. The prepared underlying surface shall be moistened with water, without saturating, immediately ahead of concrete placement to prevent rapid loss of moisture from the concrete. Damage caused by hauling or usage of other equipment shall be corrected and retested at the option of the Engineers. If damage occurs to a stabilized subbase, it shall be corrected full depth by the Contractor. A template shall be provided and operated on the forms immediately in advance of the placing of all concrete. The template shall be propelled only by hand and not attached to a tractor or other power unit. Templates shall be adjustable so that they may be set and maintained at the correct contour of the underlying surface. The adjustment and operation of the templates shall be such as will provide an accurate retest of the grade before placing the concrete thereon. All excess material shall be removed and wasted. Low areas shall be filled and compacted to a condition similar to that of the surrounding grade. The underlying surface shall be protected so that it will be entirely free from frost when the concrete is placed. The use of chemicals to eliminate frost in the underlying surface shall not be permitted.

The template shall be maintained in accurate adjustment, at all times by the Contractor, and shall be checked daily.

501-4.5 Handling, measuring, and batching material. The batch plant site, layout, equipment, and provisions for transporting material shall assure a continuous supply of material to the work. Stockpiles shall be constructed in such a manner that prevents segregation and intermixing of deleterious materials. Aggregates from different sources shall be stockpiled, weighed and batched separately at the concrete batch plant.

Aggregates that have become segregated or mixed with earth or foreign material shall not be used. All aggregates produced or handled by hydraulic methods, and washed aggregates, shall be stockpiled or binned for draining at least 12 hours before being batched. Rail shipments requiring more than 12 hours will be accepted as adequate binning only if the car bodies permit free drainage.

Batching plants shall be equipped to proportion aggregates and bulk cement, by weight, automatically using interlocked proportioning devices of an approved type. When bulk cement is used, the Contractor shall use a suitable method of handling the cement from weighing hopper to transporting container or into the batch itself for transportation to the mixer, such as a chute, boot, or other approved device, to prevent loss of cement. The device shall be arranged to provide positive assurance that the cement content specified is present in each batch.

501-4.6 Mixing concrete. The concrete may be mixed at the work site, in a central mix plant or in truck mixers. The mixer shall be of an approved type and capacity. Mixing time shall be measured from the time all materials, except water, are emptied into the drum. All concrete shall be mixed and delivered to the site in accordance with the requirements of ASTM C94.

Mixed concrete from the central mixing plant shall be transported in truck mixers, truck agitators, or non-agitating trucks. The elapsed time from the addition of cementitious material to the mix until the concrete is deposited in place at the work site shall not exceed 30 minutes when the concrete is hauled in non-agitating trucks, nor 90 minutes when the concrete is hauled in truck mixers or truck agitators. Retempering concrete...
by adding water or by other means will not be permitted. With transit mixers additional water may be added to the batch materials and additional mixing performed to increase the slump to meet the specified requirements provided the addition of water is performed within 45 minutes after the initial mixing operations and provided the water/cementitious ratio specified in the approved mix design is not exceeded, and approved by the Engineer.

501-4.7 Limitations on mixing and placing. No concrete shall be mixed, placed, or finished when the natural light is insufficient, unless an adequate and approved artificial lighting system is operated.

a. Cold weather. Unless authorized in writing by the Engineer, mixing and concreting operations shall be discontinued when a descending air temperature in the shade and away from artificial heat reaches 40°F and shall not be resumed until an ascending air temperature in the shade and away from artificial heat reaches 35°F.

The aggregate shall be free of ice, snow, and frozen lumps before entering the mixer. The temperature of the mixed concrete shall not be less than 50°F at the time of placement. Concrete shall not be placed on frozen material nor shall frozen aggregates be used in the concrete.

When concreting is authorized during cold weather, water and/or the aggregates may be heated to not more than 150°F. The apparatus used shall heat the mass uniformly and shall be arranged to preclude the possible occurrence of overheated areas which might be detrimental to the materials.

b. Hot weather. During periods of hot weather when the maximum daily air temperature exceeds 85°F, the following precautions shall be taken.

The forms and/or the underlying surface shall be sprinkled with water immediately before placing the concrete. The concrete shall be placed at the coolest temperature practicable, and in no case shall the temperature of the concrete when placed exceed 90°F. The aggregates and/or mixing water shall be cooled as necessary to maintain the concrete temperature at or not more than the specified maximum.

The finished surfaces of the newly laid pavement shall be kept damp by applying a water-fog or mist with approved spraying equipment until the pavement is covered by the curing medium. When necessary, wind screens shall be provided to protect the concrete from an evaporation rate in excess of 0.2 psf per hour. When conditions are such that problems with plastic cracking can be expected, and particularly if any plastic cracking begins to occur, the Contractor shall immediately take such additional measures as necessary to protect the concrete surface. Such measures shall consist of wind screens, more effective fog sprays, and similar measures commencing immediately behind the paver. If these measures are not effective in preventing plastic cracking, paving operations shall be immediately stopped.

c. Temperature management program. Prior to the start of paving operation for each day of paving, the Contractor shall provide the Engineer with a Temperature Management Program for the concrete to be placed to assure that uncontrolled cracking is avoided. As a minimum the program shall address the following items:

(1) Anticipated tensile strains in the fresh concrete as related to heating and cooling of the concrete material.

(2) Anticipated weather conditions such as ambient temperatures, wind velocity, and relative humidity; and anticipated evaporation rate using Figure 11-8, PCA, Design and Control of Concrete Mixtures.

(3) Anticipated timing of initial sawing of joint.

(4) Anticipated number and type of saws to be used.

501-4.8 Placing concrete. At any point in concrete conveyance, the free vertical drop of the concrete from one point to another or to the underlying surface shall not exceed 3 feet. The finished concrete product must be dense and homogeneous, without segregation and conforming to the standards in this specification. Backhoes and grading equipment shall not be used to distribute the concrete in front of the paver. Front end loaders will not be used. All concrete shall be consolidated without voids or segregation, including under and around all load-transfer devices, joint assembly units, and other features embedded in the pavement. Hauling equipment or other mechanical equipment can be permitted on adjoining previously
constructed pavement when the concrete strength reaches a flexural strength of 550 psi, based on the average of four field cured specimens per 2,000 cubic yards of concrete placed or results of maturity meters per P501-3.6. Also, subgrade and subbase planers, concrete pavers, and concrete finishing equipment may be permitted to ride upon the edges of previously constructed pavement when the concrete has attained a minimum flexural strength of 400 psi.

The Contractor shall have available materials for the protection of the concrete during inclement weather. Such protective materials shall consist of rolled polyethylene sheeting at least 4 mils thick of sufficient length and width to cover the plastic concrete slab and any edges. The sheeting may be mounted on either the paver or a separate movable bridge from which it can be unrolled without dragging over the plastic concrete surface. When rain appears imminent, all paving operations shall stop and all available personnel shall begin covering the surface of the unhardened concrete with the protective covering.

a. **Slip-form construction.** The concrete shall be distributed uniformly into final position by a self-propelled slip-form paver without delay. The alignment and elevation of the paver shall be regulated from outside reference lines established for this purpose. The paver shall vibrate the concrete for the full width and depth of the strip of pavement being placed and the vibration shall be adequate to provide a consistency of concrete that will stand normal to the surface with sharp well defined edges. The sliding forms shall be rigidly held together laterally to prevent spreading of the forms. The plastic concrete shall be effectively consolidated by internal vibration with transverse vibrating units for the full width of the pavement and/or a series of equally placed longitudinal vibrating units. The space from the outer edge of the pavement to longitudinal unit shall not exceed 9 inches for slipform and at the end of the dowels for the fill-in lanes. The spacing of internal units shall be uniform and shall not exceed 18 inches.

The term internal vibration means vibrating units located within the specified thickness of pavement section.

The rate of vibration of each vibrating unit shall be within 8000 to 12000 cycles per minute and the amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete along the entire length of the vibrating unit and for a distance of at least one foot. The frequency of vibration or amplitude shall vary proportionately with the rate of travel to result in a uniform density and air content. The paving machine shall be equipped with a tachometer or other suitable device for measuring and indicating the actual frequency of vibrations.

The concrete shall be held at a uniform consistency. The slip-form paver shall be operated with as nearly a continuous forward movement as possible and all operations of mixing, delivering, and spreading concrete shall be coordinated to provide uniform progress with stopping and starting of the paver held to a minimum. If for any reason, it is necessary to stop the forward movement of the paver, the vibratory and tamping elements shall also be stopped immediately. No tractive force shall be applied to the machine, except that which is controlled from the machine.

When concrete is being placed adjacent to an existing pavement, that part of the equipment which is supported on the existing pavement shall be equipped with protective pads on crawler tracks or rubber-tired wheels on which the bearing surface is offset to run a sufficient distance from the edge of the pavement to avoid breaking the pavement edge.

Not more than 15% of the total free edge of each 500 foot segment of pavement, or fraction thereof, shall have an edge slump exceeding 1/4 inch, and none of the free edge of the pavement shall have an edge slump exceeding 3/8 inch. (The total free edge of 500 feet of pavement will be considered the cumulative total linear measurement of pavement edge originally constructed as nonadjacent to any existing pavement; that is, 500 feet of paving lane originally constructed as a separate lane will have 1,000 feet of free edge, 500 feet of fill-in lane will have no free edge, etc.). The area affected by the downward movement of the concrete along the pavement edge shall be limited to not more than 18 inches from the edge. When excessive edge slump cannot be corrected before the concrete has hardened, the area with excessive edge slump shall be removed and replaced at the expense of the Contractor as directed by the Engineer.

b. **Side-form construction.** Side form sections shall be straight, free from warps, bends, indentations, or other defects. Defective forms shall be removed from the work. Metal side forms shall be used except
at end closures and transverse construction joints where straight forms of other suitable material may be used.

Side forms may be built up by rigidly attaching a section to either top or bottom of forms. If such build-up is attached to the top of metal forms, the build-up shall also be metal.

Width of the base of all forms shall be equal to or greater than the specified pavement thickness.

Side forms shall be of sufficient rigidity, both in the form and in the interlocking connection with adjoining forms, that springing will not occur under the weight of subgrading and paving equipment or from the pressure of the concrete. The Contractor shall provide sufficient forms so that there will be no delay in placing concrete due to lack of forms.

Before placing side forms, the underlying material shall be at the proper grade. Side forms shall have full bearing upon the foundation throughout their length and width of base and shall be placed to the required grade and alignment of the finished pavement. They shall be firmly supported during the entire operation of placing, compacting, and finishing the pavement.

Forms shall be drilled in advance of being placed to line and grade to accommodate tie bars where these are specified.

Immediately in advance of placing concrete and after all subbase operations are completed, side forms shall be trued and maintained to the required line and grade for a distance sufficient to prevent delay in placing.

Side forms shall remain in place at least 12 hours after the concrete has been placed, and in all cases until the edge of the pavement no longer requires the protection of the forms. Curing compound shall be applied to the concrete immediately after the forms have been removed.

Side forms shall be thoroughly cleaned and oiled each time they are used and before concrete is placed against them.

Concrete shall be spread, screeded, shaped and consolidated by one or more self-propelled machines. These machines shall uniformly distribute and consolidate concrete without segregation so that the completed pavement will conform to the required cross-section with a minimum of handwork.

The number and capacity of machines furnished shall be adequate to perform the work required at a rate equal to that of concrete delivery.

Concrete for the full paving width shall be effectively consolidated by internal vibrators without causing segregation. Internal type vibrators’ rate of vibration shall be not less than 7,000 cycles per minute. Amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete more than one foot from the vibrating element. The Contractor shall furnish a tachometer or other suitable device for measuring and indicating frequency of vibration.

Power to vibrators shall be connected so that vibration ceases when forward or backward motion of the machine is stopped.

The provisions relating to the frequency and amplitude of internal vibration shall be considered the minimum requirements and are intended to ensure adequate density in the hardened concrete.

c. **Consolidation.** Concrete shall be consolidated with the specified type of lane-spanning, gang-mounted, mechanical, immersion type vibrating equipment mounted in front of the paver, supplemented, in rare instances as specified, by hand-operated vibrators. The vibrators shall be inserted into the concrete to a depth that will provide the best full-depth consolidation but not closer to the underlying material than 2 inches. Excessive vibration shall not be permitted. If the vibrators cause visible tracking in the paving lane, the paving operation shall be stopped and equipment and operations modified to prevent it. Concrete in small, odd-shaped slabs or in isolated locations inaccessible to the gang-mounted vibration equipment shall be vibrated with an approved hand-operated immersion vibrator operated from a bridge spanning the area. Vibrators shall not be used to transport or spread the concrete. Hand-operated vibrators shall not be operated in the concrete at one location for more than 20 seconds. Insertion locations for hand-operated vibrators shall be between 6 to 15 inches on
centers. For each paving train, at least one additional vibrator spud, or sufficient parts for rapid replacement and repair of vibrators shall be maintained at the paving site at all times. Any evidence of inadequate consolidation (honeycomb along the edges, large air pockets, or any other evidence) shall require the immediate stopping of the paving operation and adjustment of the equipment or procedures as approved by the Engineer.

If a lack of consolidation of the concrete is suspected by the Engineer, referee testing may be required. Referee testing of hardened concrete will be performed by the Engineer by cutting cores from the finished pavement after a minimum of 24 hours curing. Density determinations will be made by the Engineer based on the water content of the core as taken. ASTM C642 shall be used for the determination of core density in the saturated-surface dry condition. When required, referee cores will be taken at the minimum rate of one for each 500 cubic yards of pavement, or fraction. The Contractor shall be responsible for all referee testing cost if they fail to meet the required density.

The average density of the cores shall be at least 97% of the original mix design density, with no cores having a density of less than 96% of the original mix design density. Failure to meet the referee tests will be considered evidence that the minimum requirements for vibration are inadequate for the job conditions. Additional vibrating units or other means of increasing the effect of vibration shall be employed so that the density of the hardened concrete conforms to the above requirements. The Contractor shall be responsible for all referee testing cost if they fail to meet the required density.

Concrete not meeting consolidation, as defined above, may be required to be removed and replaced at the sole direction of the Engineer at the Contractor's expense.

501-4.9 Strike-off of concrete and placement of reinforcement. Following the placing of the concrete, it shall be struck off to conform to the cross-section shown on the plans and to an elevation that when the concrete is properly consolidated and finished, the surface of the pavement shall be at the elevation shown on the plans. When reinforced concrete pavement is placed in two layers, the bottom layer shall be struck off to such length and depth that the sheet of reinforcing steel fabric or bar mat may be laid full length on the concrete in its final position without further manipulation. The reinforcement shall then be placed directly upon the concrete, after which the top layer of the concrete shall be placed, struck off, and screeded. If any portion of the bottom layer of concrete has been placed more than 30 minutes without being covered with the top layer or if initial set has taken place, it shall be removed and replaced with freshly mixed concrete at the Contractor's expense. When reinforced concrete is placed in one layer, the reinforcement may be positioned in advance of concrete placement or it may be placed in plastic concrete by mechanical or vibratory means after spreading.

Reinforcing steel, at the time concrete is placed, shall be free of mud, oil, or other organic matter that may adversely affect or reduce bond. Reinforcing steel with rust, mill scale or a combination of both will be considered satisfactory, provided the minimum dimensions, weight, and tensile properties of a hand wire-brushed test specimen are not less than the applicable ASTM specification requirements.

501-4.10 Joints. Joints shall be constructed as shown on the plans and in accordance with these requirements. All joints shall be constructed with their faces perpendicular to the surface of the pavement and finished or edged as shown on the plans. Joints shall not vary more than 1/2 inch from their designated position and shall be true to line with not more than 1/4 inch variation in 10 feet. The surface across the joints shall be tested with a 12 feet straightedge as the joints are finished and any irregularities in excess of 1/4 inch shall be corrected before the concrete has hardened. All joints shall be so prepared, finished, or cut to provide a groove of uniform width and depth as shown on the plans.

a. Construction. Longitudinal construction joints shall be slip-formed or formed against side forms as shown in the plans.

Transverse construction joints shall be installed at the end of each day's placing operations and at any other points within a paving lane when concrete placement is interrupted for more than 30 minutes or it appears that the concrete will obtain its initial set before fresh concrete arrives. The installation of the joint
shall be located at a planned contraction or expansion joint. If placing of the concrete is stopped, the Contractor shall remove the excess concrete back to the previous planned joint.

b. **Contraction.** Contraction joints shall be installed at the locations and spacing as shown on the plans. Contraction joints shall be installed to the dimensions required by forming a groove or cleft in the top of the slab while the concrete is still plastic or by sawing a groove into the concrete surface after the concrete has hardened. When the groove is formed in plastic concrete the sides of the grooves shall be finished even and smooth with an edging tool. If an insert material is used, the installation and edge finish shall be according to the manufacturer’s instructions. The groove shall be finished or cut clean so that spalling will be avoided at intersections with other joints. Grooving or sawing shall produce a slot at least 1/8 inch wide and to the depth shown on the plans.

c. **Isolation (expansion).** Isolation joints shall be installed as shown on the plans. The premolded filler of the thickness as shown on the plans, shall extend for the full depth and width of the slab at the joint, except for space for sealant at the top of the slab. The filler shall be securely staked or fastened into position perpendicular to the proposed finished surface. A cap shall be provided to protect the top edge of the filler and to permit the concrete to be placed and finished. After the concrete has been placed and struck off, the cap shall be carefully withdrawn leaving the space over the premolded filler. The edges of the joint shall be finished and tooled while the concrete is still plastic. Any concrete bridging the joint space shall be removed for the full width and depth of the joint.

d. **Tie bars.** Tie bars shall consist of deformed bars installed in joints as shown on the plans. Tie bars shall be placed at right angles to the centerline of the concrete slab and shall be spaced at intervals shown on the plans. They shall be held in position parallel to the pavement surface and in the middle of the slab depth. When tie bars extend into an unpaved lane, they may be bent against the form at longitudinal construction joints, unless threaded bolt or other assembled tie bars are specified. Tie bars shall not be painted, greased, or enclosed in sleeves. When slip-form operations call for tie bars, two-piece hook bolts can be installed.

e. **Dowel bars.** Dowel bars or other load-transfer units of an approved type shall be placed across joints as shown on the plans. They shall be placed at right angles to the centerline of the concrete slab and shall be spaced at intervals shown on the plans. They shall be held in position perpendicular to the proposed finished surface by an approved assembly device to be left permanently in place for all contraction joints or shall be drilled and epoxy set into place for all construction joints. Drilling shall not commence until a flexural strength of 450 psi is attained or a period of 36 hours has elapsed. The dowel or load-transfer and joint devices shall be rigid enough to permit complete assembly as a unit ready to be lifted and placed into position. The dowels shall be coated with a bond breaker or other lubricant recommended by the manufacturer and approved by the Engineer. The portion of each dowel epoxy coated, as required under paragraph 501-2.7 and shown on the plans to receive a debonding lubricant, shall be thoroughly coated with asphalt MC-70, or an approved lubricant, to prevent the concrete from bonding to that portion of the dowel.

f. Dowels bars at longitudinal construction joints shall be bonded in drilled holes.

g. **Placing dowels and tie bars.** The method used in installing and holding dowels in position shall ensure that the error in alignment of any dowel from its required horizontal and vertical alignment after the pavement has been completed will not be greater than 1/8 inch per feet. Except as otherwise specified below, horizontal spacing of dowels shall be within a tolerance of ±5/8 inch. The vertical location on the face of the slab shall be within a tolerance of ±1/2 inch. The vertical alignment of the dowels shall be measured parallel to the designated top surface of the pavement, except for those across the crown or other grade change joints. Dowels across crowns and other joints at grade changes shall be measured to a level surface. Horizontal alignment shall be checked perpendicular to the joint edge. The horizontal alignment shall be checked with a framing square. Dowels and tie bars shall not be placed closer than 0.6 times the dowel bar or tie bar length to the planned joint line. If the last regularly spaced longitudinal dowel or tie bar is closer than that dimension, it shall be moved away from the joint to a location 0.6 times the dowel bar or tie bar length, but not closer than 6 inches to its nearest neighbor. The portion of each dowel intended to move within the concrete or expansion cap shall be wiped clean and coated with a thin, even film of lubricating oil or light grease before the concrete is placed. Dowels shall be installed as specified in the following subparagraphs.
(1) **Contraction joints.** Dowels and tie bars in longitudinal and transverse contraction joints within the paving lane shall be held securely in place, as indicated, by means of rigid metal frames or basket assemblies of an approved type. The basket assemblies shall be held securely in the proper location by means of suitable pins or anchors. Do not cut or crimp the dowel basket tie wires. At the Contractor’s option, in lieu of the above, dowels and tie bars in contraction joints shall be installed near the front of the paver by insertion into the plastic concrete using approved equipment and procedures. Approval will be based on the results of a preconstruction demonstration, showing that the dowels and tie bars are installed within specified tolerances.

(2) **Construction joints.** Install dowels and tie bars by the cast-in-place or the drill-and-dowel method. Installation by removing and replacing in preformed holes will not be permitted. Dowels and tie bars shall be prepared and placed across joints where indicated, correctly aligned, and securely held in the proper horizontal and vertical position during placing and finishing operations, by means of devices fastened to the forms. The spacing of dowels and tie bars in construction joints shall be as indicated.

(3) **Dowels installed in isolation joints and other hardened concrete.** Install dowels for isolation joints and in other hardened concrete by bonding the dowels into holes drilled into the hardened concrete. The concrete shall have cured for seven (7) days or reached a minimum flexural strength of 450 psi before drilling commences. Holes 1/8 inch greater in diameter than the dowels shall be drilled into the hardened concrete using rotary-core drills. Rotary-percussion drills may be used, provided that excessive spalling does not occur to the concrete joint face. Modification of the equipment and operation shall be required if, in the Engineer’s opinion, the equipment and/or operation is causing excessive damage. Depth of dowel hole shall be within a tolerance of ±1/2 inch of the dimension shown on the drawings. On completion of the drilling operation, the dowel hole shall be blown out with oil-free, compressed air. Dowels shall be bonded in the drilled holes using epoxy resin. Epoxy resin shall be injected at the back of the hole before installing the dowel and extruded to the collar during insertion of the dowel so as to completely fill the void around the dowel. Application by buttering the dowel will not be permitted. The dowels shall be held in alignment at the collar of the hole, after insertion and before the grout hardens, by means of a suitable metal or plastic grout retention ring fitted around the dowel. Dowels required to be installed in any joints between new and existing concrete shall be grouted in holes drilled in the existing concrete, all as specified above.

h. **Sawing of joints.** Joints shall be cut as shown on the plans. Equipment shall be as described in paragraph 501-4.1. The circular cutter shall be capable of cutting a groove in a straight line and shall produce a slot at least 1/8 inch wide and to the depth shown on the plans. The top of the slot shall be widened by sawing to provide adequate space for joint sealers as shown on the plans. Sawing shall commence, without regard to day or night, as soon as the concrete has hardened sufficiently to permit cutting without chipping, spalling, or tearing and before uncontrolled shrinkage cracking of the pavement occurs and shall continue without interruption until all joints have been sawn. The joints shall be sawn at the required spacing. All slurry and debris produced in the sawing of joints shall be removed by vacuuming and washing. Curing compound or system shall be reapplied in the initial sawcut and maintained for the remaining cure period.

501-4.11 **Finishing.** Finishing operations shall be a continuing part of placing operations starting immediately behind the strike-off of the paver. Initial finishing shall be provided by the transverse screed or extrusion plate. The sequence of operations shall be transverse finishing, longitudinal machine floating if used, straightedge finishing, texturing, and then edging of joints. Finishing shall be by the machine method. The hand method shall be used only on isolated areas of odd slab widths or shapes and in the event of a breakdown of the mechanical finishing equipment. Supplemental hand finishing for machine finished pavement shall be kept to an absolute minimum. Any machine finishing operation which requires appreciable hand finishing, other than a moderate amount of straightedge finishing, shall be immediately stopped and proper adjustments made or the equipment replaced. Any operations which produce more than 1/8 inch of mortar-rich surface (defined as deficient in plus U.S. No. 4 (4.75 mm) sieve size aggregate) shall be halted immediately and the equipment, mixture, or procedures modified as necessary. Compensation shall be made for surging behind the screeds or extrusion plate and settlement during hardening and care shall be taken to ensure that paving and finishing machines are properly adjusted so...
that the finished surface of the concrete (not just the cutting edges of the screeds) will be at the required line and grade. Finishing equipment and tools shall be maintained clean and in an approved condition. At no time shall water be added to the surface of the slab with the finishing equipment or tools, or in any other way, except for fog (mist) sprays specified to prevent plastic shrinkage cracking.

a. **Machine finishing with slipform pavers.** The slipform paver shall be operated so that only a very minimum of additional finishing work is required to produce pavement surfaces and edges meeting the specified tolerances. Any equipment or procedure that fails to meet these specified requirements shall immediately be replaced or modified as necessary. A self-propelled non-rotating pipe float may be used while the concrete is still plastic, to remove minor irregularities and score marks. Only one pass of the pipe float shall be allowed. If there is concrete slurry or fluid paste on the surface that runs over the edge of the pavement, the paving operation shall be immediately stopped and the equipment, mixture, or operation modified to prevent formation of such slurry. Any slurry which does run down the vertical edges shall be immediately removed by hand, using stiff brushes or scrapers. No slurry, concrete or concrete mortar shall be used to build up along the edges of the pavement to compensate for excessive edge slump, either while the concrete is plastic or after it hardens.

b. **Machine finishing with fixed forms.** The machine shall be designed to straddle the forms and shall be operated to screed and consolidate the concrete. Machines that cause displacement of the forms shall be replaced. The machine shall make only one pass over each area of pavement. If the equipment and procedures do not produce a surface of uniform texture, true to grade, in one pass, the operation shall be immediately stopped and the equipment, mixture, and procedures adjusted as necessary.

c. **Other types of finishing equipment.** Clary screeds, other rotating tube floats, or bridge deck finishers are not allowed on mainline paving, but may be allowed on irregular or odd-shaped slabs, and near buildings or trench drains, subject to the Engineer’s approval.

Bridge deck finishers shall have a minimum operating weight of 7500 pounds and shall have a transversely operating carriage containing a knock-down auger and a minimum of two immersion vibrators. Vibrating screeds or pans shall be used only for isolated slabs where hand finishing is permitted as specified, and only where specifically approved.

d. **Hand finishing.** Hand finishing methods will not be permitted, except under the following conditions: (1) in the event of breakdown of the mechanical equipment, hand methods may be used to finish the concrete already deposited on the grade and (2) in areas of narrow widths or of irregular dimensions where operation of the mechanical equipment is impractical. Use hand finishing operations only as specified below.

(1) **Equipment and screed.** In addition to approved mechanical internal vibrators for consolidating the concrete, provide a strike-off and tamping screed and a longitudinal float for hand finishing. The screed shall be at least one foot longer than the width of pavement being finished, of an approved design, and sufficiently rigid to retain its shape, and shall be constructed of metal or other suitable material shod with metal. The longitudinal float shall be at least 10 feet long, of approved design, and rigid and substantially braced, and shall maintain a plane surface on the bottom. Grate tampers (jitterbugs) shall not be used.

(2) **Finishing and floating.** As soon as placed and vibrated, the concrete shall be struck off and screeded to the crown and cross-section and to such elevation above grade that when consolidated and finished, the surface of the pavement will be at the required elevation. In addition to previously specified complete coverage with handheld immersion vibrators, the entire surface shall be tamped with the strike-off and tamping template, and the tamping operation continued until the required compaction and reduction of internal and surface voids are accomplished. Immediately following the final tamping of the surface, the pavement shall be floated longitudinally from bridges resting on the side forms and spanning but not touching the concrete. If necessary, additional concrete shall be placed, consolidated and screeded, and the float operated until a satisfactory surface has been produced. The floating operation shall be advanced not more than half the length of the float and then continued over the new and previously floated surfaces.
e. **Straightedge testing and surface correction.** After the pavement has been struck off and while the concrete is still plastic, it shall be tested for trueness with a Contractor furnished 12-foot straightedge swung from handles 3 feet longer than one-half the width of the slab. The straightedge shall be held in contact with the surface in successive positions parallel to the centerline and the whole area gone over from one side of the slab to the other, as necessary. Advancing shall be in successive stages of not more than one-half the length of the straightedge. Any excess water and laitance in excess of 1/8 inch thick shall be removed from the surface of the pavement and wasted. Any depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. High areas shall be cut down and refinished. Special attention shall be given to assure that the surface across joints meets the smoothness requirements of paragraph 501-5.2e(3). Straightedge testing and surface corrections shall continue until the entire surface is found to be free from observable departures from the straightedge and until the slab conforms to the required grade and cross-section. The use of long-handled wood floats shall be confined to a minimum; they may be used only in emergencies and in areas not accessible to finishing equipment. This straight-edging is not a replacement for the straightedge testing of paragraph 501-5.2e(3), Smoothness.

501-4.12 **Surface texture.** The surface of the pavement shall be finished with either a brush or broom, burlap drag, or artificial turf finish for all newly constructed concrete pavements. It is important that the texturing equipment not tear or unduly roughen the pavement surface during the operation. Any imperfections resulting from the texturing operation shall be corrected to the satisfaction of the Engineer.

a. **Burlap drag finish.** If a burlap drag is used to texture the pavement surface, it shall be at least 15 ounces per square yard. To obtain a textured surface, the transverse threads of the burlap shall be removed approximately one foot from the trailing edge. A heavy buildup of grout on the burlap threads produces the desired wide sweeping longitudinal striations on the pavement surface. The corrugations shall be uniform in appearance and approximately 1/16 inch in depth.

501-4.13 **Curing.** Immediately after finishing operations are completed and marring of the concrete will not occur, the entire surface of the newly placed concrete shall be cured for a 7-day cure period in accordance with one of the methods below. Failure to provide sufficient cover material of whatever kind the Contractor may elect to use, or lack of water to adequately take care of both curing and other requirements, shall be cause for immediate suspension of concreting operations. The concrete shall not be left exposed for more than 1/2 hour during the curing period.

When a two-sawcut method is used to construct the contraction joint, the curing compound shall be applied to the sawcut immediately after the initial cut has been made. The sealant reservoir shall not be sawed until after the curing period has been completed. When the one cut method is used to construct the contraction joint, the joint shall be cured with wet rope, wet rags, or wet blankets. The rags, ropes, or blankets shall be kept moist for the duration of the curing period.

a. **Impervious membrane method.** The entire surface of the pavement shall be sprayed uniformly with white pigmented curing compound immediately after the finishing of the surface and before the set of the concrete has taken place. The curing compound shall not be applied during rainfall. Curing compound shall be applied by mechanical sprayers under pressure at the rate of one gallon to not more than 150 sq ft. The spraying equipment shall be of the fully atomizing type equipped with a tank agitator. At the time of use, the compound shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. During application the compound shall be stirred continuously by mechanical means. Hand spraying of odd widths or shapes and concrete surfaces exposed by the removal of forms will be permitted. When hand spraying is approved by the Engineer, a double application rate shall be used to ensure coverage. The curing compound shall be of such character that the film will harden within 30 minutes after application. Should the film become damaged from any cause, including sawing operations, within the required curing period, the damaged portions shall be repaired immediately with additional compound or other approved means. Upon removal of side forms, the sides of the exposed slabs shall be protected immediately to provide a curing treatment equal to that provided for the surface. Curing shall be applied immediately after the bleed water is gone from the surface.
b. **Concrete protection for cold weather.** The concrete shall be maintained at an ambient temperature of at least 50°F for a period of 72 hours after placing and at a temperature above freezing for the remainder of the curing time. The Contractor shall be responsible for the quality and strength of the concrete placed during cold weather; and any concrete damaged shall be removed and replaced at the Contractor’s expense.

c. **Concrete protection for hot weather.** Concrete should be continuous moisture cured for the entire curing period and shall commence as soon as the surfaces are finished and continue for at least 24 hours. However, if moisture curing is not practical beyond 24 hours, the concrete surface shall be protected from drying with application of a liquid membrane-forming curing compound while the surfaces are still damp. Other curing methods may be approved by the Engineer.

501-4.14 Removing forms. Unless otherwise specified, forms shall not be removed from freshly placed concrete until it has hardened sufficiently to permit removal without chipping, spalling, or tearing. After the forms have been removed, the sides of the slab shall be cured as per the methods indicated in paragraph 501-4.13. Major honeycombed areas shall be considered as defective work and shall be removed and replaced in accordance with paragraph 501-5.2(f). Major honeycombing to be defined as penetrating more than ½” into concrete from face or voids in the thickness cores greater than ½” in diameter.

501-4.15 Saw-cut grooving. If shown on the plans, grooved surfaces shall be provided in accordance with the requirements of Item P-621.

501-4.16 Sealing joints. The joints in the pavement shall be sealed in accordance with Item P-605.

501-4.17 Protection of pavement. The Contractor shall protect the pavement and its appurtenances against both public traffic and traffic caused by the Contractor’s employees and agents until accepted by the Engineer. This shall include watchmen to direct traffic and the erection and maintenance of warning signs, lights, pavement bridges, crossovers, and protection of unsealed joints from intrusion of foreign material, etc. Any damage to the pavement occurring prior to final acceptance shall be repaired or the pavement replaced at the Contractor’s expense.

Aggregates, rubble, or other similar construction materials shall not be placed on airfield pavements. Traffic other than paving equipment, shall be excluded from the new pavement by erecting and maintaining barricades and signs until the concrete is at least seven (7) days old, or for a longer period if directed by the Engineer.

In paving intermediate lanes between newly paved pilot lanes, operation of the hauling and paving equipment will be permitted on the new pavement after the pavement has been cured for seven (7) days and the joints have been sealed or otherwise protected, and or the concrete has attained a minimum field cured flexural strength of 550 psi and approved means are furnished to prevent damage to the slab edge and pavement joints.

All new and existing pavement carrying construction traffic or equipment shall be continuously kept completely clean, and spillage of concrete or other materials shall be cleaned up immediately upon occurrence.

Damaged pavements shall be removed and replaced at the Contractor’s expense. Slabs shall be removed to the full depth, width, and length of the slab.

501-4.18 Opening to construction traffic. The pavement shall not be opened to traffic until test specimens molded and cured in accordance with ASTM C31 have attained a flexural strength of 550 lb / square inch when tested in accordance with ASTM C78 or the results of maturity meters in accordance with P401-3.6. If such tests are not conducted, the pavement shall not be opened to traffic until 14 days after the concrete was placed. Prior to opening the pavement to construction traffic, all joints shall either be sealed or protected from damage to the joint edge and intrusion of foreign materials into the joint. As a minimum, backer rod or tape may be used to protect the joints from foreign matter intrusion.

501-4.19 Repair, removal, or replacement of slabs.

a. **General.** New pavement slabs that are broken or contain cracks or are otherwise defective or unacceptable shall be removed and replaced or repaired, as directed by the Engineer and as specified
hereinafter at no cost to the Owner. Spalls along joints shall be repaired as specified. Removal of partial slabs is not permitted. Removal and replacement shall be full depth, shall be full width of the slab, and the limit of removal shall be normal to the paving lane and to each original transverse joint. The Engineer will determine whether cracks extend full depth of the pavement and may require cores to be drilled on the crack to determine depth of cracking. Such cores shall be 4 inch diameter, shall be drilled by the Contractor and shall be filled by the Contractor with a well consolidated concrete mixture bonded to the walls of the hole with epoxy resin, using approved procedures. Drilling of cores and refilling holes shall be at no expense to the Owner. All epoxy resin used in this work shall conform to ASTM C881, Type V. Repair of cracks as described in this section shall not be allowed if in the opinion of the Engineer the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of cracks shall be allowed in any panel that demonstrates segregated aggregate with an absence of coarse aggregate in the upper 1/8 inch of the pavement surface.

b. Shrinkage cracks. Shrinkage cracks, which do not exceed 4 inches in depth, shall be cleaned and then pressure injected with epoxy resin, Type IV, Grade 1, using procedures as approved by the Engineer. Care shall be taken to assure that the crack is not widened during epoxy resin injection. All epoxy resin injection shall take place in the presence of the Engineer. Shrinkage cracks, which exceed 4 inches in depth, shall be treated as full depth cracks in accordance with paragraphs 4.19b and 4.19c.

c. Slabs with cracks through interior areas. Interior area is defined as that area more than 6 inches from either adjacent original transverse joint. The full slab shall be removed and replaced at no cost to the Owner, when there are any full depth cracks, or cracks greater than 4 inches in depth, that extend into the interior area.

d. Cracks close to and parallel to joints. All cracks essentially parallel to original joints, extending full depth of the slab, and lying wholly within 6 inches either side of the joint shall be treated as specified here. Any crack extending more than 6 inches from the joint shall be treated as specified above in subparagraph c.

(1) Full depth cracks present, original joint not opened. When the original un-cracked joint has not opened, the crack shall be sawed and sealed, and the original joint filled with epoxy resin as specified below. The crack shall be sawed with equipment specially designed to follow random cracks. The reservoir for joint sealant in the crack shall be formed by sawing to a depth of 3/4 inches, ±1/16 inch, and to a width of 5/8 inch, ±1/8 inch. Any equipment or procedure which causes raveling or spalling along the crack shall be modified or replaced to prevent such raveling or spalling. The joint sealant shall be a liquid sealant as specified. Installation of joint seal shall be as specified for sealing joints or as directed. If the joint sealant reservoir has been sawed out, the reservoir and as much of the lower saw cut as possible shall be filled with epoxy resin, Type IV, Grade 2, thoroughly tooled into the void using approved procedures. If only the original narrow saw cut has been made, it shall be cleaned and pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. If filler type material has been used to form a weakened plane in the transverse joint, it shall be completely sawed out and the saw cut pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. Where a parallel crack goes part way across paving lane and then intersects and follows the original joint which is cracked only for the remained of the width, it shall be treated as specified above for a parallel crack, and the cracked original joint shall be prepared and sealed as originally designed.

(2) Full depth cracks present, original joint also cracked. At a joint, if there is any place in the lane width where a parallel crack and a cracked portion of the original joint overlap, the entire slab containing the crack shall be removed and replaced for the full lane width and length.

e. Removal and replacement of full slabs. Where it is necessary to remove full slabs, unless there are dowels present, all edges of the slab shall be cut full depth with a concrete saw. All saw cuts shall be perpendicular to the slab surface. If dowels, or tie bars are present along any edges, these edges shall be sawed full depth just beyond the end of the dowels or tie bars. These joints shall then be carefully sawed on the joint line to within one inch of the depth of the dowel or tie bar.
The main slab shall be further divided by sawing full depth, at appropriate locations, and each piece lifted out and removed. Suitable equipment shall be used to provide a truly vertical lift, and approved safe lifting devices used for attachment to the slabs. The narrow strips along doweled edges shall be carefully broken up and removed using light, hand-held jackhammers, 30 lb or less, or other approved similar equipment.

Care shall be taken to prevent damage to the dowels, tie bars, or to concrete to remain in place. The joint face below dowels shall be suitably trimmed so that there is not abrupt offset in any direction greater than 1/2 inch and no gradual offset greater than one inch when tested in a horizontal direction with a 12-foot straightedge.

No mechanical impact breakers, other than the above hand-held equipment shall be used for any removal of slabs. If underbreak between 1-1/2 and 4 inches deep occurs at any point along any edge, the area shall be repaired as directed before replacing the removed slab. Procedures directed will be similar to those specified for surface spalls, modified as necessary.

If underbreak over 4 inches deep occurs, the entire slab containing the underbreak shall be removed and replaced. Where there are no dowels or tie bars, or where they have been damaged, dowels or tie bars of the size and spacing as specified for other joints in similar pavement shall be installed by epoxy grouting them into holes drilled into the existing concrete using procedures as specified. Original damaged dowels or tie bars shall be cut off flush with the joint face. Protruding portions of dowels shall be painted and lightly oiled. All four (4) edges of the new slab shall contain dowels or original tie bars.

Placement of concrete shall be as specified for original construction. Prior to placement of new concrete, the underlying material (unless it is stabilized) shall be re-compacted and shaped as specified in the appropriate section of these specifications. The surfaces of all four joint faces shall be cleaned of all loose material and contaminants and coated with a double application of membrane forming curing compound as bond breaker. Care shall be taken to prevent any curing compound from contacting dowels or tie bars. The resulting joints around the new slab shall be prepared and sealed as specified for original construction.

f. Repairing spalls along joints. Where directed, spalls along joints of new slabs, and along parallel cracks used as replacement joints, shall be repaired by first making a vertical saw cut at least one inch (25 mm) outside the spalled area and to a depth of at least 2 inch. Saw cuts shall be straight lines forming rectangular areas. The concrete between the saw cut and the joint, or crack, shall be chipped out to remove all unsound concrete and at least 1/2 inch of visually sound concrete. The cavity thus formed shall be thoroughly cleaned with high-pressure water jets supplemented with compressed air to remove all loose material. Immediately before filling the cavity, a prime coat of epoxy resin, Type III, Grade I, shall be applied to the dry cleaned surface of all sides and bottom of the cavity, except any joint face. The prime coat shall be applied in a thin coating and scrubbed into the surface with a stiff-bristle brush. Pooling of epoxy resin shall be avoided. The cavity shall be filled with low slump Portland cement concrete or mortar or with epoxy resin concrete or mortar. Concrete shall be used for larger spalls, generally those more than 1/2 cu. ft. in size, and mortar shall be used for the smaller ones. Any spall less than 0.1 cu. ft. shall be repaired only with epoxy resin mortar or a Grade III epoxy resin. Portland cement concrete and mortar mixtures shall be proportioned as directed and shall be mixed, placed, consolidated, and cured as directed. Epoxy resin mortars shall be made with Type III, Grade 1, epoxy resin, using proportions and mixing and placing procedures as recommended by the manufacturer and approved by the Engineer. The epoxy resin materials shall be placed in the cavity in layers not over 2 inches thick. The time interval between placement of additional layers shall be such that the temperature of the epoxy resin material does not exceed 140°F at any time during hardening. Mechanical vibrators and hand tampers shall be used to consolidate the concrete or mortar. Any repair material on the surrounding surfaces of the existing concrete shall be removed before it hardens. Where the spalled area abuts a joint, an insert or other bond-breaking medium shall be used to prevent bond at the joint face. A reservoir for the joint sealant shall be sawed to the dimensions required for other joints, or as required to be routed for cracks. The reservoir shall be thoroughly cleaned and sealed with the sealer specified for the joints. If any spall penetrates half the depth of the slab or more, the entire slab shall be removed and replaced as previously specified If any spall would require over 25% of the length of any single joint to be repaired, the entire slab shall be removed and replaced. Repair of spalls
as described in this section shall not be allowed if in the opinion of the Engineer the overall condition of the pavement indicates that such repair is unlikely to achieve an acceptable and durable finished pavement. No repair of spalls shall be allowed in any panel that demonstrates segregated aggregate with a significant absence of coarse aggregate in the upper one-eight (1/8th) inch of the pavement surface.

g. Diamond grinding of PCC surfaces. Diamond grinding of the hardened concrete with an approved diamond grinding machine should not be performed until the concrete is 14 days or more old and concrete has reached full minimum strength. When required, diamond grinding shall be accomplished by sawing with saw blades impregnated with industrial diamond abrasive. The saw blades shall be assembled in a cutting head mounted on a machine designed specifically for diamond grinding that will produce the required texture and smoothness level without damage to the pavement. The saw blades shall be 1/8-inch wide and there shall be a minimum of 55 to 60 blades per 12 inches of cutting head width; the actual number of blades will be determined by the Contractor and depend on the hardness of the aggregate. Each machine shall be capable of cutting a path at least 3 feet wide. Equipment that causes ravel, aggregate fractures, spalls or disturbance to the joints will not be permitted. The area corrected by diamond grinding the surface of the hardened concrete should not exceed 10% of the total area of any sublot. The depth of diamond grinding shall not exceed 1/2 inch and all areas in which diamond grinding has been performed will be subject to the final pavement thickness tolerances specified. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grading. All pavement areas requiring plan grade or surface smoothness corrections in excess of the limits specified above, may require removing and replacing in conformance with paragraph 501-4.19.

501-4.20 Existing concrete pavement removal and repair.

All operations shall be carefully controlled to prevent damage to the concrete pavement and to the underlying material to remain in place. All saw cuts shall be made perpendicular to the slab surface.

a. Removal of existing pavement slab.

When it is necessary to remove existing concrete pavement and leave adjacent concrete in place, the joint between the removal area and adjoining pavement to stay in place, including dowels or tie bars, shall first be cut full depth with a standard diamond-type concrete saw. If dowels are present at this joint, the saw cut shall be made full depth just beyond the end of dowels. The edge shall then be carefully sawed on the joint line to within one inch of the top of the dowel. Next, a full depth saw cut shall be made parallel to the joint at least 24 inches from the joint and at least 12 inches from the end of any dowels. All pavement between this last saw cut and the joint line shall be carefully broken up and removed using hand-held jackhammers, 30 lb or less, or the approved light-duty equipment which will not cause stress to propagate across the joint saw cut and cause distress in the pavement which is to remain in place. Where dowels are present, care shall be taken to produce an even, vertical joint face below the dowels. If the Contractor is unable to produce such a joint face, or if underbreak or other distress occurs, the Contractor shall saw the dowels flush with the joint. The Contractor shall then install new dowels, of the size and spacing used for other similar joints, by epoxy resin bonding them in holes drilled in the joint face as specified in paragraph 501-4.10g. All this shall be at no additional cost to the Owner. If the Contractor elects they may immediately saw through the dowels and replace accordingly instead of attempting to recover, as stated above and at no additional cost to the Owner. Dowels of the size and spacing indicated shall be installed as shown on the drawings by epoxy resin bonding them in holes drilled in the joint face as specified in paragraph 501-4.10g. The joint face shall be sawed or otherwise trimmed so that there is no abrupt offset in any direction greater than 1/2 inches and no gradual offset greater than one inch when tested in a horizontal direction with a 12-foot straightedge. The Contractor shall exercise extreme caution during all panel removal operations. Any damage to adjacent pavements or underlying base courses scheduled to remain in place shall be repaired at no additional cost to the Owner.

b. Edge repair.

The edge of existing concrete pavement against which new pavement abuts shall be protected from damage at all times. Areas that are damaged during construction shall be repaired at no cost to the Owner.
(1) **Spall repair.** Spalls shall be repaired where indicated and where directed by the Engineer. Repair materials and procedures shall be as previously specified in subparagraph 501-4.19f.

(2) **Underbreak repair.** All underbreak shall be repaired. First, all delaminated and loose material shall be carefully removed. Next, the underlying material shall be recompacted, without addition of any new material. Finally, the void shall be completely filled with paving concrete, thoroughly consolidated. Care shall be taken to produce an even joint face from top to bottom. Prior to placing concrete, the underlying material shall be thoroughly moistened. After placement, the exposed surface shall be heavily coated with curing compound.

(3) **Underlying material.** The underlying material adjacent to the edge and under the existing pavement which is to remain in place shall be protected from damage or disturbance during removal operations and until placement of new concrete, and shall be shaped as shown on the drawings or as directed. Sufficient material shall be kept in place outside the joint line to prevent disturbance (or sloughing) of material under the pavement that is to remain in place. Any material under the portion of the concrete pavement to remain in place, which is disturbed or loses its compaction shall be carefully removed and replaced with concrete as specified in paragraph 501-4.20b(2). The underlying material outside the joint line shall be thoroughly compacted and moist when new concrete is placed.

MATERIAL ACCEPTANCE

501-5.1 Acceptance sampling and testing. All acceptance sampling and testing necessary to determine conformance with the requirements specified in this section, with the exception of coring for thickness determination, will be performed by the Engineer at no cost to the Contractor. The Contractor shall bear the cost of providing curing facilities for the strength specimens, per paragraph 501-5.1a(3), and coring and filling operations, per paragraph 501-5.1b(1). Testing organizations performing these tests shall be accredited in accordance with ASTM C1077. The laboratory accreditation must be current and listed on the accrediting authority’s website. All test methods required for acceptance sampling and testing must be listed on the lab accreditation. A copy of the laboratory’s current accreditation and accredited test methods shall be submitted to the Engineer prior to start of construction.

Concrete shall be accepted for strength and thickness on a lot basis.

A lot shall consist of a day’s production not to exceed 4,100 square yards.

a. **Flexural strength.**

(1) **Sampling.** Each lot shall be divided into four equal sublots. One sample shall be taken for each sublot from the plastic concrete delivered to the job site. Sampling locations shall be determined by the Engineer in accordance with random sampling procedures contained in ASTM D3665. The concrete shall be sampled in accordance with ASTM C172.

(2) **Testing.** Two (2) specimens shall be made from each sample. Specimens shall be made in accordance with ASTM C31 and the flexural strength of each specimen shall be determined in accordance with ASTM C78. The flexural strength for each sublot shall be computed by averaging the results of the two test specimens representing that sublot.

Immediately prior to testing for flexural strength, the beam shall be weighed and measured for determination of a sample unit weight. Measurements shall be made for each dimension; height, depth, and length, at the mid-point of the specimen and reported to the nearest 1/10 inch. The weight of the specimen shall be reported to the nearest 0.1 pound. The sample unit weight shall be calculated by dividing the sample weight by the calculated volume of the sample. This information shall be reported as companion information to the measured flexural strength for each specimen.

The samples will be transported while in the molds. The curing, except for the initial cure period, will be accomplished using the immersion in saturated lime water method.

Slump, air content, and temperature tests will also be conducted by the quality assurance laboratory for each set of strength test samples, per ASTM C31.
(3) **Curing.** The Contractor shall provide adequate facilities for the initial curing of beams. During the 24 hours after molding, the temperature immediately adjacent to the specimens must be maintained in the range of 60° to 80°F, and loss of moisture from the specimens must be prevented. The specimens may be stored in tightly constructed wooden boxes, damp sand pits, temporary buildings at construction sites, under wet burlap in favorable weather, or in heavyweight closed plastic bags, or using other suitable methods, provided the temperature and moisture loss requirements are met.

(4) **Acceptance.** Acceptance of pavement for flexural strength will be determined by the Engineer in accordance with paragraph 501-5.2b.

d. **Partial lots.** When operational conditions cause a lot to be terminated before the specified number of tests have been made for the lot, or when the Contractor and Engineer agree in writing to allow overages or minor placements to be considered as partial lots, the following procedure will be used to adjust the lot size and the number of tests for the lot.

Where three sublots have been produced, they shall constitute a lot. Where one or two sublots have been produced, they shall be incorporated into the next lot or the previous lot and the total number of sublots shall be used in the acceptance criteria calculation, that is, \(n=5 \) or \(n=6 \).

d. **Outliers.** All individual flexural strength tests within a lot shall be checked for an outlier (test criterion) in accordance with ASTM E178, at a significance level of 5%. Outliers shall be discarded, and the percentage of material within specification limits (PWL) shall be determined using the remaining test values.

501-5.2 Acceptance criteria.

a. **General.** Acceptance will be based on the following characteristics of the completed pavement discussed in paragraph 501-5.2e:

1. Flexural strength
2. Thickness
3. Smoothness
4. Grade
5. Edge slump

Flexural strength and thickness shall be evaluated for acceptance on a lot basis using the method of estimating PWL. Acceptance using PWL considers the variability (standard deviation) of the material and the testing procedures, as well as the average (mean) value of the test results to calculate the percentage of material that is above the lower specification tolerance limit (L).

Acceptance for flexural strength will be based on the criteria contained in accordance with paragraph 501-5.2e(1). Acceptance for thickness will be based on the criteria contained in paragraph 501-5.2e(2). Acceptance for smoothness will be based on the criteria contained in paragraph 501-5.2e(3). Acceptance for grade will be based on the criteria contained in paragraph 501-5.2e(4).
The Engineer may at any time, notwithstanding previous plant acceptance, reject and require the Contractor to dispose of any batch of concrete mixture which is rendered unfit for use due to contamination, segregation, or improper slump. Such rejection may be based on only visual inspection. In the event of such rejection, the Contractor may take a representative sample of the rejected material in the presence of the Engineer, and if it can be demonstrated in the laboratory, in the presence of the Engineer, that such material was erroneously rejected, payment will be made for the material at the contract unit price.

b. **Flexural strength.** Acceptance of each lot of in-place pavement for flexural strength shall be based on PWL. The Contractor shall target production quality to achieve 90 PWL or higher.

c. **Pavement thickness.** Acceptance of each lot of in-place pavement shall be based on PWL. The Contractor shall target production quality to achieve 90 PWL or higher.

d. **Percentage of material within limits (PWL).** The PWL shall be determined in accordance with procedures specified in Section 110 of the General Provisions.

The lower specification tolerance limit (L) for flexural strength and thickness shall be:

<table>
<thead>
<tr>
<th>Lower Specification Tolerance Limit (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength: 0.93 x strength specified in paragraph 501-3.1</td>
</tr>
<tr>
<td>Thickness: Lot Plan Thickness in inches, - 0.50 in</td>
</tr>
</tbody>
</table>

e. **Acceptance criteria.**

1. **Flexural Strength.** If the PWL of the lot equals or exceeds 90%, the lot shall be acceptable. Acceptance and payment for the lot shall be determined in accordance with paragraph 501-8.1.

2. **Thickness.** If the PWL of the lot equals or exceeds 90%, the lot shall be acceptable. Acceptance and payment for the lot shall be determined in accordance with paragraph 501-8.1.

3. **Smoothness.** As soon as the concrete has hardened sufficiently, but not later than 48 hours after placement, the surface of each lot shall be tested in both longitudinal and transverse directions for smoothness to reveal all surface irregularities exceeding the tolerances specified. The Contractor shall furnish paving equipment and employ methods that produce a surface for each section of pavement having an average profile index meeting the requirements of paragraph 501-8.1c when evaluated with a profilograph; and the finished surface of the pavement shall not vary more than 1/4 inch when evaluated with a 12-foot straightedge. When the surface smoothness exceeds specification tolerances which cannot be corrected by diamond grinding of the pavement, full depth removal and replacement of pavement shall be to the limit of the longitudinal placement. Corrections involving diamond grinding will be subject to the final pavement thickness tolerances specified.

(a) Transverse measurements. Transverse measurements will be taken for each lot placed. Transverse measurements will be taken perpendicular to the pavement centerline each 50 feet or more often as determined by the Engineer.

(i) Testing shall be continuous across all joints, starting with one-half the length of the straight edge at the edge of pavement section being tested and then moved ahead one-half the length of the straight edge for each successive measurement. Smoothness readings will not be made across grade changes or cross slope transitions; at these transition areas, the straightedge position shall be adjusted to measure surface smoothness and not design grade or cross slope transitions. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points. Deviations on final pavement > 1/4 inch in transverse direction shall be corrected with diamond grinding per paragraph 501-4.19g or by removing and replacing full depth of pavement. Grinding will be tapered in all directions to provide smooth
transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.

(ii) The joint between lots shall be tested separately to facilitate smoothness between lots. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface, with half the straightedge on one side of the joint and the other half of the straightedge on the other side of the joint. Measure the maximum gap between the straightedge and the pavement surface in the area between these two high points. One measurement shall be taken at the joint every 50 feet or more often if directed by the Engineer. Maximum gap on final pavement surface > 1/4 inch in transverse direction shall be corrected with diamond grinding per paragraph 501-4.19g or by removing and replacing full depth of surface. Each measurement shall be recorded and a copy of the data shall be furnished to the Engineer at the end of each days testing.

(b) Longitudinal measurements. Longitudinal measurements will be taken for each lot placed. Longitudinal tests will be parallel to the centerline of paving; at the center of paving lanes when widths of paving lanes are less than 20 feet; and at the one third points of paving lanes when widths of paving lanes are 20 ft or greater.

(i) Longitudinal Short Sections. Longitudinal Short Sections are when the longitudinal lot length is less than 200 feet and areas not requiring a profilograph. When approved by the Engineer, the first and last 15 feet of the lot can also be considered as short sections for smoothness. The finished surface shall not vary more than 1/4 inch when evaluated with a 12-foot straightedge. Smoothness readings will not be made across grade changes or cross slope transitions, at these transition areas, the straightedge position shall be adjusted to measure surface smoothness and not design grade or cross slope transitions. Testing shall be continuous across all joints, starting with one-half the length of the straight edge at the edge of pavement section being tested and then moved ahead one-half the length of the straight edge for each successive measurement. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points. Deviations on final pavement surface > 1/4 inch in longitudinal direction will be corrected with diamond grinding per paragraph 501-4.19g or by removing and replacing full depth of surface. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.

(ii) Profilograph Testing. Profilograph testing shall be performed by the contractor using approved equipment and procedures as described as ASTM E1274. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate “must grind” bumps and the Profile Index for the pavement using a 0.2 inch blanking band. The bump template must span one inch with an offset of 0.4 inches. The profilograph must be calibrated prior to use and operated by a factory or State DOT approved operator. Profilograms shall be recorded on a longitudinal scale of one inch equals 25 feet and a vertical scale of one inch equals one inch. A copy of the reduced tapes shall be furnished to the Engineer at the end of each days testing. The pavement must have an average profile index meeting the requirements of paragraph 501-8.1c. Deviations on final surface in longitudinal direction shall be corrected with diamond grinding per paragraph 501-4.19g or by removing and replacing full depth of pavement. Grinding will be tapered in all directions to provide smooth transitions to areas not requiring grinding. The area corrected by grinding should not exceed 10% of the total area and these areas shall be retested after grinding.

Where corrections are necessary, second profilograph runs shall be performed to verify that the corrections produced an average profile index of 15 inches per mile or less. If the initial average profile index was less than 15 inches, only those areas representing greater than 0.4 inch deviation will be re-profiled for correction verification.
(iii) Final profilograph of taxiway. Final profilograph, full length of runway, shall be performed to facilitate testing of smoothness between lots. Profilograph testing shall be performed by the contractor using approved equipment and procedures as described as ASTM E1274. The pavement must have an average profile index meeting the requirements of paragraph 501-8.1c. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate “must grind” bumps and the Profile Index for the pavement using a 0.2 inch blanking band. The bump template must span one inch with an offset of 0.4 inches. The profilograph must be calibrated prior to use and operated by a factory or State DOT approved, trained operator. Profilograms shall be recorded on a longitudinal scale of one inch equals 25 feet and a vertical scale of one inch equals one inch. A copy of the reduced tapes shall be furnished to the Engineer at the end of each days testing. Profilograph of final runway shall be performed one foot right and left of runway centerline and 15 feet right and left of centerline. Any areas that indicate “must grind” will be corrected as directed by the Engineer.

Smoothness testing indicated in the above paragraphs except paragraph (iii) shall be performed within 48 hours of placement of material. Smoothness testing indicated in paragraph (iii) shall be performed within 48 hours final paving completion. The primary purpose of smoothness testing is to identify areas that may be prone to ponding of water which could lead to hydroplaning of aircraft. If the contractor’s machines and/or methods are producing significant areas that need corrective actions then production should be stopped until corrective measures can be implemented. If corrective measures are not implemented and when directed by the Engineer, production shall be stopped until corrective measures can be implemented.

(4) Grade. An evaluation of the surface grade shall be made by the Engineer for compliance to the tolerances contained below. The finish grade will be determined by running levels at intervals of 50 feet or less longitudinally and all breaks in grade transversely (not to exceed 50 feet) to determine the elevation of the completed pavement. The Contractor shall pay the costs of surveying the level runs, and this work shall be performed by a licensed surveyor. The documentation, stamped and signed by a licensed surveyor, shall be provided by the Contractor to the Engineer.

(a) Lateral deviation. Lateral deviation from established alignment of the pavement edge shall not exceed ±0.10 feet in any lane.

(b) Vertical deviation. Vertical deviation from established grade shall not exceed ±0.04 feet at any point.

High point grinding will be limited to 15 square yards (12.5 m²). Areas in excess of 15 square yards (12.5 m²) will require removal and replacement of the pavement.

(5) Edge slump. When excessive edge slump cannot be corrected before the concrete has hardened, the area with excessive edge slump shall be removed and replaced at the expense of the Contractor as directed by the Engineer in accordance with paragraph 501-4.8a.

f. Removal and replacement of concrete. Any area or section of concrete that is removed and replaced shall be removed and replaced back to planned joints. The Contractor shall replace damaged dowels and the requirements for doweled longitudinal construction joints in paragraph 501-4.10 shall apply to all contraction joints exposed by concrete removal. Removal and replacement shall be in accordance with paragraph 501-4.20.

CONTRACTOR QUALITY CONTROL

501-6.1 Quality control program. The Contractor shall develop a Quality Control Program in accordance with Section 100 of the General Provisions. The program shall address all elements that affect the quality of the pavement including but not limited to:

a. Mix Design

b. Aggregate Gradation

c. Quality of Materials
d. Stockpile Management

501-6.2 Quality control testing. The Contractor shall perform all quality control tests necessary to control the production and construction processes applicable to this specification and as set forth in the Quality Control Program. The testing program shall include, but not necessarily be limited to, tests for aggregate gradation, aggregate moisture content, slump, and air content.

A Quality Control Testing Plan shall be developed as part of the Quality Control Program.

a. Fine aggregate.

(1) Gradation. A sieve analysis shall be made at least twice daily in accordance with ASTM C136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt.

(2) Moisture content. If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C70 or ASTM C566.

(3) Deleterious Materials. The Contractor will sample and check the aggregates a minimum of once per week for deleterious materials in accordance with ASTM C33 and the requirements of P-501-2.1

b. Coarse Aggregate.

(1) Gradation. A sieve analysis shall be made at least twice daily for each size of aggregate. Tests shall be made in accordance with ASTM C136 from randomly sampled material taken from the discharge gate of storage bins or from the conveyor belt.

(2) Moisture content. If an electric moisture meter is used, at least two direct measurements of moisture content shall be made per week to check the calibration. If direct measurements are made in lieu of using an electric meter, two tests shall be made per day. Tests shall be made in accordance with ASTM C566.

(3) Deleterious Materials. The Contractor will sample and check the aggregates a minimum of once per week for deleterious materials in accordance with ASTM C33 and the requirements of P-501-2.1

c. Slump. Eight slump tests shall be performed for each lot of material produced in accordance with the lot size defined in paragraph 501-5.1. Two tests shall be made for each sublot. Slump tests shall be performed in accordance with ASTM C143 from material randomly sampled from material discharged from trucks at the paving site. Material samples shall be taken in accordance with ASTM C172.

d. Air content. Eight air content tests, shall be performed for each lot of material produced in accordance with the lot size defined in paragraph 501-5.1. Two tests shall be made for each sublot. Air content tests shall be performed in accordance with ASTM C231 for gravel and stone coarse aggregate and...
ASTM C173 for slag or other porous coarse aggregate, from material randomly sampled from trucks at the paving site. Material samples shall be taken in accordance with ASTM C172.

e. Eight unit weight and yield tests shall be made in accordance with ASTM C138. The samples shall be taken in accordance with ASTM C172 and at the same time as the air content tests.

501-6.3 Control charts. The Contractor shall maintain linear control charts for fine and coarse aggregate gradation, slump, moisture content and air content.

Control charts shall be posted in a location satisfactory to the Engineer and shall be kept up to date at all times. As a minimum, the control charts shall identify the project number, the contract item number, the test number, each test parameter, the Action and suspension Limits, or Specification limits, applicable to each test parameter, and the Contractor’s test results. The Contractor shall use the control charts as part of a process control system for identifying potential problems and assignable causes before they occur. If the Contractor’s projected data during production indicates a potential problem and the Contractor is not taking satisfactory corrective action, the Engineer may halt production or acceptance of the material.

a. Fine and coarse aggregate gradation. The Contractor shall record the running average of the last five gradation tests for each control sieve on linear control charts. Specification limits contained in the Lower Specification Tolerance Limit (L) table above and the Control Chart Limits table below shall be superimposed on the Control Chart for job control.

b. Slump and air content. The Contractor shall maintain linear control charts both for individual measurements and range (that is, difference between highest and lowest measurements) for slump and air content in accordance with the following Action and Suspension Limits.

<table>
<thead>
<tr>
<th>Control Parameter</th>
<th>Individual Measurements</th>
<th>Range Suspension Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action Limit</td>
<td>Suspension Limit</td>
</tr>
<tr>
<td>Slip Form:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump</td>
<td>+0 to -1 inch</td>
<td>+0.5 to -1.5 inch</td>
</tr>
<tr>
<td>Air Content</td>
<td>±1.2%</td>
<td>±1.8%</td>
</tr>
<tr>
<td>Side Form:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump</td>
<td>+0.5 to -1 inch</td>
<td>+1 to -1.5 inch</td>
</tr>
<tr>
<td>Air Content</td>
<td>±1.2%</td>
<td>±1.8%</td>
</tr>
</tbody>
</table>

The individual measurement control charts shall use the mix design target values as indicators of central tendency.

501-6.4 Corrective action. The Contractor Quality Control Program shall indicate that appropriate action shall be taken when the process is believed to be out of control. The Contractor Quality Control Program shall detail what action will be taken to bring the process into control and shall contain sets of rules to gauge when a process is out of control. As a minimum, a process shall be deemed out of control and corrective action taken if any one of the following conditions exists.

a. Fine and coarse aggregate gradation. When two consecutive averages of five tests are outside of the specification limits in paragraph 501-2.1, immediate steps, including a halt to production, shall be taken to correct the grading.

b. Combined gradation. When the plot of the WF and CF from the combined gradation is outside of the parallelogram limits in paragraph 501-2.1, immediate steps, including a halt to production, shall be taken to correct the grading.

c. Deteriorious Materials. When aggregates are found to contain deleterious in excess of the requirements in 501-2.1 production will be halted and the unacceptable aggregates removed from the site.
d. **Fine and coarse aggregate moisture content.** Whenever the moisture content of the fine or coarse aggregate changes by more than 0.5%, the scale settings for the aggregate batcher and water batcher shall be adjusted.

e. **Slump.** The Contractor shall halt production and make appropriate adjustments whenever:

 (1) one point falls outside the Suspension Limit line for individual measurements or range

 OR

 (2) two points in a row fall outside the Action Limit line for individual measurements.

f. **Air content.** The Contractor shall halt production and adjust the amount of air-entraining admixture whenever:

 (1) one point falls outside the Suspension Limit line for individual measurements or range

 OR

 (2) two points in a row fall outside the Action Limit line for individual measurements.

Whenever a point falls outside the Action Limits line, the air-entraining admixture dispenser shall be calibrated to ensure that it is operating correctly and with good reproducibility.

METHOD OF MEASUREMENT

501-7.1 Portland cement concrete pavement shall be measured by the number of square yards of either plain or reinforced pavement as specified in-place, completed and accepted. The Contractor shall exercise extreme caution during all panel removal operations. Any damage to adjacent pavements or underlying base courses scheduled to remain in place shall be repaired at no additional cost to the Owner.

BASIS OF PAYMENT

501-8.1 Payment. Payment for concrete pavement meeting all acceptance criteria as specified in paragraph 501-5.2 Acceptance Criteria shall be based on results of smoothness, strength and thickness tests. Payment for acceptable lots of concrete pavement shall be adjusted in accordance with paragraph 501-8.1a for strength and thickness and 501-8.1c for smoothness, subject to the limitation that:

The total project payment for concrete pavement shall not exceed 100 percent of the product of the contract unit price and the total number of square yards of concrete pavement used in the accepted work (See Note 1 under the Price Adjustment Schedule table below).

Payment shall be full compensation for all labor, materials, tools, equipment, and incidentals required to complete the work as specified herein and on the drawings. All saw-cutting associated with new pavement shall be incidental to pavement installation. The Contractor shall exercise extreme caution during all panel removal operations. Any damage to adjacent pavements or underlying base courses scheduled to remain in place shall be repaired at no additional cost to the Owner.

a. **Basis of adjusted payment.** The pay factor for each individual lot shall be calculated in accordance with the Price Adjustment Schedule table below. A pay factor shall be calculated for both flexural strength and thickness. The lot pay factor shall be the higher of the two values when calculations for both flexural strength and thickness are 100% or higher. The lot pay factor shall be the product of the two values when only one of the calculations for either flexural strength or thickness is 100% or higher. The lot pay factor shall be the lower of the two values when calculations for both flexural strength and thickness are less than 100%.
Price Adjustment Schedule

<table>
<thead>
<tr>
<th>Percentage of Materials Within Specification Limits (PWL)</th>
<th>Lot Pay Factor (Percent of Contract Unit Price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 – 100</td>
<td>106</td>
</tr>
<tr>
<td>90 – 95</td>
<td>PWL + 10</td>
</tr>
<tr>
<td>75 – 90</td>
<td>0.5 PWL + 55</td>
</tr>
<tr>
<td>55 – 74</td>
<td>1.4 PWL – 12</td>
</tr>
<tr>
<td>Below 55</td>
<td>Reject²</td>
</tr>
</tbody>
</table>

² Although it is theoretically possible to achieve a pay factor of 106% for each lot, actual payment in excess of 100% shall be subject to the total project payment limitation specified in paragraph 501-8.1.

The lot shall be removed and replaced. However, the Engineer may decide to allow the rejected lot to remain. In that case, if the Engineer and Contractor agree in writing that the lot shall not be removed, it shall be paid for at 50% of the contract unit price and the total project payment limitation shall be reduced by the amount withheld for the rejected lot.

For each lot accepted, the adjusted contract unit price shall be the product of the lot pay factor for the lot and the contract unit price. Payment shall be subject to the total project payment limitation specified in paragraph 501-8.1. Payment in excess of 100% for accepted lots of concrete pavement shall be used to offset payment for accepted lots of concrete pavement that achieve a lot pay factor less than 100%.

b. Payment. Payment shall be made under:

- Item P-501-8.1 Reinforced Portland Cement Concrete Pavement (17.5-Inches) – per square yard
- Item P-501-8.2 Reinforced Portland Cement Concrete Pavement (19.5-Inches) – per square yard
- Item P-501-8.2 Reinforced Portland Cement Concrete Pavement (22-Inches) – per square yard

c. Basis of adjusted payment for smoothness. Price adjustment for pavement smoothness will apply to the total area of concrete within a section of pavement and shall be applied in accordance the following equation and schedule:

\[(\text{Square yard in section}) \times (\text{original unit price per square yard}) \times \text{PFm} = \text{reduction in payment for area within section}\]

<table>
<thead>
<tr>
<th>Average Profile Index (Inches Per Mile)</th>
<th>Contract Unit Price Adjustment (PFm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement Strength Rating</td>
<td></td>
</tr>
<tr>
<td>Over 30,000 lb</td>
<td></td>
</tr>
<tr>
<td>0 - 7</td>
<td>0.00</td>
</tr>
<tr>
<td>7.1 - 9</td>
<td>0.02</td>
</tr>
<tr>
<td>9.1 - 11</td>
<td>0.04</td>
</tr>
<tr>
<td>11.1 - 13</td>
<td>0.06</td>
</tr>
<tr>
<td>13.1 - 14</td>
<td>0.08</td>
</tr>
<tr>
<td>14.1 - 15</td>
<td>0.10</td>
</tr>
<tr>
<td>15.1 and up</td>
<td>Corrective work required</td>
</tr>
<tr>
<td>30,000 lb or Less</td>
<td></td>
</tr>
<tr>
<td>0 - 10</td>
<td></td>
</tr>
<tr>
<td>10.1 - 11</td>
<td></td>
</tr>
<tr>
<td>11.1 - 12</td>
<td></td>
</tr>
<tr>
<td>12.1 - 13</td>
<td></td>
</tr>
<tr>
<td>13.1 - 14</td>
<td></td>
</tr>
<tr>
<td>14.1 - 15</td>
<td></td>
</tr>
<tr>
<td>15.1 and up</td>
<td>22.1 and up</td>
</tr>
</tbody>
</table>
TESTING REQUIREMENTS

<table>
<thead>
<tr>
<th>Standard Test Method Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C31</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Field</td>
</tr>
<tr>
<td>ASTM C39</td>
<td>Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens</td>
</tr>
<tr>
<td>ASTM C70</td>
<td>Standard Test Method for Surface Moisture in Fine Aggregate</td>
</tr>
<tr>
<td>ASTM C78</td>
<td>Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)</td>
</tr>
<tr>
<td>ASTM C88</td>
<td>Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate</td>
</tr>
<tr>
<td>ASTM C117</td>
<td>Standard Test Method for Materials Finer Than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing</td>
</tr>
<tr>
<td>ASTM C136</td>
<td>Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates</td>
</tr>
<tr>
<td>ASTM C138</td>
<td>Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete</td>
</tr>
<tr>
<td>ASTM C142</td>
<td>Standard Test Method for Clay Lumps and Friable Particles in Aggregates</td>
</tr>
<tr>
<td>ASTM C143</td>
<td>Standard Test Method for Slump of Hydraulic-Cement Concrete</td>
</tr>
<tr>
<td>ASTM C172</td>
<td>Standard Practice for Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>ASTM C173</td>
<td>Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method</td>
</tr>
<tr>
<td>ASTM C174</td>
<td>Standard Test Method for Measuring Thickness of Concrete Elements Using Drilled Concrete Cores</td>
</tr>
<tr>
<td>ASTM C231</td>
<td>Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method</td>
</tr>
<tr>
<td>ASTM C289</td>
<td>Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method)</td>
</tr>
<tr>
<td>ASTM C295</td>
<td>Standard Guide for Petrographic Examination of Aggregates for Concrete</td>
</tr>
<tr>
<td>ASTM C114</td>
<td>Standard Test Methods for Chemical Analysis of Hydraulic Cement</td>
</tr>
<tr>
<td>ASTM C311</td>
<td>Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete</td>
</tr>
<tr>
<td>ASTM C566</td>
<td>Standard Test Method for Total Evaporable Moisture Content of Aggregates by Drying</td>
</tr>
<tr>
<td>ASTM C642</td>
<td>Standard Test Method for Density, Absorption, and Voids in Hardened Concrete</td>
</tr>
<tr>
<td>ASTM C666</td>
<td>Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing</td>
</tr>
<tr>
<td>ASTM C1077</td>
<td>Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation</td>
</tr>
</tbody>
</table>
ASTM C1602 Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete
ASTM D3665 Standard Practice for Random Sampling of Construction Materials
ASTM D4791 Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM E178 Standard Practice for Dealing With Outlying Observations
ASTM E1274 Standard Test Method for Measuring Pavement Roughness Using a Profilograph
U.S. Army Corps of Engineers (USACE) Concrete Research Division (CRD) C662 Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials, Lithium Nitrate Admixture and Aggregate (Accelerated Mortar-Bar Method)

MATERIAL REQUIREMENTS

ASTM A184 Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement
ASTM A615 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM A704 Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement
ASTM A706 Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
ASTM A714 Standard Specification for High-Strength Low-Alloy Welded and Seamless Steel Pipe
ASTM A775 Standard Specification for Epoxy-Coated Steel Reinforcing Bars
ASTM A934 Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars
ASTM A996 Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement
ASTM A1064 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
ASTM A1078 Standard Specification for Epoxy-Coated Steel Dowels for Concrete Pavement
ASTM C33 Standard Specification for Concrete Aggregates
ASTM C94 Standard Specification for Ready-Mixed Concrete
ASTM C150 Standard Specification for Portland Cement
ASTM C171 Standard Specification for Sheet Materials for Curing Concrete
ASTM C260 Standard Specification for Air-Entraining Admixtures for Concrete
ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete
ASTM C494 Standard Specification for Chemical Admixtures for Concrete
ASTM C595 Standard Specification for Blended Hydraulic Cements
ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
ASTM C881 Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete
ASTM C989 Standard Specification for Slag Cement for Use in Concrete and Mortars
ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
ASTM D1752 Standard Specification for Preformed Sponge Rubber and Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving And Structural Construction
ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
ACI 305R Guide to Hot Weather Concreting
ACI 306R Guide to Cold Weather Concreting
ACI 309R Guide for Consolidation of Concrete
AC 150/5320-6 Airport Pavement Design and Evaluation
PCA Design and Control of Concrete Mixtures

END ITEM P-501
Item P-602

BITUMINOUS PRIME COAT

DESCRIPTION
602-1.1 This item shall consist of an application of bituminous material on the prepared base course in accordance with these specifications and in reasonably close conformity to the lines shown on the plans.

MATERIALS
602-2.1 Bituminous material. The bituminous material shall be an emulsified asphalt indicated in ASTM D3628 as a bituminous application for prime coat appropriate to local conditions or as designated by the Engineer.

CONSTRUCTION METHODS
602-3.1 Weather limitations. The prime coat shall be applied only when the existing surface is dry; the atmospheric temperature is 50°F or above, and the temperature has not been below 35°F for the 12 hours prior to application; and when the weather is not foggy or rainy. The temperature requirements may be waived when directed by the Engineer.

602-3.2 Equipment. The equipment shall include a self-powered pressure bituminous material distributor and equipment for heating bituminous material.

Provide a distributor with pneumatic tires of such size and number that the load produced on the base surface does not exceed 65.0 psi of tire width to prevent rutting, shoving or otherwise damaging the base, surface or other layers in the pavement structure. Design and equip the distributor to spray the bituminous material in a uniform coverage at the specified temperature, at readily determined and controlled rates from 0.05 to 2.0 gallons per square yard, with a pressure range of 25 to 75 psi and with an allowable variation from the specified rate of not more than ±5%, and at variable widths. Include with the distributor equipment a separate power unit for the bitumen pump, full-circulation spray bars, tachometer, pressure gauges, volume-measuring devices, adequate heaters for heating of materials to the proper application temperature, a thermometer for reading the temperature of tank contents, and a hand hose attachment suitable for applying bituminous material manually to areas inaccessible to the distributor. Equip the distributor to circulate and agitate the bituminous material during the heating process. If the distributor is not equipped with an operable quick shutoff valve, the prime operations shall be started and stopped on building paper. The Contractor shall remove blotting sand prior to asphalt concrete lay down operations at no additional expense to the Owner.

A power broom and power blower suitable for cleaning the surfaces to which the bituminous coat is to be applied shall be provided.

602-3.3 Application of bituminous material. Immediately before applying the prime coat, the full width of the surface to be primed shall be swept with a power broom to remove all loose dirt and other objectionable material.

The bituminous material shall be uniformly applied with a bituminous distributor at the rate of 0.15 to 0.30 gallons per square yard depending on the base course surface texture. The type of bituminous material and application rate shall be approved by the Engineer prior to application.

Following application of the bituminous material and prior to application of the succeeding layer of pavement, allow the bituminous coat to cure and to obtain evaporation of any volatiles or moisture. Maintain the coated surface until the succeeding layer of pavement is placed, by protecting the surface against damage and by repairing and recoating deficient areas. Allow the prime coat to cure without being disturbed for a period of at least 48 hours or longer, as may be necessary to attain penetration into the treated course.
Furnish and spread enough sand to effectively blot up and cure excess bituminous material. Keep traffic off surfaces freshly treated with bituminous material. Provide sufficient warning signs and barricades so that traffic will not travel over freshly treated surfaces.

602-3.4 Trial applications. Before providing the complete bituminous coat, the Contractor shall apply three lengths of at least 100 feet for the full width of the distributor bar to evaluate the amount of bituminous material that can be satisfactorily applied with the equipment. Apply three different trial application rates of bituminous materials within the application range specified in paragraph 602-3.3. Other trial applications will be made using various amounts of material as deemed necessary by the Engineer.

602-3.5 Bituminous material Contractor's responsibility. The Contractor shall provide a statement of source and character of the proposed bituminous material which must be submitted to and approved by the Engineer before any shipment of bituminous materials to the project. The Contractor shall furnish vendor's certified test reports for each carload, or equivalent, of bituminous material shipped to the project. The test reports shall be provided to and approved by the Engineer before the bituminous material is applied. If the bituminous material does not meet the specifications, it shall be replaced at the Contractor's expense. Furnishing the vendor's certified test report for the bituminous material shall not be interpreted as basis for final acceptance.

602-3.6 Freight and weigh bills. The Contractor shall submit waybills and delivery tickets during the progress of the work. Before the final estimate is allowed, file with the Engineer certified waybills and certified delivery tickets for all bituminous materials used in the construction of the pavement covered by the contract. Do not remove bituminous material from storage until the initial outage and temperature measurements have been taken. The delivery or storage units will not be released until the final outage has been taken.

METHOD OF MEASUREMENT

602-4.1 The bituminous material for prime coat shall be measured by the gallon. Volume shall be corrected to the volume at 60°F in accordance with ASTM D1250. The bituminous material paid for will be the measured quantities used in the accepted work, provided that the measured quantities are not 10% over the specified application rate. Any amount of bituminous material more than 10% over the specified application rate for each application will be deducted from the measured quantities, except for irregular areas where hand spraying of the bituminous material is necessary. Water added to emulsified asphalt will not be measured for payment.

BASIS OF PAYMENT

602-5.1 Payment shall be made at the contract unit price per gallon for bituminous prime coat. This price shall be full compensation for furnishing all materials and for all preparation, delivering, and applying the materials, and for all labor, equipment, tools, and incidentals necessary to complete this item. Payment will be made under:

Item P-602-5.1 Bituminous Prime Coat - per gallon

TESTING REQUIREMENTS

MATERIAL REQUIREMENTS

ASTM D977 Standard Specification for Emulsified Asphalt

ASTM D2028 Standard Specification for Cutback Asphalt (Rapid-Curing Type)
ASTM D2397 Standard Specification for Cationic Emulsified Asphalt
ASTM D3628 Standard Practice for Selection and Use of Emulsified Asphalts

END OF ITEM P-602
This page intentionally left blank.
Item P-603

BITUMINOUS TACK COAT

DESCRIPTION

603-1.1 This item shall consist of preparing and treating a bituminous or concrete surface with bituminous material in accordance with these specifications and in reasonably close conformity to the lines shown on the plans.

MATERIALS

603-2.1 Bituminous materials. The bituminous material shall be an emulsified asphalt indicated in ASTM D3628 as a bituminous application for tack coat appropriate to local conditions or as designated by the Engineer.

CONSTRUCTION METHODS

603-3.1 Weather limitations. The tack coat shall be applied only when the existing surface is dry and the atmospheric temperature is 50°F or above; the temperature has not been below 35°F for the 12 hours prior to application; and when the weather is not foggy or rainy. The temperature requirements may be waived when directed by the Engineer.

603-3.2 Equipment. The Contractor shall provide equipment for heating and applying the bituminous material.

Provide a distributor with pneumatic tires of such size and number that the load produced on the base surface does not exceed 65.0 psi of tire width to prevent rutting, shoving or otherwise damaging the base, surface or other layers in the pavement structure. Design and equip the distributor to spray the bituminous material in a uniform coverage at the specified temperature, at readily determined and controlled rates from 0.05 to 2.0 gallons per square yard, with a pressure range of 25 to 75 psi and with an allowable variation from the specified rate of not more than ±5%, and at variable widths. Include with the distributor equipment a separate power unit for the bitumen pump, full-circulation spray bars, tachometer, pressure gauges, volume-measuring devices, adequate heaters for heating of materials to the proper application temperature, a thermometer for reading the temperature of tank contents, and a hand hose attachment suitable for applying bituminous material manually to areas inaccessible to the distributor. Equip the distributor to circulate and agitate the bituminous material during the heating process. If the distributor is not equipped with an operable quick shutoff valve, the tack operations shall be started and stopped on building paper. The Contractor shall remove blotting sand prior to asphalt concrete lay down operations at no additional expense to the Owner.

A power broom and/or power blower suitable for cleaning the surfaces to which the bituminous tack coat is to be applied shall be provided.

603-3.3 Application of bituminous material. Immediately before applying the tack coat, the full width of surface to be treated shall be swept with a power broom and/or power blower to remove all loose dirt and other objectionable material.

Emulsified asphalt shall be diluted by the addition of water when directed by the Engineer and shall be applied a sufficient time in advance of the paver to ensure that all water has evaporated before the overlying mixture is placed on the tacked surface.

The bituminous material including vehicle shall be uniformly applied with a bituminous distributor at the rate of 0.05 to 0.10 gallons per square yard depending on the condition of the existing surface. The type of bituminous material and application rate shall be approved by the Engineer prior to application.
After application of the tack coat, the surface shall be allowed to cure without being disturbed for the period of time necessary to permit drying and setting of the tack coat. This period shall be determined by the Engineer. The Contractor shall protect the tack coat and maintain the surface until the next course has been placed.

603-3.4 Bituminous material Contractor’s responsibility. The Contractor shall provide a statement of source and character of the proposed bituminous material which must be submitted and approved by the Engineer before any shipment of bituminous materials to the project.

The Contractor shall furnish the vendor’s certified test reports for each carload, or equivalent, of bituminous material shipped to the project. The tests reports shall be provided to and approved by the Engineer before the bituminous material is applied. If the bituminous material does not meet the specifications, it shall be replaced at the Contractor’s expense. Furnishing the vendor’s certified test report for the bituminous material shall not be interpreted as a basis for final acceptance.

603-3.5 Freight and weigh bills The Contractor shall submit waybills and delivery tickets, during progress of the work. Before the final statement is allowed, file with the Engineer certified waybills and certified delivery tickets for all bituminous materials used in the construction of the pavement covered by the contract. Do not remove bituminous material from storage until the initial outage and temperature measurements have been taken. The delivery or storage units will not be released until the final outage has been taken.

METHOD OF MEASUREMENT

603-4.1 The bituminous material for tack coat shall be measured by the gallon. Volume shall be corrected to the volume at 60°F in accordance with ASTM D1250. The bituminous material paid for will be the measured quantities used in the accepted work, provided that the measured quantities are not 10% over the specified application rate. Any amount of bituminous material more than 10% over the specified application rate for each application will be deducted from the measured quantities, except for irregular areas where hand spraying of the bituminous material is necessary. Water added to emulsified asphalt will not be measured for payment.

BASIS OF PAYMENT

603.5-1 Payment shall be made at the contract unit price per gallon of bituminous material. This price shall be full compensation for furnishing all materials, for all preparation, delivery, and application of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

Item P-603-5.1 Bituminous Tack Coat - per gallon

MATERIAL REQUIREMENTS

ASTM D633 Standard Volume Correction Table for Road Tar
ASTM D977 Standard Specification for Emulsified Asphalt
ASTM D2028 Standard Specification for Cutback Asphalt (Rapid-Curing Type)
ASTM D2397 Standard Specification for Cationic Emulsified Asphalt
ASTM D3628 Standard Practice for Selection and Use of Emulsified Asphalts

END ITEM P-603
Item P-604

COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS

DESCRIPTION

604-1.1 This item shall consist of preformed polychloroprene compression seals used for sealing joints of rigid pavements.

MATERIALS

604-2.1 Compression seals. Compression joint seal materials shall be a vulcanized elastomeric compound using polychloroprene as the only base polymer. The material and the manufactured seal shall conform to ASTM D2628 and Corps of Engineers Concrete Research Division (CRD) C548 where jet fuel and/or heat blast resistance is required. The joint seal shall be a labyrinth type seal. The uncompressed depth of the face of the compression seal (that is to be bonded to the joint wall) shall be greater than the uncompressed width of the seal, except that for seals one inch or greater in width, the depth need be only one inch or greater. The actual width of the uncompressed seal for construction and contraction joints shall be 13/16 or one inches and for expansion joints shall be 1.25 inches. The tolerance on the seal shall be plus 1/8 inch or minus 1/16 inch.

604-2.2 Lubricant/adhesive. Lubricant/adhesive used for the compression elastomeric joint seal shall be a one-component compound conforming to ASTM D2835.

604-2.3 Delivery and storage. Materials delivered to the job site shall be inspected for defects, unloaded, and stored with a minimum of handling to avoid damage. Storage facilities shall be provided at the job site to protect materials from weather and maintain materials at temperatures recommended by the manufacturer.

604-2.4 Submittals. Certified copies of test results shall be provided 60 days prior to use of material on the project.

a. Construction equipment list. List of proposed equipment to be used in the performance of construction work, including descriptive data shall be provided to the Engineer 60 days prior to use on the project.

b. Manufacturer's instructions. Where installation procedures are required in accordance with the manufacturer's recommendations, printed copies of these recommendations shall be submitted to the Engineer 60 days prior to use on the project. Installation of the material shall not be allowed until the recommendations are received.

c. Test reports. The Contractor shall submit certified copies of the test reports to the Engineer for written approval 60 days prior to use on the project. Printed directions from the manufacturer on recommended installation criteria shall be furnished with the test reports, plus the manufacturer's certification that the selected seal is recommend for the installation on this project. No material will be used until it has been approved by the Engineer.

604-2.5 Test requirements. Each lot of compression joint seal and lubricant/adhesive shall be sampled, identified, and tested for conformance with the applicable material specification. A lot of preformed seal shall consist of one day's production or 20,000 linear feet for each cross-section, whichever is less. A lot of lubricant/adhesive shall consist of one day's production. No material shall be used at the project prior to receipt of written notice that the materials meet the laboratory requirements.

Testing of the preformed joint and lubricant/adhesive material shall be the responsibility of the Contractor and shall be performed in an approved independent laboratory and certified copies of the test reports shall be submitted for approval 60 days prior to the use of the materials at the job site. Samples of each lot of material shall also be submitted and will be retained by the Engineer for possible future testing should the materials appear defective during or after application. The Contractor shall furnish additional samples of
materials, in sufficient quantity to be tested, upon request. Final acceptance will be based on conformance to the specified test requirements and the performance of the in-place materials.

CONSTRUCTION METHODS

604-3.1 Equipment. Machines, tools, and equipment used in the performance of the work required by this section shall be approved by the Engineer before the work starts and shall be maintained by the Contractor in satisfactory condition at all times.

a. Joint cleaning equipment.

(1) Concrete saw. A self-propelled power saw with water-cooled diamond saw blades shall be provided for cutting joints to the depths and widths specified and for removing filler, existing old joint seal or other material embedded in the joints or adhered to the joint faces.

(2) Sandblasting equipment. Sandblasting equipment shall include an air compressor, hose, and a long-wearing venturi-type nozzle of proper size, shape, and opening. The maximum nozzle opening should not exceed 1/4 inch. The air compressor shall be portable and shall be capable of furnishing not less than 150 cubic feet per minute and maintaining a line pressure of not less than 90 psi at the nozzle while in use. The compressor shall be equipped with traps that will maintain the compressed air free of oil and water. The nozzle shall have an adjustable guide that will hold the nozzle aligned with the joint about one inch above the pavement surface and will direct the blast to clean the joint walls. The height, angle of inclination, and the size of the nozzle shall be adjusted as necessary to ensure satisfactory results.

(3) Waterblasting equipment. Waterblasting equipment shall include a trailer-mounted water tank, pumps, high-pressure hose, a wand with safety release cutoff controls, nozzle, and auxiliary water resupply equipment. The water tank and auxiliary water resupply equipment shall be of sufficient capacity to permit continuous operations. The pumps, hoses, wand, and nozzle shall be of sufficient capacity to permit the cleaning of both walls of the joint and the pavement surface for a width of at least 1/2 inch on either side of the joint. The pump shall be capable of supplying a pressure of at least 3,000 psi. A pressure gauge mounted at the pump shall show at all times the pressure in pounds per square inch (psi) at which the equipment is operating.

b. Sealing equipment. Equipment used to install the compression seal shall place the compression seal to the prescribed depths within the specified tolerances without cutting, nicking, twisting, or otherwise damaging the seal. The equipment shall not stretch or compress the seal more than 2.0% longitudinally during installation. The machine shall be an automatic self-propelled joint seal application equipment and shall be engine powered. The machine shall include a reservoir for the lubricant/adhesive, a device for conveying the lubricant/adhesive in the proper quantities to the sides the preformed seal or the sidewalls of the joint, a reel capable of holding one full spool of compression seal, and a power-driven apparatus for feeding the joint seal through a compression device and inserting the seal into the joint. The equipment shall also include a guide to maintain the proper course along the joint being sealed. The machine shall at all times be operated by an experienced operator.

CONSTRUCTION METHODS

604-4.1 Environmental conditions. The ambient temperature and the pavement temperature within the joint wall shall be at least 35°F and rising at the time of installation of the materials. Sealant application will not be permitted if moisture or any foreign material is observed in the joint.

604-4.2 Trial joint seal and lubricant/adhesive installation. Prior to the cleaning and sealing of the joints for the entire project, a test section at least 200 feet long shall be prepared at a location in the project pavement directed by the Engineer using the specified materials and the approved equipment, to demonstrate the proposed joint preparation and sealing of all types of joints in the project. Following the completion of the trial length and before any other joint is sealed, the trial joints will be inspected by the Engineer to determine that the materials and installation meet the requirements specified. If materials or installation do not meet requirements the materials shall be removed, and the joints shall be recleaned and...
resealed at no cost to the Owner. No other joints shall be sealed until the test installation has been approved by the Engineer. If the trial section is approved, it may be incorporated into the permanent work. All other joints shall be sealed in the manner approved for sealing the trial joints.

604-4.3 Preparation of joints. Immediately before installation of the compression joint seal, the joints shall be thoroughly cleaned to remove all laitance, filler, existing sealer, foreign material and protrusions of hardened concrete from the sides and upper edges of the joint space to be sealed. Cleaning shall be performed using equipment in accordance with paragraph 604-3.1a and shall extend along pavement surfaces at least 1/2 inch on either side of the joint. After final cleaning and immediately prior to sealing, the joints shall be blown out with compressed air and left completely free of debris and water. Demonstrate that the selected cleaning operation meets the cleanliness requirements. Any irregularity in the joint face that would prevent uniform contact between the joint seal and the joint face shall be corrected prior to the installation of the joint seal.

a. Sawing. Joints shall be sawed to clean and to open them to the full specified width and depth. Immediately following the sawing operation, the joint faces and opening shall be thoroughly cleaned using a water jet to remove all saw cuttings or debris remaining on the faces or in the joint opening. Compression seal shall be installed within three (3) calendar days of the time the joint cavity is sawed. Depth of the joint cavity shall be in accordance with manufacturer’s instructions. Submit printed copies of manufacturers’ instructions 60 days prior to use on the project. The saw cut for the joint seal cavity shall at all locations be centered over the joint line. The nominal width of the sawed joint seal cavity shall be as follows; the actual width shall be within a tolerance of ±1/16 inch:

(1) If a nominal 13/16 inch wide compression seal is furnished, the nominal width of the saw cut shall be 1/2 inches when the pavement temperature at the time of sawing is between 25 and 80°F. If the pavement temperature at the time of sawing is above this range, the nominal width of the saw cut shall be decreased 1/16 inch. If the pavement temperature at the time of sawing is below this range, the nominal width of the saw cut shall be increased 1/16 inch.

(2) If a nominal one inch wide compression seal is furnished, the nominal width of the saw cut shall be 9/16 inches when the pavement temperature at the time of sawing is between 25 and 140°F. If the pavement temperature at the time of sawing is above this range, the nominal width of the saw cut shall be decreased 1/16 inch. If the pavement temperature at the time of sawing is below this range, the nominal width of the saw cut shall be increased 1/16 inch.

(3) The pavement temperature shall be measured and recorded in the presence of the Engineer. Measurement shall be made each day before commencing sawing and at any other time during the day when the temperature appears to be moving out of the allowable sawing range.

b. Sandblast cleaning. The concrete joint faces and pavement surfaces extending at least 1/2 inch from the joint edges shall be sandblasted clean. A multiple pass technique shall be used until the surfaces are free of dust, dirt, curing compound, or any residue that might prevent ready insertion or uniform contact of the seal and bonding of the lubricant/adhesive to the concrete. After final cleaning and immediately prior to sealing, the joints shall be blown out with compressed air and left completely free of debris and water.

c. Waterblast cleaning. The concrete joint faces and pavement surfaces extending at least 1/2 inch from the joint edges shall be waterblasted clean. A multiple pass technique shall be used until the surfaces are free of dust, dirt, curing compound, or any residue that might prevent ready insertion or uniform contact of the seal and bonding of the lubricant/adhesive to the concrete. After final cleaning and immediately prior to sealing, the joints shall be blown out with compressed air and left completely free of debris and water.

d. Rate of progress. Sandblasting or waterblasting of the joint faces and air pressure cleaning of the joints shall be limited to the linear footage of joint that can be sealed during the same workday.

604-4.4 Installation of the compression seal.

a. Time of installation. Joints shall be sealed within three (3) calendar days of sawing the joint seal cavity and immediately following concrete cure and the final cleaning of the joint walls. Open joints ready for
sealing that cannot be sealed under the conditions specified shall be provided with an approved temporary seal to prevent infiltration of foreign material. When rain interrupts the sealing operations, the joints shall be washed, air pressure cleaned and allowed to dry prior to installing the lubricant/adhesive and compression seal.

b. **Sequence of installation.** Longitudinal joints shall be sealed first, followed by transverse joints. Seals in longitudinal joints shall be installed so that all transverse joint seals will be intact from edge to edge of the pavement. Intersections shall be made monolithic by use of joint seal adhesive and care in fitting the intersection parts together. Extender pieces of seal shall not be used at intersections. Any seal falling short of the intersection shall be removed and replaced with new seal at no additional cost to the Owner.

604-4.5 Sealing of joints. The joint seal shall be installed using the equipment specified in paragraph 604-3.1b. The sides of the joint seal or the sides of the joint shall be covered with a coating of lubricant/adhesive and the seal installed as specified. Butt joints and seal intersections shall be coated with liberal applications of lubricant/adhesive. Lubricant/adhesive spilled on the pavement shall be removed immediately to prevent setting on the pavement. An in-place joint seal shall be in an upright position and free from twisting, distortion, and cuts. Adjustments shall be made to the installation equipment and procedure, if the stretch exceeds 1%. Any seal exceeding 2% stretch shall be removed and replaced. The joint seal shall be placed at a uniform depth within the tolerances specified. In-place joint seal that fails to meet the specified requirements shall be removed and replaced with new joint seal in a satisfactory manner at no additional cost to the Owner. The compression joint seal shall be placed to a depth of 3/16 inch, ±1/8 inch, below the pavement surface or below the depth of the groove unless otherwise directed by the Engineer. No part of the seal shall be allowed to project above the surface of the pavement. The seal shall be installed in the longest practicable lengths in longitudinal joints and shall be cut at the joint intersections so as to provide continuous installation of the seal in the transverse joints. The lubricant/adhesive in the longitudinal shall be placed at a uniform depth within the tolerances specified. In-place joint seal that fails to meet the specified requirements shall be removed and replaced with new joint seal at no additional cost to the Owner. The compression joint seal shall be placed to a depth of 3/16 inch, ±1/8 inch, below the pavement surface or below the depth of the groove unless otherwise directed by the Engineer. No part of the seal shall be allowed to project above the surface of the pavement. The seal shall be installed in the longest practicable lengths in longitudinal joints and shall be cut at the joint intersections so as to provide continuous installation of the seal in the transverse joints. The lubricant/adhesive in the longitudinal shall be allowed to set for one (1) hour prior to cutting at the joint intersections to reduce the possibility of shrinkage. For all transverse joints, the minimum length of the preformed joint seal shall be the pavement width from edge to edge.

604-4.6 Clean-up. Upon completion of the project, all unused materials shall be removed from the site, all lubricant/adhesive on the pavement surface shall be removed, and the pavement shall be left in clean condition.

604-4.7 Quality control provisions.

a. **Equipment.** The application equipment shall be inspected to assure uniform application of lubricant/adhesive to the sides of the compression joint seal or the walls of the joint. If any equipment causes cutting, twisting, nicking, excessive stretching or compressing of the compression seal, or improper application of the lubricant/adhesive, the operation shall be suspended until causes of the deficiencies are determined and corrected by the Contractor.

b. **Procedures.**

(1) Quality control provisions shall be provided during the joint cleaning process to prevent or correct improper equipment and cleaning techniques that damage the concrete in any manner. Cleaned joints shall be approved by the Engineer prior to installation of the lubricant/adhesive and compression joint seal.

(2) Conformance to stretching and compression limitations shall be determined by the Engineer. Mark the top surface of the compression seal at one foot intervals in a manner clear and durable to enable length determinations of the seal. After installation, the distance between the marks on the seal shall be measured by the Contractor. If the stretching or compression exceeds the specified limit, the seal shall be removed and replaced with new joint seal at no additional cost to the Owner. The seal shall be removed up to the last correct measurement. The seal shall be inspected by the Contractor a minimum of once per 400 feet of seal for compliance to the shrinkage or compression requirements. Measurements shall also be made at the same interval to determine conformance with depth and width installation requirements. All compression seal that is not in conformance with
specification requirements shall be removed and replaced with new joint seal at no additional cost to the Owner.

c. **Inspection.** The joint sealing system (compression seal and lubricant/adhesive) shall be inspected by the Engineer for proper rate of cure and bonding to the concrete, cuts, twists, nicks, and other deficiencies. Seals exhibiting any defects, at any time prior to final acceptance of the project, shall be removed from the joint, wasted, and replaced in a satisfactory manner, as determined by the Engineer.

METHOD OF MEASUREMENT

604-5.1 Measurement. The quantity of each sealing item will be determined by actual measurement of the number of linear feet (meter) of in-place material that has been approved. No measurement shall be made on joint materials required in the construction. The cost of furnishing and installing joint materials shall be included in the price for the items which require its use. The Contractor shall furnish the additional cost of compression joint sealant as an alternate and shall be measured for payment on a lump sum bid item.

BASIS OF PAYMENT

604-6.1 Payment. Payment will be made at the contract unit bid prices per linear foot (meter) for the sealing items scheduled, including approved trial joint installation. The unit bid prices shall include the cost of all labor, materials, the use of all equipment, and tools required to complete the work. No separate payment will be made for sawing, joint seal/adhesive, and other materials, equipment, tools, labor and incidental costs to complete the item.

Payment for compression joint sealant shall be made at the contract lump sum price. This price shall be the difference in the cost of furnishing all labor, equipment, instruments and all other material necessary to satisfactorily complete the installation of this item as an alternate to silicone joint sealant. Partial payments will be made at the discretion of the Engineer as the work progresses based generally on the percentage of actual work completed requiring compression joint installation.

Payment will be made under:

Item P-604-6.1 Additional Cost to Replace Silicone PCC Joint Sealants with Preformed PCC Joint Sealants on all New PCC Paving – Per Lump Sum.

TESTING REQUIREMENTS

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in this text by basic designation only.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D2628</td>
<td>Standard Specification for Preformed Polychloroprene Elastomeric Joint Seals for Concrete Pavements</td>
</tr>
<tr>
<td>ASTM D2835</td>
<td>Standard Specification for Lubricant for Installation of Preformed Compression Seals in Concrete Pavements</td>
</tr>
<tr>
<td>UFC 3-250-08FA</td>
<td>Standard Practice for Sealing Joints and Cracks in Rigid and Flexible Pavements</td>
</tr>
</tbody>
</table>

END ITEM P-604
This page intentionally left blank.
Item P-605

JOINT SEALANTS FOR CONCRETE PAVEMENTS

DESCRIPTION

605-1.1 This item shall consist of providing and installing a resilient and adhesive joint sealing material capable of effectively sealing joints and cracks in rigid pavements.

605-1.2 This item shall also consist of a resilient and adhesive joint sealing filler capable of effectively sealing joints between portland cement concrete pavements and structures. The item shall consist of Type B low modulus silicone sealant in accordance with this section for all concrete pavement. Type B sealant shall be used for all sealing of joints specifically shown on the plans and in all joints on concrete structures receiving cork. Type C joint sealant shall be used for sealing of all joints interfacing portland cement concrete and bituminous concrete.

MATERIALS

605-2.1 Joint sealants. Joint sealant materials shall meet the requirements of ASTM D5893.

Each lot or batch of sealant shall be delivered to the jobsite in the manufacturer’s original sealed container. Each container shall be marked with the manufacturer’s name, batch or lot number, the safe heating temperature, and shall be accompanied by the manufacturer’s certification stating that the sealant meets the requirements of this specification.

605-2.2 Backer rod. The material furnished shall be a compressible, non-shrinking, non-staining, non-absorbing material that is non-reactive with the joint sealant. The material shall have a water absorption of not more than 5% when tested in accordance with ASTM C509. The backer-rod material shall be 25% ± 5% larger in diameter than the nominal width of the crack.

605-2.3 Backup materials. Provide backup material that is a compressible, nonshrinking, nonstaining, nonabsorbing material, nonreactive with the joint sealant. The material shall have a melting point at least 5°F greater than the pouring temperature of the sealant being used when tested in accordance with ASTM D789. The material shall have a water absorption of not more than 5% of the sample weight when tested in accordance with ASTM C509. The backup material shall be 25 ±5% larger in diameter than the nominal width of the crack.

605-2.4 Bond breaking tapes. Provide a bond breaking tape or separating material that is a flexible, nonshrinkable, nonabsorbing, nonstaining, and nonreacting adhesive-backed tape. The material shall have a melting point at least 5°F greater than the pouring temperature of the sealant being used when tested in accordance with ASTM D789. The bond breaker tape shall be approximately 1/8 inch wider than the nominal width of the joint and shall not bond to the joint sealant.

CONSTRUCTION METHODS

605-3.1 Time of application. Joints shall be sealed as soon after completion of the curing period as feasible and before the pavement is opened to traffic, including construction equipment. The pavement temperature shall be 50°F and rising at the time of application of the poured joint sealing material. Do not apply sealant if moisture is observed in the joint. When installing sealant, all joint faces must be dry and the weather shall not be rainy or foggy.

605-3.2 Equipment. Machines, tools, and equipment used in the performance of the work required by this section shall be approved before the work is started and maintained in satisfactory condition at all times. Submit a list of proposed equipment to be used in performance of construction work including descriptive data, 10 days prior to use on the project.
a. **Tractor-mounted routing tool.** Provide a routing tool, used for removing old sealant from the joints, of such shape and dimensions and so mounted on the tractor that it will not damage the sides of the joints. The tool shall be designed so that it can be adjusted to remove the old material to varying depths as required. The use of V-shaped tools or rotary impact routing devices will not be permitted. Hand-operated spindle routing devices may be used to clean and enlarge random cracks.

b. **Concrete saw.** Provide a self-propelled power saw, with water-cooled diamond or abrasive saw blades, for cutting joints to the depths and widths specified or for refacing joints or cleaning sawed joints where sandblasting does not provide a clean joint.

c. **Sandblasting equipment.** Include with the sandblasting equipment an air compressor, hose, and long-wearing venturi-type nozzle of proper size, shape and opening. The maximum nozzle opening should not exceed 1/4 inch. The air compressor shall be portable and capable of furnishing not less than 150 cfm and maintaining a line pressure of not less than 90 psi at the nozzle while in use. Demonstrate compressor capability, under job conditions, before approval. The compressor shall be equipped with traps that will maintain the compressed air free of oil and water. The nozzle shall have an adjustable guide that will hold the nozzle aligned with the joint approximately one inch above the pavement surface. Adjust the height, angle of inclination and the size of the nozzle as necessary to secure satisfactory results.

d. **Waterblasting equipment.** Include with the waterblasting equipment a trailer-mounted water tank, pumps, high-pressure hose, wand with safety release cutoff control, nozzle, and auxiliary water resupply equipment. Provide water tank and auxiliary resupply equipment of sufficient capacity to permit continuous operations. The nozzle shall have an adjustable guide that will hold the nozzle aligned with the joint approximately one inch above the pavement surface. Adjust the height, angle of inclination and the size of the nozzle as necessary to obtain satisfactory results. A pressure gauge mounted at the pump shall show at all times the pressure in psi at which the equipment is operating.

e. **Hand tools.** Hand tools may be used, when approved, for removing defective sealant from a crack and repairing or cleaning the crack faces.

f. **Hot-poured sealing equipment.** The unit applicators used for heating and installing ASTM D6690 joint sealant materials shall be mobile and shall be equipped with a double-boiler, agitator-type kettle with an oil medium in the outer space for heat transfer; a direct-connected pressure-type extruding device with a nozzle shaped for inserting in the joint to be filled; positive temperature devices for controlling the temperature of the transfer oil and sealant; and a recording type thermometer for indicating the temperature of the sealant. The applicator unit shall be designed so that the sealant will circulate through the delivery hose and return to the inner kettle when not in use.

g. **Two-component, cold-applied, machine mix sealing equipment.** Provide equipment used for proportioning, mixing, and installing Federal Specification SS-S-200 Type M joint sealants designed to deliver two semifluid components through hoses to a portable mixer at a preset ratio of one (1) to one (1) by volume using pumps with an accuracy of ±5% for the quantity of each component. The reservoir for each component shall be equipped with mechanical agitation devices that will maintain the components in a uniform condition without entrapping air. Incorporate provisions to permit thermostatically controlled indirect heating of the components, when required. However, immediately prior to proportioning and mixing, the temperature of either component shall not exceed 90°F. Provide screens near the top of each reservoir to remove any foreign particles or partially polymerized material that could clog fluid lines or otherwise cause misproportioning or improper mixing of the two components. Provide equipment capable of thoroughly mixing the two components through a range of application rates of 10 to 60 gallons per hour and through a range of application pressures from 50 to 1500 psi as required by material, climatic, or operating conditions. Design the mixer for the easy removal of the supply lines for cleaning and proportioning of the components. The mixing head shall accommodate nozzles of different types and sizes as may be required by various operations. The dimensions of the nozzle shall be such that the nozzle tip will extend into the joint to allow sealing from the bottom of the joint to the top. Maintain the initially approved equipment in good working condition, serviced in accordance with the supplier’s instructions, and unaltered in any way without obtaining prior approval.
h. **Two-component, cold-applied, hand-mix sealing equipment.** Mixing equipment for Federal Specification SS-S-200 Type H sealants shall consist of a slow-speed electric drill or air-driven mixer with a stirrer in accordance with the manufacturer’s recommendations. Submit printed copies of manufacturer’s recommendations 10 days prior to use on the project where installation procedures, or any part thereof, are required to be in accordance with those recommendations. Installation of the material will not be allowed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.

i. **Cold-applied, single-component sealing equipment.** The equipment for installing ASTM D5893 single component joint sealants shall consist of an extrusion pump, air compressor, following plate, hoses, and nozzle for transferring the sealant from the storage container into the joint opening. The dimension of the nozzle shall be such that the tip of the nozzle will extend into the joint to allow sealing from the bottom of the joint to the top. Maintain the initially approved equipment in good working condition, serviced in accordance with the supplier’s instructions, and unaltered in any way without obtaining prior approval. Small hand-held air-powered equipment (i.e., caulking guns) may be used for small applications.

605-3.3 Preparation of joints.

a. **Sawing.** All joints shall be sawed in accordance with specifications and plan details. Immediately after sawing the joint, the resulting slurry shall be completely removed from joint and adjacent area by flushing with a jet of water, and by use of other tools as necessary.

b. **Sealing.** Immediately before sealing, the joints shall be thoroughly cleaned of all remaining laitance, curing compound, filler, protrusions of hardened concrete, old sealant and other foreign material from the sides and upper edges of the joint space to be sealed. Cleaning shall be accomplished by sandblasting or waterblaster as specified in paragraph 605-3.2. The newly exposed concrete joint faces and the pavement surface extending a minimum of 1/2 inch from the joint edge shall be sandblasted clean. Sandblasting shall be accomplished in a minimum of two passes. One pass per joint face with the nozzle held at an angle directly toward the joint face and not more than 3 inches from it. After final cleaning and immediately prior to sealing, blow out the joints with compressed air and leave them completely free of debris and water. The joint faces shall be surface dry when the seal is applied.

c. **Back-up material.** When the joint opening is of a greater depth than indicated for the sealant depth, plug or seal off the lower portion of the joint opening using a back-up material to prevent the entrance of the sealant below the specified depth. Take care to ensure that the backup material is placed at the specified depth and is not stretched or twisted during installation.

d. **Bond-breaking tape.** Where inserts or filler materials contain bitumen, or the depth of the joint opening does not allow for the use of a backup material, insert a bond-breaker separating tape to prevent incompatibility with the filler materials and three-sided adhesion of the sealant. Securely bond the tape to the bottom of the joint opening so it will not float up into the new sealant.

605-3.4 Installation of sealants. Joints shall be inspected for proper width, depth, alignment, and preparation, and shall be approved by the Engineer before sealing is allowed. Sealants shall be installed in accordance with the following requirements:

Immediately preceding, but not more than 50 feet ahead of the joint sealing operations, perform a final cleaning with compressed air. Fill the joints from the bottom up to 1/4 inch ±1/16 inch below the pavement surface. Remove and discard excess or spilled sealant from the pavement by approved methods. Install the sealant in such a manner as to prevent the formation of voids and entrapped air. In no case shall gravity methods or pouring pots be used to install the sealant material. Traffic shall not be permitted over newly sealed pavement until authorized by the Contracting Officer. When a primer is recommended by the manufacturer, apply it evenly to the joint faces in accordance with the manufacturer’s instructions. Check the joints frequently to ensure that the newly installed sealant is cured to a tack-free condition within the time specified.

605-3.5 Inspection. The Contractor shall inspect the joint sealant for proper rate of cure and set, bonding to the joint walls, cohesive separation within the sealant, reversion to liquid, entrapped air and voids.
Sealants exhibiting any of these deficiencies at any time prior to the final acceptance of the project shall be removed from the joint, wasted, and replaced as specified at no additional cost to the airport.

605-3.6 Clean-up. Upon completion of the project, remove all unused materials from the site and leave the pavement in a clean condition.

METHOD OF MEASUREMENT

605-4.1 Joint sealing material shall be measured by the [gallon (liter)] [pound (kg)] [linear foot (meter)] of sealant in place, completed, and accepted. Joint sealing material shall not be measured separately for payment, and shall be considered incidental to the pay items requiring its installation.

BASIS OF PAYMENT

605-5.1 Payment for joint sealing material shall be made at the contract unit price per [gallon (liter)] [pound (kg)] [linear foot (meter)]. The price shall be full compensation for furnishing all materials, for all preparation, delivering, and placing of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item. Joint sealing material shall not be paid for separately but shall be considered incidental to the pay items which require joint sealing material.

TESTING REQUIREMENTS

- ASTM D1644: Standard Test Methods for Nonvolatile Content of Varnishes

MATERIAL REQUIREMENTS

- AC 150/5340-30: Design and Installation Details for Airport Visual Aids
- ASTM D6690: Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements

END ITEM P-605
Item P-606

ADHESIVE COMPOUNDS, TWO-COMPONENT FOR SEALING WIRE AND LIGHTS IN PAVEMENT

DESCRIPTION

606-1.1. This specification covers two types of material; a liquid suitable for sealing electrical wire in saw cuts in pavement and for sealing light fixtures or bases in pavement, and a paste suitable for embedding light fixtures in the pavement. Both types of material are two-component filled formulas with the characteristics specified in paragraph 606-2.4. Materials supplied for use with bituminous concrete pavements must be formulated so they are compatible with the bituminous concrete.

EQUIPMENT AND MATERIALS

606-2.1 Curing. When pre-warmed to 77°F, mixed, and placed in accordance with manufacturer's directions, the materials shall cure at temperatures of 45°F or above without the application of external heat.

606-2.2 Storage. The adhesive components shall not be stored at temperatures over 86°F.

606-2.3 Caution. Installation and use shall be in accordance with the manufacturer's recommended procedures. Avoid prolonged or repeated contact with skin. In case of contact, wash with soap and flush with water. If taken internally, call doctor. Keep away from heat or flame. Avoid vapor. Use in well-ventilated areas. Keep in cool place. Keep away from children.

606-2.4 Characteristics. When mixed and cured in accordance with the manufacturer's directions, the materials shall have the following properties shown in Table 1.

SAMPLING, INSPECTION, AND TEST PROCEDURES

606-3.1 Tensile properties. Tests for tensile strength and elongation shall be conducted in accordance with ASTM D638.

606-3.2 Expansion. Tests for coefficients of linear and cubical expansion shall be conducted in accordance with ASTM D1168, Method B, except that mercury shall be used instead of glycerine. The test specimen shall be mixed in the proportions specified by the manufacturer, and cured in a glass tub approximately 2 inch long by 3/8 inch in diameter. The interior of the tube shall be precoated with a silicone mold release agent. The hardened sample shall be removed from the tube and aged at room temperature for one (1) week before conducting the test. The test temperature range shall be from 35°F to 140°F.

606-3.3 Test for dielectric strength. Test for dielectric strength shall be conducted in accordance with ASTM D149 for sealing compounds to be furnished for sealing electrical wires in pavement.
Table 1. Property Requirements

<table>
<thead>
<tr>
<th>Physical or Electrical Property</th>
<th>Minimum</th>
<th>Maximum</th>
<th>ASTM Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland cement concrete</td>
<td>1,000 psi</td>
<td></td>
<td>D 638</td>
</tr>
<tr>
<td>Bituminous concrete</td>
<td>500 psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland cement concrete</td>
<td>50%</td>
<td>See note ¹</td>
<td>D 638</td>
</tr>
<tr>
<td>Bituminous concrete</td>
<td></td>
<td></td>
<td>D 638</td>
</tr>
<tr>
<td>Coef. of cub. exp. cm^3/cm^3/°C</td>
<td>0.00090</td>
<td>0.00120</td>
<td>D 1168</td>
</tr>
<tr>
<td>Coef. of lin. exp. cm/cm/°C</td>
<td>0.000030</td>
<td>0.000040</td>
<td>D 1168</td>
</tr>
<tr>
<td>Dielectric strength, short time test</td>
<td>350 volts/mil.</td>
<td></td>
<td>D 149</td>
</tr>
<tr>
<td>Arc resistance</td>
<td>125 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull-off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion to steel</td>
<td>1,000 psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion to Portland cement concrete</td>
<td>200 psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion to asphalt concrete</td>
<td>No test available.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion to aluminum</td>
<td>250 psi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ 20% or more (without filler) for formulations to be supplied for areas subject to freezing.

606-3.4 Test for arc resistance. Test for arc resistance shall be conducted for sealing compounds to be furnished for sealing electrical wires in pavement.

606-3.5 Test for adhesion to steel. The ends of two smooth, clean, steel specimens of convenient size (1 inch by 1 inch by 6 inch) would be satisfactory when bonded together with adhesive mixture and allowed to cure at room temperature for a period of time to meet formulation requirements and then tested to failure on a Riehle (or similar) tensile tester. The thickness of adhesive to be tested shall be 1/4 inch.

606-3.6 Adhesion to Portland cement concrete

a. **Concrete test block preparation.** The aggregate grading shall be as shown in Table 2.

 The coarse aggregate shall consist of crushed rock having a minimum of 75% of the particles with at least one fractured face and having a water absorption of not more than 1.5%. The fine aggregate shall consist of crushed sand manufactured from the same parent rock as the coarse aggregate. The concrete shall have a water-cement ratio of 5.5 gallons of water per bag of cement, a cement factor of 6, ±0.5, bags of cement per cubic yard of concrete, and a slump of 2-1/2 inch, ±1/2 inch. The ratio of fine aggregate to total aggregate shall be approximately 40% by solid volume. The air content shall be 5.0%, ±0.5%, and it shall be obtained by the addition to the batch of an air-entraining admixture such as Vinso® resin. The mold shall be of metal and shall be provided with a metal base plate.

Means shall be provided for securing the base plate to the mold. The assembled mold and base plate shall be watertight and shall be oiled with mineral oil before use. The inside measurement of the mold shall be such that several one inch by 2 inch by 3 inch test blocks can be cut from the specimen with a concrete saw having a diamond blade. The concrete shall be prepared and cured in accordance with ASTM C192.
Table 2. Aggregate For Bond Test Blocks

<table>
<thead>
<tr>
<th>Type</th>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate</td>
<td>3/4 inch (19 mm)</td>
<td>97 to 100</td>
</tr>
<tr>
<td></td>
<td>1/2 inch (12 mm)</td>
<td>63 to 69</td>
</tr>
<tr>
<td></td>
<td>3/8 inch (9 mm)</td>
<td>30 to 36</td>
</tr>
<tr>
<td></td>
<td>No. 4 (4.75 mm)</td>
<td>0 to 3</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>No. 4 (4.75 mm)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 8 (2.36 mm)</td>
<td>82 to 88</td>
</tr>
<tr>
<td></td>
<td>No. 16 (1.18 mm)</td>
<td>60 to 70</td>
</tr>
<tr>
<td></td>
<td>No. 30 (600 μm)</td>
<td>40 to 50</td>
</tr>
<tr>
<td></td>
<td>No. 50 (300 μm)</td>
<td>16 to 26</td>
</tr>
<tr>
<td></td>
<td>No. 100 (150 μm)</td>
<td>5 to 9</td>
</tr>
</tbody>
</table>

b. Bond test. Prior to use, oven-dry the test blocks to constant weight at a temperature of 220°F to 230°F, cool to room temperature, 73.4°F ±3°F, in a desiccator, and clean the surface of the blocks of film or powder by vigorous brushing with a stiff-bristled fiber brush. Two test blocks shall be bonded together on the one inch by 3 inch sawed face with the adhesive mixture and allowed to cure at room temperature for a period of time to meet formulation requirements and then tested to failure in a Riehle (or similar) tensile tester. The thickness of the adhesive to be tested shall be 1/4 inch.

606-3.7 Compatibility with asphalt concrete. Test for compatibility with asphalt in accordance with ASTM D5329.

606-3.8 Adhesive compounds - Contractor’s responsibility. The Contractor shall furnish the vendor’s certified test reports for each batch of material delivered to the project. The report shall certify that the material meets specification requirements and is suitable for use with Portland cement concrete and bituminous concrete pavements. The report shall be delivered to the Engineer before permission is granted for use of the material. In addition the Contractor shall obtain a statement from the supplier or manufacturer that guarantees the material for one year. The supplier or manufacturer shall furnish evidence that the material has performed satisfactorily on other projects.

606-3.9 Application. Adhesive shall be applied on a dry, clean surface, free of grease, dust, and other loose particles. The method of mixing and application shall be in strict accordance with the manufacturer’s recommendations. When used with Item P-605, such as light can installation, Item P-605 shall not be applied until the Item P-606 has fully cured.

METHOD OF MEASUREMENT

606-4.1 Adhesive compounds shall not be measured separately for payment.

BASIS OF PAYMENT

606-5.1 Adhesive compounds shall not be paid for separately but shall be considered incidental to the pay items which require adhesive compounds.

TESTING REQUIREMENTS

ASTM C192 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
ASTM D149	Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies
ASTM D638	Standard Test Method for Tensile Properties of Plastics
ASTM D1168	Standard Test Method for Hydrocarbon Waxes Used for Electrical Insulation
ASTM D5329	Standard Test Methods for Sealants and Fillers, Hot-applied, for Joints and Cracks in Asphalitic and Portland Cement Concrete Pavements

END OF ITEM P-606
Item P-610
STRUCTURAL PORTLAND CEMENT CONCRETE

DESCRIPTION

610-1.1 This item shall consist of plain and/or reinforced structural portland cement concrete (PCC), prepared and constructed in accordance with these specifications, at the locations and of the form and dimensions shown on the plans. This specification shall be used for all structural and miscellaneous concrete including signage bases.

MATERIALS

610-2.1 General. Only approved materials, conforming to the requirements of these specifications, shall be used in the work. Materials may be subject to inspection and tests at any time during their preparation or use. The source of all materials shall be approved by the Engineer before delivery or use in the work. Representative preliminary samples of the materials shall be submitted by the Contractor, when required, for examination and test. Materials shall be stored and handled to ensure preservation of their quality and fitness for use and shall be located to facilitate prompt inspection. All equipment for handling and transporting materials and concrete must be clean before any material or concrete is placed in them.

The use of pit-run aggregates shall not be permitted unless the pit-run aggregate has been screened and washed, and all fine and coarse aggregates stored separately and kept clean. The mixing of different aggregates from different sources in one storage stockpile or alternating batches of different aggregates shall not be permitted.

a. Reactivity. Fine and Coarse aggregates to be used in all concrete shall be evaluated and tested by the Contractor for alkali-aggregate reactivity in accordance with both ASTM C1260 and C1567. Aggregate and mix proportion reactivity tests shall be performed for each project.

(1) Coarse and fine aggregate shall be tested separately in accordance with ASTM C1260. The aggregate shall be considered innocuous if the expansion of test specimens, tested in accordance with ASTM C1260, does not exceed 0.10% at 28 days (30 days from casting).

(2) Combined coarse and fine aggregate shall be tested in accordance with ASTM C1567, modified for combined aggregates, using the proposed mixture design proportions of aggregates, cementitious materials, and/or specific reactivity reducing chemicals. If lithium nitrate is proposed for use with or without supplementary cementitious materials, the aggregates shall be tested in accordance with Corps of Engineers (COE) CRD C662. If lithium nitrate admixture is used, it shall be nominal 30% ±0.5% weight lithium nitrate in water.

(3) If the expansion of the proposed combined materials test specimens, tested in accordance with ASTM C1567, modified for combined aggregates, or COE CRD C662, does not exceed 0.10% at 28 days, the proposed combined materials will be accepted. If the expansion of the proposed combined materials test specimens is greater than 0.10% at 28 days, the aggregates will not be accepted unless adjustments to the combined materials mixture can reduce the expansion to less than 0.10% at 28 days, or new aggregates shall be evaluated and tested.

610-2.2 Coarse aggregate. The coarse aggregate for concrete shall meet the requirements of ASTM C33. The Engineer may consider and reserve final approval of other State classification procedures addressing aggregate durability.

Coarse aggregate shall be well graded from coarse to fine and shall meet the following gradation shown in the table below when tested per ASTM C136.
Gradation For Coarse Aggregate

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2” (50 mm)</td>
</tr>
<tr>
<td>No. 4 to 1 in. (4.75-25 mm)</td>
<td>100</td>
</tr>
</tbody>
</table>

610-2.2.1 Aggregate susceptibility to durability (D) cracking

Aggregates that have a history of D-cracking shall not be used.

Coarse aggregate may be accepted from sources that have a 20 year service history for the same gradation to be supplied with no durability issues.

- **a.** Material currently being produced shall have a durability factor ≥ 95 using ASTM C666. Coarse aggregates that are crushed granite, calcite cemented sandstone, quartzite, basalt, diabase, rhyolite or trap rock are considered to meet the D-cracking test but must meet all other quality tests. Aggregates meeting State Highway Department material specifications may be acceptable with concurrence of the FAA.

- **b.** The Contractor shall submit a current certification that the aggregate does not have a history of D-cracking and that the aggregate meets the state specifications for use in PCC pavement for use on interstate highways. Certifications, tests and any history reports must be for the same gradation as being proposed for use on the project. Certifications which are not dated or which are over one (1) year old or which are for different gradations will not be accepted. Test results will only be accepted when tests were performed by a State Department of Transportation (DOT) materials laboratory or an accredited laboratory.

610-2.3 Fine aggregate

The fine aggregate for concrete shall meet the requirements of ASTM C33.

The fine aggregate shall be well graded from fine to coarse and shall meet the requirements of the table below when tested in accordance with ASTM C136:

Gradation For Fine Aggregate

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch (9 mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>45-80</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>25-55</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Blending will be permitted, if necessary, to meet the gradation requirements for fine aggregate. Fine aggregate deficient in the percentage of material passing the No. 50 mesh sieve may be accepted, if the deficiency does not exceed 5% and is remedied by the addition of pozzolanic or cementitious materials other than Portland cement, as specified in paragraph 610-2.6, Admixtures, in sufficient quantity to produce the required workability as approved by the Engineer.

610-2.4 Cement

Cement shall conform to the requirements of ASTM C150 Type I or II.

If aggregates are deemed innocuous when tested in accordance with paragraph 610-2.1.a.1 and accepted in accordance with paragraph 610-2.1.a.3, higher equivalent alkali content in the cement may be allowed if
approved by the Engineer and FAA. If cement becomes partially set or contains lumps of caked cement, it shall be rejected. Cement salvaged from discarded or used bags shall not be used.

The Contractor shall furnish vendors’ certified test reports for each carload, or equivalent, of cement shipped to the project. The report shall be delivered to the Engineer before use of the cement is granted. All test reports shall be subject to verification by testing sample materials received for use on the project.

610-2.5 Water. The water used in concrete shall be fresh, clean and potable; free from injurious amounts of oils, acids, alkalies, salts, organic materials or other substances deleterious to concrete.

610-2.6 Admixtures and Supplementary Cementitious Material. The Contractor shall submit certificates indicating that the material to be furnished meets all of the requirements indicated below. In addition, the Engineer may require the Contractor to submit complete test data from an approved laboratory showing that the material to be furnished meets all of the requirements of the cited specifications. Subsequent tests may be made of samples taken by the Engineer from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved.

a. Air-entraining admixtures. Air-entraining admixtures shall meet the requirements of ASTM C260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entrainment agent and any water reducer admixture shall be compatible.

b. Water-reducing admixtures. Water-reducing admixture shall meet the requirements of ASTM C494, Type A, B, or D. ASTM C494, Type F and G high range water reducing admixtures and ASTM C1017 flowable admixtures shall not be used.

c. Other chemical admixtures. The use of set retarding, and set-accelerating admixtures shall be approved by the Engineer. Retarding shall meet the requirements of ASTM C494, Type A, B, or D and set-accelerating shall meet the requirements of ASTM C494, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used.

d. Lithium nitrate. The lithium admixture shall be a nominal 30% aqueous solution of Lithium Nitrate, with a density of 10 pounds/gallon (1.2 kg/L), and shall have the approximate chemical form as shown below:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Limit (Percent by Mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNO₃ (Lithium Nitrate)</td>
<td>30 ±0.5</td>
</tr>
<tr>
<td>SO₄ (Sulfate Ion)</td>
<td>0.1 (max)</td>
</tr>
<tr>
<td>Cl (Chloride Ion)</td>
<td>0.2 (max)</td>
</tr>
<tr>
<td>Na (Sodium Ion)</td>
<td>0.1 (max)</td>
</tr>
<tr>
<td>K (Potassium Ion)</td>
<td>0.1 (max)</td>
</tr>
</tbody>
</table>

Provide a trained representative to supervise the lithium nitrate admixture dispensing and mixing operations.

e. Fly Ash. Fly ash shall meet the requirements of ASTM C618, with the exception of loss of ignition, where the maximum shall be less than 6%. Fly ash for use in mitigating alkali-silica reactivity shall have a Calcium Oxide (CaO) content of less than 13%

610-2.7 Premolded joint material. Premolded joint material for expansion joints shall meet the requirements of ASTM D1751.

610-2.8 Joint filler. The filler for joints shall meet the requirements of Item P-605, unless otherwise specified.

610-2.9 Steel reinforcement. Reinforcing shall consist of Reinforcing Steel or Welded Steel Wire Fabric conforming to the requirements of ASTM A615 or A1064.

610-2.10 Materials for curing concrete. Curing materials shall conform to:
CONSTRUCTION METHODS

610-3.1 General. The Contractor shall furnish all labor, materials, and services necessary for, and incidental to, the completion of all work as shown on the drawings and specified here. All machinery and equipment used by the Contractor on the work, shall be of sufficient size to meet the requirements of the work. All work shall be subject to the inspection and approval of the Engineer.

610-3.2 Concrete composition. The concrete shall develop a compressive strength of 4,000 psi in 28 days as determined by test cylinders made in accordance with ASTM C31 and tested in accordance with ASTM C39. The concrete shall contain not less than 470 pounds of cement per cubic yard. The concrete shall contain 5% of entrained air, ±1%, as determined by ASTM C231 and shall have a slump of not more than 4 inches as determined by ASTM C143.

610-3.3 Acceptance sampling and testing. Concrete for each structure will be accepted on the basis of the compressive strength specified in paragraph 610-3.2. The concrete shall be sampled in accordance with ASTM C172. Concrete cylindrical compressive strength specimens shall be made in accordance with ASTM C31 and tested in accordance with ASTM C39. The Contractor shall cure and store the test specimens under such conditions as directed by the Engineer. The Engineer will make the actual tests on the specimens at no expense to the Contractor.

610-3.4 Qualifications for concrete testing service. Perform concrete testing by an approved laboratory and inspection service experienced in sampling and testing concrete. Testing agency must meet the requirements of ASTM C1077 or ASTM E329.

610-3.5 Proportioning and measuring devices. When package cement is used, the quantity for each batch shall be equal to one or more whole sacks of cement. The aggregates shall be measured separately by weight. If aggregates are delivered to the mixer in batch trucks, the exact amount for each mixer charge shall be contained in each batch compartment. Weighing boxes or hoppers shall be approved by the Engineer and shall provide means of regulating the flow of aggregates into the batch box so the required, exact weight of aggregates is obtained.

610-3.6 Consistency. The consistency of the concrete shall be determined by the slump test specified in ASTM C143.

610-3.7 Mixing. Concrete may be mixed at the construction site, at a central point, or wholly or in part in truck mixers. The concrete shall be mixed and delivered in accordance with the requirements of ASTM C94.

610-3.8 Mixing conditions. The concrete shall be mixed only in quantities required for immediate use. Concrete shall not be mixed while the air temperature is below 40°F without permission of the Engineer. If permission is granted for mixing under such conditions, aggregates or water, or both, shall be heated and the concrete shall be placed at a temperature not less than 50°F nor more than 100°F. The Contractor shall be held responsible for any defective work, resulting from freezing or injury in any manner during placing and curing, and shall replace such work at his expense.

Retempering of concrete by adding water or any other material shall not be permitted.

The rate of delivery of concrete to the job shall be sufficient to allow uninterrupted placement of the concrete.

610-3.9 Forms. Concrete shall not be placed until all the forms and reinforcements have been inspected and approved by the Engineer. Forms shall be of suitable material and shall be of the type, size, shape, quality, and strength to build the structure as shown on the plans. The forms shall be true to line and grade and shall be mortar-tight and sufficiently rigid to prevent displacement and sagging between supports. The surfaces of forms shall be smooth and free from irregularities, dents, sags, and holes. The Contractor shall be responsible for their adequacy.

The internal form ties shall be arranged so no metal will show in the concrete surface or discolor the surface when exposed to weathering when the forms are removed. All forms shall be wetted with water or with a

White-pigmented Liquid Membrane-Forming Compound, Type 2, Class B

ASTM C309
non-staining mineral oil, which shall be applied immediately before the concrete is placed. Forms shall be constructed so they can be removed without injuring the concrete or concrete surface. The forms shall not be removed until at least 30 hours after concrete placement for vertical faces, walls, slender columns, and similar structures. Forms supported by falsework under slabs, beams, girders, arches, and similar construction shall not be removed until tests indicate the concrete has developed at least 60% of the design strength.

610-3.10 Placing reinforcement. All reinforcement shall be accurately placed, as shown on the plans, and shall be firmly held in position during concrete placement. Bars shall be fastened together at intersections. The reinforcement shall be supported by approved metal chairs. Shop drawings, lists, and bending details shall be supplied by the Contractor when required.

610-3.11 Embedded items. Before placing concrete, all embedded items shall be firmly and securely fastened in place as indicated. All embedded items shall be clean and free from coating, rust, scale, oil, or any foreign matter. The concrete shall be spaded and consolidated around and against embedded items. The embedding of wood shall not be allowed.

610-3.12 Placing concrete. All concrete shall be placed during daylight hours, unless otherwise approved. The concrete shall not be placed until the depth and condition of foundations, the adequacy of forms and falsework, and the placing of the steel reinforcing have been approved by the Engineer. Concrete shall be placed as soon as practical after mixing, but in no case later than one (1) hour after water has been added to the mix. The method and manner of placing shall avoid segregation and displacement of the reinforcement. Troughs, pipes, and chutes shall be used as an aid in placing concrete when necessary. The concrete shall not be dropped from a height of more than 5 feet. Concrete shall be deposited as nearly as practical in its final position to avoid segregation due to rehandling or flowing. Do not subject concrete to procedures which cause segregation. Concrete shall be placed on clean, damp surfaces, free from running water, or on a properly consolidated soil foundation.

610-3.13 Vibration. Vibration shall follow the guidelines in American Concrete Institute (ACI) Committee 309, Guide for Consolidation of Concrete. Where bars meeting ASTM A775 or A934 are used, the vibrators shall be equipped with rubber or non-metallic vibrator heads. Furnish a spare, working, vibrator on the job site whenever concrete is placed. Consolidate concrete slabs greater than 4 inches in depth with high frequency mechanical vibrating equipment supplemented by hand spading and tamping. Consolidate concrete slabs 4 inches or less in depth by wood tampers, spading, and settling with a heavy leveling straightedge. Operate internal vibrators with vibratory element submerged in the concrete, with a minimum frequency of not less than 6000 cycles per minute when submerged. Do not use vibrators to transport the concrete in the forms. Penetrate the previously placed lift with the vibrator when more than one lift is required. Use external vibrators on the exterior surface of the forms when internal vibrators do not provide adequate consolidation of the concrete. Vibrators shall be manipulated to work the concrete thoroughly around the reinforcement and embedded fixtures and into corners and angles of the forms. The vibration at any point shall be of sufficient duration to accomplish compaction but shall not be prolonged to where segregation occurs. Concrete deposited under water shall be carefully placed in a compact mass in its final position by means of a tremie or other approved method and shall not be disturbed after placement.

610-3.14 Construction joints. If the placement of concrete is suspended, necessary provisions shall be made for joining future work before the placed concrete takes its initial set. For the proper bonding of old and new concrete, provisions shall be made for grooves, steps, reinforcing bars or other devices as specified. The work shall be arranged so that a section begun on any day shall be finished during daylight of the same day. Before depositing new concrete on or against concrete that has hardened, the surface of the hardened concrete shall be cleaned by a heavy steel broom, roughened slightly, wetted, and covered with a neat coating of cement paste or grout.

610-3.15 Expansion joints. Expansion joints shall be constructed at such points and dimensions as indicated on the drawings. The premolded filler shall be cut to the same shape as the surfaces being joined. The filler shall be fixed firmly against the surface of the concrete already in place so that it will not be displaced when concrete is deposited against it.

610-3.16 Defective work. Any defective work discovered after the forms have been removed, which in the opinion of the Engineer cannot be repaired satisfactorily, shall be immediately removed and replaced at the
expense of the Contractor. Defective work shall include deficient dimensions, or bulged, uneven, or honeycomb on the surface of the concrete.

610-3.17 Surface finish. All exposed concrete surfaces shall be true, smooth, and free from open or rough areas, depressions, or projections. All concrete horizontal plane surfaces shall be brought flush to the proper elevation with the finished top surface struck-off with a straightedge and floated. Mortar finishing shall not be permitted, nor shall dry cement or sand-cement mortar be spread over the concrete during the finishing of horizontal plane surfaces.

The surface finish of exposed concrete shall be a rubbed finish. If forms can be removed while the concrete is still green, the surface shall be wetted and then rubbed with a wooden float until all irregularities are removed. If the concrete has hardened before being rubbed, a carborundum stone shall be used to finish the surface. When approved, the finishing can be done with a finishing machine.

610-3.18 Curing and protection. All concrete shall be properly cured and protected by the Contractor. The concrete shall be protected from the weather, flowing water, and from defacement of any nature during the project. The concrete shall be cured by covering with an approved material as soon as it has sufficiently hardened. Water-absorbent coverings shall be thoroughly saturated when placed and kept saturated for at least three (3) days following concrete placement. All curing mats or blankets shall be sufficiently weighted or tied down to keep the concrete surface covered and to prevent the surface from being exposed to air currents. Wooden forms shall be kept wet at all times until removed to prevent opening of joints and drying out of the concrete. Traffic shall not be allowed on concrete surfaces for seven (7) days after the concrete has been placed.

610-3.19 Drains or ducts. Drainage pipes, conduits, and ducts that are to be encased in concrete shall be installed by the Contractor before the concrete is placed. The pipe shall be held rigidly so that it will not be displaced or moved during the placing of the concrete.

610-3.20 Cold weather placing. When concrete is placed at temperatures below 40°F, the Contractor shall provide satisfactory methods and means to protect the mix from injury by freezing. The aggregates, or water, or both, shall be heated to place the concrete at temperatures between 50°F and 100°F.

Calcium chloride may be incorporated in the mixing water when directed by the Engineer. Not more than 2.0 pounds of Type 1 nor more than 1.6 pounds of Type 2 shall be added per bag of cement. After the concrete has been placed, the Contractor shall provide sufficient protection such as cover, canvas, framework, heating apparatus, etc., to enclose and protect the structure and maintain the temperature of the mix at not less than 50°F until at least 60% of the designed strength has been attained.

610-3.21 Hot weather placing. Concrete shall be properly placed and finished with procedures previously submitted. The concrete-placing temperature shall not exceed 90°F when measured in accordance with ASTM C1064. Cooling of the mixing water and aggregates, or both, may be required to obtain an adequate placing temperature. A retarder meeting the requirements of paragraph 610-2.6 may be used to facilitate placing and finishing. Steel forms and reinforcement shall be cooled prior to concrete placement when steel temperatures are greater than 120°F. Conveying and placing equipment shall be cooled if necessary to maintain proper concrete-placing temperature. Submit the proposed materials and methods for review and approval by the Engineer, if concrete is to be placed under hot weather conditions.

610-3.22 Filling joints. All joints that require filling shall be thoroughly cleaned, and any excess mortar or concrete shall be cut out with proper tools. Joint filling shall not start until after final curing and shall be done only when the concrete is completely dry. The cleaning and filling shall be done with proper equipment to obtain a neat looking joint free from excess filler.

METHOD OF MEASUREMENT

610-4.1 Portland cement concrete shall be measured by the number of cubic yards (cubic meters) of concrete complete in place and accepted. In computing the yardage of concrete for payment, the dimensions used shall be those shown on the plans or ordered by the Engineer. No measurements or other allowances shall be made for forms, falsework, cofferdams, pumping, bracing, expansion joints, or finishing.
of the concrete. No deductions in yardage shall be made for the volumes of reinforcing steel or embedded items.

610-4.2 Reinforcing steel shall be measured by the calculated theoretical number of pounds (kg) placed, as shown on the plans, complete in place and accepted. The unit weight used for deformed bars shall be the weight of plain square or round bars of equal nominal size. If so indicated on the plans, the poundage to be paid for shall include the weight of metal pipes and drains, metal conduits and ducts, or similar materials indicated and included. 610-4.1 Structural Portland cement concrete shall not be measured separately for payment.

BASIS OF PAYMENT

610-5.1 Payment shall be made at the contract unit price per cubic yard (cubic meter) for structural Portland cement concrete and per pound (kg) for reinforcing steel. These prices shall be full compensation for furnishing all materials and for all preparation, delivery and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

610-5.1 Structural Portland cement concrete shall not be paid for separately but its cost shall be included in the unit prices of the pay items which require structural Portland cement concrete.

TESTING REQUIREMENTS

ASTM C31 Standard Practice for Making and Curing Concrete Test Specimens in the Field

ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens

ASTM C136 Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates

ASTM C138 Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

ASTM C143 Standard Test Method for Slump of Hydraulic-Cement Concrete

ASTM C231 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C666 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing

ASTM C1017 Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete

ASTM C1064 Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete

ASTM C1077 Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation

ASTM E329 Standard Specification for Agencies Engaged in Construction Inspection, Testing, or Special Inspection
U.S. Army Corps of Engineers (USACE) Concrete Research Division (CRD) C662
Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials, Lithium Nitrate Admixture and Aggregate (Accelerated Mortar-Bar Method)

MATERIAL REQUIREMENTS

ASTM A184 Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement
ASTM A185 Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete Reinforcement
ASTM A615 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM A704 Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement
ASTM A706 Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
ASTM A775 Standard Specification for Epoxy-Coated Steel Reinforcing Bars
ASTM A934 Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars
ASTM A1064 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
ASTM C33 Standard Specification for Concrete Aggregates
ASTM C94 Standard Specification for Ready-Mixed Concrete
ASTM C150 Standard Specification for Portland Cement
ASTM C171 Standard Specification for Sheet Materials for Curing Concrete
ASTM C172 Standard Practice for Sampling Freshly Mixed Concrete
ASTM C260 Standard Specification for Air-Entraining Admixtures for Concrete
ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete
ASTM C494 Standard Specification for Chemical Admixtures for Concrete
ASTM C595 Standard Specification for Blended Hydraulic Cements
ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Asphalt Types)
ASTM D1752 Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction
ACI 305R Hot Weather Concreting
ACI 306R Cold Weather Concreting
ACI 309R Guide for Consolidation of Concrete

END OF ITEM P-610
Item P-620

RUNWAY AND TAXIWAY MARKING

DESCRIPTION

620-1.1 This item shall consist of the preparation and painting of numbers, markings, and stripes on the surface of runways, taxiways, and aprons, in accordance with these specifications and at the locations shown on the plans, or as directed by the Engineer. The terms “paint” and “marking material” as well as “painting” and “application of markings” are interchangeable throughout this specification.

MATERIALS

620-2.1 Materials acceptance. The Contractor shall furnish manufacturer's certified test reports for materials shipped to the project. The certified test reports shall include a statement that the materials meet the specification requirements. The reports can be used for material acceptance or the Engineer may perform verification testing. The reports shall not be interpreted as a basis for payment. The Contractor shall notify the Engineer upon arrival of a shipment of materials to the site. All material shall arrive in sealed containers 55 gallons or smaller for inspection by the Engineer. Material shall not be loaded into the equipment until inspected by the Engineer.

620-2.2 Marking materials. Paint shall be waterborne, in accordance with the requirements of paragraph 620-2.2. Paint shall be furnished in White-37925, Yellow-33538, Black-37038 and Red-31136 in accordance with Federal Standard No. 595.

a. Waterborne. Paint shall meet the requirements of Federal Specification TT-P-1952E Type II. The non-volatile portion of the vehicle for all paint types shall be composed of a 100% acrylic polymer as determined by infrared spectral analysis.

b. Preformed Thermoplastic Airport Pavement Markings. Markings must be composed of ester modified resins in conjunction with aggregates, pigments, and binders that have been factory produced as a finished product. The material must be impervious to degradation by aviation fuels, motor fuels, and lubricants.

(1) The markings must be able to be applied in temperatures as low as 35°F without any special storage, preheating, or treatment of the material before application.

(a) The markings must be supplied with an integral, non-reflectorized black border.

(2) Graded glass beads.

(a) The material must contain a minimum of 30% intermixed graded glass beads by weight. The intermixed beads shall conform to Federal Specification TT-B-1325D, Type I, gradation A & Federal Specification TT-B-1325D, Type IV. Federal Specification TT-B-1325D, Type III

(b) The material must have factory applied coated surface beads in addition to the intermixed beads at a rate of one (1) lb (0.45 kg) (±10%) per 10 square feet (1 sq m). These factory applied coated surface beads shall have a minimum of 90% true spheres, minimum refractive index of 1.50, and meet the following gradation.
Size Gradation

<table>
<thead>
<tr>
<th>U.S. Mesh</th>
<th>µm</th>
<th>Retained, %</th>
<th>Passing, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1700</td>
<td>0 - 2</td>
<td>98 - 100</td>
</tr>
<tr>
<td>14</td>
<td>1400</td>
<td>0 - 3.5</td>
<td>96.5 - 100</td>
</tr>
<tr>
<td>16</td>
<td>1180</td>
<td>2 - 25</td>
<td>75 - 98</td>
</tr>
<tr>
<td>18</td>
<td>1000</td>
<td>28 - 63</td>
<td>37 - 72</td>
</tr>
<tr>
<td>20</td>
<td>850</td>
<td>63 - 72</td>
<td>28 - 37</td>
</tr>
<tr>
<td>30</td>
<td>600</td>
<td>67 - 77</td>
<td>23 - 33</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
<td>89 - 95</td>
<td>5 - 11</td>
</tr>
<tr>
<td>80</td>
<td>200</td>
<td>97 - 100</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

(3) **Heating indicators.** The material manufacturer shall provide a method to indicate that the material has achieved satisfactory adhesion and proper bead embedment during application and that the installation procedures have been followed.

(4) **Pigments.** Percent by weight.

(a) White:
Titanium Dioxide, ASTM D476, type II shall be 10% minimum.

(b) Yellow and Colors:
Titanium Dioxide, ASTM D476, type II shall be 1% minimum.
Organic yellow, other colors, and tinting as required to meet color standard.

(5) **Prohibited materials.** The manufacturer shall certify that the product does not contain mercury, lead, hexavalent chromium, halogenated solvents, nor any carcinogen as defined in 29 CFR 1910.1200 in amounts exceeding permissible limits as specified in relevant Federal Regulations.

(6) **Daylight directional reflectance.**

(a) White: The daylight directional reflectance of the white paint shall not be less than 75% (relative to magnesium oxide), when tested in accordance with ASTM E2302.

(b) Yellow: The daylight directional reflectance of the yellow paint shall not be less than 45% (relative to magnesium oxide), when tested in accordance with ASTM E2302. The x and y values shall be consistent with the Federal Hegman yellow color standard chart for traffic yellow standard 33538, or shall be consistent with the tolerance listed below:

<table>
<thead>
<tr>
<th>x</th>
<th>.462</th>
<th>.470</th>
<th>.479</th>
<th>.501</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>.438</td>
<td>.455</td>
<td>.428</td>
<td>.452</td>
</tr>
</tbody>
</table>

(7) **Skid resistance.** The surface, with properly applied and embedded surface beads, must provide a minimum resistance value of 45 BPN when tested according to ASTM E303.

(8) **Thickness.** The material must be supplied at a nominal thickness of 65 mil (1.7 mm).

(9) **Environmental resistance.** The material must be resistant to deterioration due to exposure to sunlight, water, salt, or adverse weather conditions and impervious to aviation fuels, gasoline, and oil.

(10) **Retroreflectivity.** The material, when applied in accordance with manufacturer’s guidelines, must demonstrate a uniform level of nighttime retroreflection when tested in accordance to ASTM E1710.

(11) **Packaging.** Packaging shall protect the material from environmental conditions until installation.
(12) Preformed thermoplastic airport pavement marking requirements.

(a) The markings must be a resilient thermoplastic product with uniformly distributed glass beads throughout the entire cross-sectional area. The markings must be resistant to the detrimental effects of aviation fuels, motor fuels and lubricants, hydraulic fluids, deicers, anti-icers, protective coatings, etc. Lines, legends, and symbols must be capable of being affixed to asphalt and/or Portland cement concrete pavements by the use of a large radiant heater. Colors shall be available as required.

(b) The markings must be capable of conforming to pavement contours, breaks, and faults through the action of airport traffic at normal pavement temperatures. The markings must be capable of fully conforming to grooved pavements, including pavement grooving per advisory circular (AC) 150/5320-12, current version. The markings shall have resealing characteristics, such that it is capable of fusing with itself and previously applied thermoplastics when heated with a heat source per manufacturer’s recommendation.

(c) Multicolored markings must consist of interconnected individual pieces of preformed thermoplastic pavement marking material, which through a variety of colors and patterns, make up the desired design. The individual pieces in each large marking segment (typically more than 20 feet (6 m) long) must be factory assembled with a compatible material and interconnected so that in the field it is not necessary to assemble the individual pieces within a marking segment. Obtaining multicolored effect by overlaying materials of different colors is not acceptable due to resulting inconsistent marking thickness and inconsistent application temperature in the marking/substrate interface.

(d) The marking material must set up rapidly, permitting the access route to be re-opened to traffic after application.

(e) The marking material shall have an integral color throughout the thickness of the marking material.

620-2.3 Reflective media. Glass beads shall meet the requirements for TT-B-1325D, TYPE III. Glass beads shall be treated with all compatible coupling agents recommended by the manufacturers of the paint and reflective media to ensure adhesion and embedment. At installation, markings shall have minimum retroreflective values of [600] mcd/m²/lux on white markings and [300] mcd/m²/lux on yellow markings. The Contractor shall verify minimum retroreflectivity of installed markings. Retroreflectivity shall be measured by a portable retroreflectometer according to ASTM E1710 and the practices in ASTM D7585 shall be followed for taking retroreflectivity readings with a portable retroreflectometer and computing measurement averages. A van-mounted retroreflectometer may also be used.

CONSTRUCTION METHODS

620-3.1 Weather limitations. The painting shall be performed only when the surface is dry and when the surface temperature is at least 45°F (7°C) and rising and the pavement surface temperature is at least 5°F (2.7°C) above the dew point or meets the manufacturer’s recommendations. Painting operations shall be discontinued when the surface temperature exceeds 130°F. markings shall not be applied when the pavement temperature is greater than 130°F (55°C). Markings shall not be applied when the wind speed exceeds 10 mph unless windscreens are used to shroud the material guns.

620-3.2 Equipment. Equipment shall include the apparatus necessary to properly clean the existing surface, a mechanical marking machine, a bead dispensing machine, and such auxiliary hand-painting equipment as may be necessary to satisfactorily complete the job.

The mechanical marker shall be an atomizing spray-type or airless-type marking machine suitable for application of traffic paint. It shall produce an even and uniform film thickness at the required coverage and shall apply markings of uniform cross-sections and clear-cut edges without running or spattering and without over spray.
620-3.3 Preparation of surface. Immediately before application of the paint, the surface shall be dry and free from dirt, grease, oil, laitance, or other foreign material that would reduce the bond between the paint and the pavement. The area to be painted shall be cleaned by waterblasting, shotblasting, grinding or sandblasting or by other approved methods as required to remove all contaminants without damage to the pavement surface. Use of any chemicals or impact abrasives during surface preparation shall be approved in advance by the Engineer. After the cleaning operations, sweeping, blowing, or rinsing with pressurized water shall be performed to ensure the surface is clean and free of grit or other debris left from the cleaning process.

Paint shall not be applied to Portland cement concrete pavement until the areas to be painted are clean of curing material. Sandblasting or high-pressure water shall be used to remove curing materials. During the cure removal process, contractor shall employ methods to protect joint sealant from damage (i.e., placement of rebar over the newly sealed joints).

At least 24 hours prior to remarking existing markings, the existing markings must be removed such that 75% - 90% of the existing markings are removed with low (3,500-10,000 psi) waterblaster. After waterblasting, the surface shall be cleaned of all residue or debris either with sweeping or blowing with compressed air or both.

Prior to the initial application of markings, the Contractor shall certify in writing that the surface has been prepared in accordance with the paint manufacturer's requirements, that the application equipment is appropriate for the type of marking paint and that environmental conditions are appropriate for the material being applied. This certification along with a copy of the paint manufacturer's surface preparation and application requirements must be submitted and approved by the Engineer prior to the initial application of markings.

620-3.4 Layout of markings. The proposed markings shall be laid out in advance of the paint application. The locations of markings to receive glass beads shall be shown on the plans. Markings to be repainted shall be verified for proper location and alignment in accordance with the tolerances shown under 620-3.5 below. All markings shall receive glass beads unless otherwise noted on the plans.

620-3.5 Application. Paint shall be applied at the locations and to the dimensions and spacing shown on the plans. Paint shall not be applied until the layout and condition of the surface has been approved by the Engineer. The edges of the markings shall not vary from a straight line more than 1/2 inch (12 mm) in 50 feet (15 m), and marking dimensions and spacings shall be within the following tolerances:

<table>
<thead>
<tr>
<th>Dimension and Spacing</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 inch (910 mm) or less</td>
<td>±1/2 inch (12 mm)</td>
</tr>
<tr>
<td>greater than 36 inch to 6 feet (910 mm to 1.85 m)</td>
<td>±1 inch (25 mm)</td>
</tr>
<tr>
<td>greater than 6 feet to 60 feet (1.85 m to 18.3 m)</td>
<td>±2 inch (50 mm)</td>
</tr>
<tr>
<td>greater than 60 feet (18.3 m)</td>
<td>±3 inch (76 mm)</td>
</tr>
</tbody>
</table>

The paint shall be mixed in accordance with the manufacturer's instructions and applied to the pavement with a marking machine at the rate shown in Table 1. The addition of thinner will not be permitted. A period of 30 days shall elapse between placement of a bituminous surface course or seal coat and application of the paint. If the airport operations require pavement marking prior to the waiting period stated above, the paint may be applied in a temporary light coat application of 30% to 50% application rate for temporary markings. TT-P-1952E, Type II or A-A-2886B, Type III may be used for temporary markings when reflectorized temporary markings are required. Glass beads will not adhere well at the low application rates for temporary markings and require immediate sweeping and cleanup before aircraft are allowed to use the pavement. The final full-strength paint application shall occur after the waiting period has passed.

Prior to the initial application of markings, the Contractor shall certify in writing that the surface has been prepared in accordance with the paint manufacturer's requirements, that the application equipment is appropriate for the marking paint and that environmental conditions are appropriate for the material being applied.
applied. This certification along with a copy of the paint manufactures application and surface preparation requirements must be submitted to the Engineer prior to the initial application of markings.

620-3.6 Test strip. Prior to the full application of airfield markings, the Contractor shall produce a test strip in the presence of the Engineer. The test strip shall include the application of a minimum of 5 gallons (4 liters) of paint and application of 35 lbs (15.9 kg) of Type I/50 lbs (22.7 kg) of Type III glass beads. The test strip shall be used to establish thickness/darkness standard for all markings. The test strip shall cover no more than the maximum area prescribed in Table 1 (e.g., for 5 gallons (19 liters) of waterborne paint shall cover no more than 575 square feet (53.4 m²)).

Table 1. Application Rates For Paint And Glass Beads

(See Note regarding Red and Pink Paint)

<table>
<thead>
<tr>
<th>Paint Type</th>
<th>Paint Square feet per gallon, ft²/gal (Sq m per liter, m²/l)</th>
<th>Glass Beads, Type I, Gradation A Pounds per gallon of paint-lb/gal (Km per liter of paint-kg/l)</th>
<th>Glass Beads, Type III Pounds per gallon of paint-lb/gal (Km per liter of paint-kg/l)</th>
<th>Glass Beads, Type IV Pounds per gallon of paint-lb/gal (Km per liter of paint-kg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterborne Type I or II</td>
<td>115 ft²/gal max (2.8 m²/l)</td>
<td>7 lb/gal min (0.85 kg/l)</td>
<td>10 lb/gal min (1.2 kg/l)</td>
<td>*</td>
</tr>
</tbody>
</table>
| * | * | * | * | *

Glass beads shall be distributed upon the marked areas at the locations shown on the plans to receive glass beads immediately after application of the paint. A dispenser shall be furnished that is properly designed for attachment to the marking machine and suitable for dispensing glass beads as the paint is applied. Bead dispensers shall be calibrated in accordance with the manufacturer’s recommendations. Glass beads shall be applied at the rate shown in Table 1. Glass beads shall not be applied to black paint or green paint. Glass beads shall adhere to the cured paint or all marking operations shall cease until corrections are made. Different bead types shall not be mixed. Regular monitoring of glass bead embedment should be performed.

All emptied containers shall be returned to the paint storage area for checking by the Engineer. The containers shall not be removed from the airport or destroyed until authorized by the Engineer.

620-3.7 Application--preformed thermoplastic airport pavement markings.

a. Asphalt and Portland cement. To ensure minimum single-pass application time and optimum bond in the marking/substrate interface, the materials must be applied using a variable speed self-propelled mobile heater with an effective heating width of no less than 16 feet (5 m) and a free span between supporting wheels of no less than 18 feet (5.5 m). The heater must emit thermal radiation to the marking material in such a manner that the difference in temperature of 2 inches (50 mm) wide linear segments in the direction of heater travel must be within 5% of the overall average temperature of the heated thermoplastic material as it exits the heater. The material must be able to be applied at ambient and pavement temperatures down to 35°F (2°C) without any preheating of the pavement to a specific temperature. The material must be able to be applied without the use of a thermometer. The pavement shall be clean, dry, and free of debris. A non-volatile organic content (non-VOC) sealer with a maximum applied viscosity of 250 centipoise must be applied to the pavement shortly before the markings are applied. The supplier must enclose application instructions with each box/package.

620-3.8 Protection and cleanup. After application of the markings, all markings shall be protected from damage until dry. All surfaces shall be protected from excess moisture and/or rain and from disfiguration by spatter, splashes, spillage, or drippings. The Contractor shall remove from the work area all debris, waste, loose or unadhered reflective media, and by-products generated by the surface preparation and application operations to the satisfaction of the Engineer. The Contractor shall dispose of these wastes in strict compliance with all applicable state, local, and Federal environmental statutes and regulations.
METHOD OF MEASUREMENT

620-4.1 The quantity of runway and taxiway markings to be paid for shall be the number of square feet (square meters) of painting performed in accordance with the specifications and accepted by the Engineer.

BASIS OF PAYMENT

620-5.1 Payment shall be made at the respective contract price per square foot (square meter) for runway and taxiway painting. This price shall be full compensation for furnishing all materials and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

- Item P-620-5.1 Airfield Pavement Marking with Reflective Beads - per square foot
- Item P-620-5.2 Airfield Pavement Marking (Black) without Reflective Beads - per square foot
- Item P-620-5.3 Phased Airfield Pavement Marking – per square foot
- Item P-620-5.4 Thermoplastic Surface Painted Hold Signs – per each
- Item P-620-5.5 Thermoplastic Airfield Marking -- per square foot

TESTING REQUIREMENTS

- ASTM C371 Standard Test Method for Wire-Cloth Sieve Analysis of Nonplastic Ceramic Powders
- ASTM D92 Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
- ASTM D1652 Standard Test Method for Epoxy Content of Epoxy Resins
- ASTM D2074 Standard Test Method for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method
- ASTM D2240 Standard Test Method for Rubber Property - Durometer Hardness
- ASTM D7585 Standard Practice for Evaluating Retroreflective Pavement Markings Using Portable Hand-Operated Instruments
- ASTM G154 Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials

MATERIAL REQUIREMENTS

- ASTM D476 Standard Classification for Dry Pigmentary Titanium Dioxide Products
- 40 CFR Part 60, Appendix A-7, Method 24 Determination of volatile matter content, water content, density, volume solids, and weight solids of surface coatings
40 CFR Part 60, Appendix A-7, Method 24
Determination of volatile matter content, water content, density, volume solids, and weight solids of surface coatings

FED SPEC TT-B-1325D
Beads (Glass Spheres) Retro-Reflective

American Association of State Highway and Transportation Officials (AASHTO) M247
Standard Specification for Glass Beads Used in Pavement Markings

FED SPEC TT-P-1952E
Paint, Traffic and Airfield Marking, Waterborne

Commercial Item Description A-A-2886B
Paint, Traffic, Solvent Based

FED STD 595 Colors used in Government Procurement

AC 150/5340-1 Standards for Airport Markings

END OF ITEM P-620
This page intentionally left blank.
Item P-621
SAW-CUT GROOVES

DESCRIPTION

621-1.1 This item consists of providing a skid resistant surface that prevents hydroplaning during wet weather in accordance with these specifications and at the locations shown on the plans, or as directed by the Engineer.

CONSTRUCTION METHODS

621-2.1 Procedures. The Contractor shall submit to the Engineer the grooving sequence and method of placing guide lines to control grooving operation. Transverse grooves saw-cut in the pavement must form a 1/4 inch (+1/16 inch, -0 inch) wide by 1/4 inch (±1/16 inch) deep by 1-1/2 inch (-1/8 inch, +0 inch) center-to-center configuration. The grooves must be continuous for the entire runway length. They must be saw-cut transversely (perpendicular to centerline) in the runway and high-speed taxiway pavement to not less than 10 feet from the runway pavement edge to allow adequate space for equipment operation.

The saw-cut grooves must meet the following tolerances. The tolerances apply to each day’s production and to each piece of grooving equipment used for production. The Contractor is responsible for all controls and process adjustments necessary to meet these tolerances. The Contractor shall routinely spot check for compliance each time the equipment aligns for a grooving pass.

a. Alignment tolerance. The grooves shall not vary more than ±1-1/2 inch in alignment for 75 feet along the runway length, allowing for realignment every 500 feet along the runway length.

b. Groove tolerance. Depth. The standard depth is 1/4 inch. At least 90% of the grooves must be at least 3/16 inch, at least 60% of the grooves must be at least 1/4 inch, and not more than 10% of the grooves may exceed 5/16 inch.

c. Width. The standard width is 1/4 inch. At least 90% of the grooves must be at least 3/16 inch, at least 60% of the grooves must be at least 1/4 inch, and not more than 10% of the grooves may exceed 5/16 inch.

Saw-cut grooves must not be closer than 3 inches or more than 9 inches from transverse joints in concrete pavements. Grooves must not be closer than 6 inches and no more than 18 inches from in-pavement light fixtures or saw kerfs for lighting cables. Grooves may be continued through longitudinal construction joints. Where neoprene compression seals have been installed and the compression seals are recessed sufficiently to prevent damage from the grooving operation, grooves may be continued through the longitudinal joints. Where neoprene compression seals have been installed and the compression seals are not recessed sufficiently to prevent damage from the grooving operation, grooves must not be closer than 3 inches or more than 5 inches from the longitudinal joints. Where lighting cables are installed, grooving through longitudinal or diagonal saw kerfs shall not be allowed.

621-2.2 Environmental requirements. Grooving operations will not be permitted when freezing conditions prevent the immediate removal of debris and/or drainage of water from the grooved area. Discharge and disposal of waste slurry shall be the Contractor’s responsibility.

621-2.3 Test section. Groove a test section in an area of the pavement outside of the trafficked area, as approved by the Engineer. The area shall be 250 feet long by two lanes wide. Demonstrate the setup and alignment process, the grooving operation, and the waste slurry disposal.

621-2.4 Existing pavements. Bumps, depressed areas, bad or faulted joints, and badly cracked and/or spalled areas in the pavement shall not be grooved until such areas are adequately repaired or replaced.
621-2.5 New pavements. New asphalt concrete pavements shall be allowed to cure for a minimum of 30 days before grooving, to allow the material to become stable enough to prevent closing of the grooves under normal use. Permit new Portland cement concrete pavements to cure for a minimum of 28 days before grooving. Spalling along or tearing or raveling of the groove edges shall not be allowed.

621-2.6 Grooving machine. Provide a grooving machine that is power driven, self-propelled, specifically designed and manufactured for pavement grooving, and has a self-contained and integrated continuous slurry vacuum system as the primary method for removing waste slurry. The grooving machine shall be equipped with diamond-saw cutting blades, and capable of making at least 18 inches in width of multiple parallel grooves in one pass of the machine. Thickness of the cutting blades shall be capable of making the required width and depth of grooves in one pass of the machine. The cutting head shall not contain a mixture of new and worn blades or blades of unequal wear or diameter. Match the blade type and configuration with the hardness of the existing airfield pavement. The wheels on the grooving machine shall be of a design that will not scar or spall the pavement. Provide the machine with devices to control depth of groove and alignment.

621-2.7 Water supply. Water for the grooving operation shall be provided by the Contractor and the cost thereof shall be included in the price of the grooving.

621-2.8 Clean-up. During and after installation of saw-cut grooves, the Contractor must remove from the pavement all debris, waste, and by-products generated by the operations to the satisfaction of the Engineer. Cleanup of waste material must be continuous during the grooving operation. Flush debris produced by the machine to the edge of the grooved area or pick it up as it forms. The dust coating remaining shall be picked up or flushed to the edge of the area if the resultant accumulation is not detrimental to the vegetation or storm drainage system. Accomplish all flushing operations in a manner to prevent erosion on the shoulders or damage to vegetation. Waste material must be disposed of in an approved manner. Waste material must not be allowed to enter the airport storm sewer system. The Contractor must dispose of these wastes in strict compliance with all applicable state, local, and Federal environmental statutes and regulations.

621-2.9 Repair of damaged pavement. Grooving must be stopped and damaged pavement repaired at the Contractor’s expense when, in the opinion of the Engineer, the result of the grooving operation will be detrimental to aircraft tires.

ACCEPTANCE

621-3.1 Acceptance testing. Grooves will be accepted based on results of zone testing. All acceptance testing necessary to determine conformance with the groove tolerances specified will be performed by the Engineer.

Instruments for measuring groove width and depth must have a range of at least 0.5 inch and a resolution of at least 0.005 inch. Gauge blocks or gauges machined to standard grooves width, depth, and spacing may be used.

Instruments for measuring center-to-center spacing must have a range of at least 3 inches and a resolution of at least 0.02 inch.

The Engineer will measure grooves in five zones across the pavement width. Measurements will be made at least three times during each day’s production. Measurements in all zones will be made for each cutting head on each piece of grooving equipment used for each day’s production.

The five zones are as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Centerline to 5 feet left or right of the centerline.</td>
</tr>
<tr>
<td>2</td>
<td>5 feet to 25 feet left of the centerline.</td>
</tr>
<tr>
<td>3</td>
<td>5 feet 25 feet right of the centerline.</td>
</tr>
<tr>
<td>4</td>
<td>25 feet to edge of grooving left of the centerline.</td>
</tr>
<tr>
<td>5</td>
<td>25 feet to edge of grooving right of the centerline.</td>
</tr>
</tbody>
</table>
At a random location within each zone, five consecutive grooves sawed by each cutting head on each piece of grooving equipment will be measured for width, depth, and spacing. The five consecutive measurements must be located about the middle blade of each cutting head ±4 inches. Measurements will be made along a line perpendicular to the grooves.

Width or depth measurements less than 0.170 inch shall be considered less than 3/16 inch.

Width or depth measurements more than 0.330 inch shall be considered more than 5/16 inch.

Width or depth measurements more than 0.235 inch shall be considered more than 1/4 inch.

Production must be adjusted when more than one groove on a cutting head fails to meet the standard depth, width, or spacing in more than one zone.

METHOD OF MEASUREMENT

621-4.1 The quantity of grooving to be paid for shall be the number of square yards of grooving performed in accordance with the specifications and accepted by the Engineer per paragraph 621-3.1.

BASIS OF PAYMENT

621-5.1 **Payment for saw-cut grooving.** Payment for saw-cut grooving will be made at the contract unit price per square yard for saw-cut grooving. This price shall be full compensation for furnishing all materials, and for all preparation, delivering, and application of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

Item P-621-5.1 Portland Cement Concrete Pavement Grooving - per square yard

END OF ITEM P-621
This page intentionally left blank.
Item D-701

PIPE FOR STORM DRAINS AND CULVERTS

DESCRIPTION

701-1.1 This item shall consist of the construction of pipe culverts and storm drains in accordance with these specifications and in reasonably close conformity with the lines and grades shown on the plans.

MATERIALS

701-2.1 Materials shall meet the requirements shown on the plans and specified below.

Reinforced Concrete pipe shall conform circular reinforced concrete pipe to requirements of ASTM C 76, for Class V wall thickness. Conform to rubber gasket joints for sanitary sewers and storm sewers and tongue and groove for roadside ditch culverts to ASTM C 443.

Reinforced Concrete Box boxes shall be machine-made or cast by process which will provide for uniform placement of concrete in forms and compaction by mechanical devices to produce dense, structurally sound concrete. RCBs in shall withstand FAA loading conditions.

701-2.2 Pipe. The pipe shall be of the type called for on the plans or in the proposal and shall be in accordance with the following appropriate requirements:

- AASHTO M167 American Association of State Highway and Transportation Officials Standard Specification for Corrugated Steel Structural Plate, Zinc-Coated, for Field-Bolted Pipe, Pipe-Arches, and Arches
- AASHTO M190 Standard Specification for Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches
- AASHTO M196 Standard Specification for Corrugated Aluminum Pipe for Sewers and Drains
- AASHTO M219 Standard Specification for Corrugated Aluminum Alloy Structural Plate for Field-Bolted Pipe, Pipe-Arches, and Arches
- AASHTO M243 Standard Specification for Field-Applied Coating of Corrugated Metal Structural Plate for Pipe, Pipe-Arches, and Arches
- AASHTO M252 Standard Specification for Corrugated Polyethylene Drainage Pipe
- AASHTO M294 Standard Specification for Corrugated Polyethylene Pipe, 300- to 1500-mm (12- to 60-in.) Diameter
- AASHTO M304 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Wall Drain Pipe and Fittings Based on Controlled Inside Diameter
- ASTM A760 Standard Specification for Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains
- ASTM A761 Standard Specification for Corrugated Structural Steel Plate, Zinc-Coated, for Field-Bolted Pipe, Pipe-Arches, and Arches
- ASTM A762 Standard Specification for Corrugated Steel Pipe, Polymer Precoated for Sewers and Drains
ASTM A849 Standard Specification for Post Applied Coatings, Pavings, and Linings for Corrugated Steel Sewer and Drainage Pipe
ASTM B745 Standard Specification for Corrugated Aluminum Pipe for Sewers and Drains
ASTM C14 Standard Specification for Nonreinforced Concrete Sewer, Storm Drain, and Culvert Pipe
ASTM C76 Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
ASTM C506 Standard Specification for Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe
ASTM C507 Standard Specification for Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe
ASTM C655 Standard Specification for Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe
ASTM C1433 Standard Specification for Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
ASTM D 558 Standard Test Method for Moisture-Density Relations of Soil Cement-Mixtures
ASTM F667 Standard Specification for 3 through 24 in Corrugated Polyethylene Pipe and Fittings
ASTM F714 Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Outside Diameter
ASTM F794 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter
ASTM F894 Standard Specification for Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe
ASTM F949 Standard Specification for Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings
ASTM F2562 Specification for Steel Reinforced Thermoplastic Ribbed Pipe and Fittings for Non-Pressure Drainage and Sewerage
ASTM F2736 Standard Specification for 6 to 30 in. (152 to 762 mm) Polypropylene (PP) Corrugated Single Wall Pipe and Double Wall Pipe
ASTM F2764 Standard Specification for 30 to 60 in. (750 to 1500 mm) Polypropylene (PP) Triple Wall Pipe and Fittings for Non-Pressure Sanitary Sewer Applications
ASTM F2881 Standard Specification for 12 to 60 in. (300 to 1500 mm) Polypropylene (PP) Dual Wall Pipe and Fittings for Non-Pressure Storm Sewer Applications
ASTM D3034 Standard Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings

701-2.3 Concrete. Concrete for pipe cradles shall have a minimum compressive strength of 3000 psi (20.7 MPa) at 28 days and conform to the requirements of ASTM C94.

701-2.4 Rubber gaskets. Rubber gaskets for rigid pipe shall conform to the requirements of ASTM C443. Rubber gaskets for PVC pipe, polyethylene, and polypropylene pipe shall conform to the requirements of ASTM F477. Rubber gaskets for zinc-coated steel pipe and precoated galvanized pipe shall conform to the requirements of ASTM D1056, for the “RE” closed cell grades. Rubber gaskets for steel reinforced thermoplastic ribbed pipe shall conform to the requirements of ASTM F477.
701-2.5 **Joint mortar.** Pipe joint mortar shall consist of one part Portland cement and two parts sand. The Portland cement shall conform to the requirements of ASTM C150, Type I. The sand shall conform to the requirements of ASTM C144.

701-2.6 **Joint fillers.** Poured filler for joints shall conform to the requirements of ASTM D6690.

701-2.7 **Plastic gaskets.** Plastic gaskets shall conform to the requirements of AASHTO M198 (Type B).

701-2.8 **Controlled low-strength material (CLSM).** CLSM is not allowed.

CONSTRUCTION METHODS

701-3.1 **Excavation.** The width of the pipe trench shall be sufficient to permit satisfactory jointing of the pipe and thorough tamping of the bedding material under and around the pipe, but it shall not be less than the external diameter of the pipe plus 12 inches on each side. The trench walls shall be approximately vertical.

The Contractor shall comply with all current Federal, state and local rules and regulations governing the safety of men and materials during the excavation, installation and backfilling operations. Specifically, the Contractor shall observe that all requirements of the Occupational Safety and Health Administration (OSHA) relating to excavations, trenching and shoring are strictly adhered to. The width of the trench shall be sufficient to permit satisfactorily jointing of the pipe and thorough compaction of the bedding material under the pipe and backfill material around the pipe, but it shall not be greater than the widths shown on the plans trench detail. The trench bottom shall be shaped to fully and uniformly support the bottom quadrant of the pipe.

Where rock, hardpan, or other unyielding material is encountered, the Contractor shall remove it from below the foundation grade for a depth of at least 8 inch or 1/2 inch for each foot of fill over the top of the pipe (whichever is greater) but for no more than three-quarters of the nominal diameter of the pipe. The excavation below grade shall be backfilled with selected fine compressible material, such as silty clay or loam, and lightly compacted in layers not over 6 inches in uncompacted depth to form a uniform but yielding foundation.

Where a firm foundation is not encountered at the grade established, due to soft, spongy, or other unstable soil, the unstable soil shall be removed and replaced with approved granular material for the full trench width. The Engineer shall determine the depth of removal necessary. The granular material shall be compacted to provide adequate support for the pipe.

The excavation for pipes placed in embankment fill shall not be made until the embankment has been completed to a height above the top of the pipe as shown on the plans.

The contractor shall always maintain the positive drainage system and dewater the area in the event of rain fall and / or encountering the ground water. The contractor shall not place any storm sewer pipes, structures, subbase and any backfill material until the work area is properly drained and dewatered to achieve the optimum moisture content. Performance of the work described in this paragraph is not payable directly, but shall be considered as a subsidiary obligation of the Contractor and included in the contract price for the pay items of work involved.

701-3.2 **Bedding.** The pipe bedding shall be as specified herein conform to the class specified on the plans. The bedding surface for the pipe shall provide a firm foundation of uniform density throughout the entire length of the pipe. When no bedding class is specified or detailed on the plans, the requirements for Class C bedding shall apply.

a. **Rigid pipe.** Class A bedding shall consist of cement stabilized sand conforming to the plan details. Cement stabilized sand should have a minimum compressive strength of 100 psi in 48 hours. The mix design should be submitted to the Engineer for review and approval. The minimum cement requirements should be determined based on compressive strength test within the optimum moisture content of +/- 3%.
Class B bedding shall consist of a bed of granular material having a thickness of at least 6 inches (150 mm) below the bottom of the pipe and extending up around the pipe for a depth of not less than 30% of the pipe’s vertical outside diameter. The layer of bedding material shall be shaped to fit the pipe for at least 10% of the pipe’s vertical diameter and shall have recesses shaped to receive the bell of bell and spigot pipe. The bedding material shall be sand or select sandy soil with 100% passing a 3/8 inch (9 mm) sieve and not more than 10% passing a No. 200 (0.075 mm) sieve.

Class C bedding shall consist of bedding the pipe in its natural foundation material to a depth of not less than 10% of the pipe’s vertical outside diameter. The bed shall be shaped to fit the pipe and shall have recesses shaped to receive the bell of bell and spigot pipe.

b. Flexible pipe. For flexible pipe, the bed shall be roughly shaped to fit the pipe, and a bedding blanket of sand or fine granular material shall be provided as follows:

<table>
<thead>
<tr>
<th>Pipe Corrugation Depth</th>
<th>Minimum Bedding Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inch</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>2-1/2</td>
<td>60</td>
</tr>
</tbody>
</table>

c. PVC, polyethylene, and polypropylene pipe. For PVC, polyethylene, and polypropylene pipe, the bedding material shall consist of coarse sands and gravels with a maximum particle size of 3/4 inches (19 mm). For pipes installed under paved areas, no more than 12% of the material shall pass the No. 200 (0.075 mm) sieve. For all other areas, no more than 50% of the material shall pass the No. 200 (0.075 mm) sieve. The bedding shall have a thickness of at least 6 inches (150 mm) below the bottom of the pipe and extend up around the pipe for a depth of not less than 50% of the pipe’s vertical outside diameter.

701-3.3 Laying pipe. The pipe laying shall begin at the lowest point of the trench and proceed upgrade. The lower segment of the pipe shall be in contact with the bedding throughout its full length. Bell or groove ends of rigid pipes and outside circumferential laps of flexible pipes shall be placed facing upgrade. Pipe shall be placed using a laser level or other means to ensure proper slope and alignment.

Paved or partially lined pipe shall be placed so that the longitudinal center line of the paved segment coincides with the flow line.

Elliptical and elliptically reinforced concrete pipes shall be placed with the manufacturer’s reference lines designating the top of the pipe within five degrees of a vertical plane through the longitudinal axis of the pipe.

701-3.4 Joining pipe. Joints shall be made with (1) Portland cement mortar, (2) Portland cement grout, (3) rubber gaskets, (4) plastic gaskets, or (5) coupling bands.

Mortar joints shall be made with an excess of mortar to form a continuous bead around the outside of the pipe and shall be finished smooth on the inside. Molds or runners shall be used for grouted joints to retain the poured grout. Rubber ring gaskets shall be installed to form a flexible watertight seal.

a. Concrete pipe. Concrete pipe may be either bell and spigot or tongue and groove. The method of joining pipe sections shall be so the ends are fully entered and the inner surfaces are reasonably flush and even. Joints shall be thoroughly wetted before applying mortar or grout.

b. Metal pipe. Metal pipe shall be firmly joined by form-fitting bands conforming to the requirements of ASTM A760 for steel pipe and AASHTO M196 for aluminum pipe.

c. PVC, polyethylene and polypropylene pipe. Joints for PVC, Polyethylene, and Polypropylene pipe shall conform to the requirements of ASTM D3212 when watertight joints are required. Joints for PVC and Polyethylene pipe shall conform to the requirements of AASHTO M304 when soil tight joints are
required. Fittings for polyethylene pipe shall conform to the requirements of AASHTO M252 or ASTM M294. Fittings for polypropylene pipe shall conform to ASTM F2881, ASTM F2736, or ASTM F2764.

701-3.5 Backfilling. Pipes shall be inspected before any backfill is placed; any pipes found to be out of alignment, unduly settled, or damaged shall be removed and relaid or replaced at the Contractor's expense.

Material for backfill shall be fine, readily compatible soil or granular material selected from the excavation or a source of the Contractor's choosing. It shall not contain frozen lumps, stones that would be retained on a 2-inch (50 mm) sieve, chunks of highly plastic clay, or other objectionable material. Granular backfill material shall have 95% or more passing the a 1/2 inch (12 mm) sieve, with 95% or more being retained on the No. 4 (4.75 mm) sieve.

When the top of the pipe is even with or below the top of the trench, the backfill shall be compacted in layers not exceeding 6 inches on each side of the pipe and shall be brought up one foot above the top of the pipe or to natural ground level, whichever is greater. Thoroughly compact the backfill material under the haunches of the pipe without displacing the pipe. Material shall be brought up evenly on each side of the pipe for the full length of the pipe. Backfill shall conform with the details and cement stabilized sand shall be placed per details.

When the top of the pipe is above the top of the trench, the backfill shall be compacted in layers not exceeding 6 inches and shall be brought up evenly on each side of the pipe to one foot above the top of the pipe. The width of backfill on each side of the pipe for the portion above the top of the trench shall be equal to twice the pipe's diameter or 12 feet (3.7 m), whichever is less. Backfill shall conform with the details and cement stabilized sand shall be placed per details.

For PVC, polyethylene, and polypropylene pipe, the backfill shall be placed in two stages; first to the top of the pipe and then at least 12 inches over the top of the pipe. The backfill material shall meet the requirements of paragraph 701-3.2c.

All backfill shall be compacted to the density required under Item P-152.

It shall be the Contractor's responsibility to protect installed pipes and culverts from damage due to construction equipment operations. The Contractor shall be responsible for installation of any extra strutting or backfill required to protect pipes from the construction equipment.

METHOD OF MEASUREMENT

701-4.1 The length of pipe shall be measured in linear feet of pipe in place, completed, and approved. It shall be measured along the centerline of the pipe from end or inside face of structure to the end or inside face of structure, whichever is applicable. The several classes, types and size shall be measured separately. All fittings shall be included in the footage as typical pipe sections in the pipe being measured.

701-4.2 Concrete for pipe cradles shall not be measured separately for payment but shall be considered incidental to the installation of the pipe.

701-4.3 Excavation shall not be measured separately for payment but shall be considered incidental to the installation of the pipe.

BASIS OF PAYMENT

701-5.1 Payment will be made at the contract unit price per linear foot for each kind of pipe of the type and size designated.

These prices shall fully compensate the Contractor for furnishing all materials and for all preparation, excavation, and installation of these materials; and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

- Item D-701-5.1 Remove and Dispose 42-Inch Storm Sewer - per linear foot
Item D-701-5.2 Remove and Dispose 36-Inch Storm Sewer - per linear foot
Item D-701-5.3 Remove and Dispose 30-Inch Storm Sewer - per linear foot
Item D-701-5.4 Remove and Dispose 24-Inch Storm Sewer - per linear foot
Item D-701-5.5 Remove and Dispose 18-Inch Storm Sewer - per linear foot
Item D-701-5.6 Remove and Dispose 12-Inch Storm Sewer – per linear foot
Item D-701-5.7 Remove and Dispose 6-Inch Storm Sewer – per linear foot
Item D-701-5.8 Remove and Dispose 4-inch Storm Sewer – per linear foot
Item D-701-5.9 Abandon in Place with Flowable Fill 42-Inch Storm Sewer - per linear foot
Item D-701-5.10 Abandon in Place with Flowable Fill 36-Inch Storm Sewer - per linear foot
Item D-701-5.11 Abandon in Place with Flowable Fill 30-Inch Storm Sewer - per linear foot
Item D-701-5.12 Abandon in Place with Flowable Fill 24-Inch Storm Sewer - per linear foot
Item D-701-5.13 Abandon in Place with Flowable Fill 18-Inch Storm Sewer - per linear foot
Item D-701-5.14 Abandon in Place with Flowable Fill 6-Inch Storm Sewer – per linear foot
Item D-701-5.15 24-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.16 30-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.17 36-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.18 42-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.19 48-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.20 54-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.21 60-Inch Storm Sewer RCP (Class V) Open Cut, Complete in Place - per linear foot
Item D-701-5.22 Trench Safety for All Depths and Sizes, Complete in Place - per linear foot
Item D-701-5.23 Connect 6-Inch Underdrain Pipe to Storm Sewer RCP –per each

MATERIAL REQUIREMENTS

AASHTO M167 Standard Specification for Corrugated Steel Structural Plate, Zinc-Coated, for Field-Bolted Pipe, Pipe-Arches, and Arches
AASHTO M190 Standard Specification for Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches
AASHTO M196 Standard Specification for Corrugated Aluminum Pipe for Sewers and Drains
AASHTO M198 Standard Specification for Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants
AASHTO M219 Standard Specification for Corrugated Aluminum Alloy Structural Plate for Field-Bolted Pipe, Pipe-Arches, and Arches
AASHTO M243 Standard Specification for Field Applied Coating of Corrugated Metal Structural Plate for Pipe, Pipe-Arches, and Arches
AASHTO M252 Standard Specification for Corrugated Polyethylene Drainage Pipe
AASHTO M294 Standard Specification for Corrugated Polyethylene Pipe, 300- to 1500-mm (12- to 60-in.) Diameter
AASHTO M304 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Wall Drain Pipe and Fittings Based on Controlled Inside Diameter
AASHTO MP20 Standard Specification for Steel Reinforced Polyethylene (PE) Ribbed Pipe, 300- to 900-mm (12- to 36-in.) Diameter
ASTM A760 Standard Specification for Corrugated Steel Pipe, Metallic Coated for Sewers and Drains
ASTM A761 Standard Specification for Corrugated Steel Structural Plate, Zinc Coated, for Field-Bolted Pipe, Pipe-Arches, and Arches
ASTM A762 Standard Specification for Corrugated Steel Pipe, Polymer Precoated for Sewers and Drains
ASTM A849 Standard Specification for Post-Applied Coatings, Pavings, and Linings for Corrugated Steel Sewer and Drainage Pipe
ASTM B745 Standard Specification for Corrugated Aluminum Pipe for Sewers and Drains
ASTM C14 Standard Specification for Nonreinforced Concrete Sewer, Storm Drain, and Culvert Pipe
ASTM C76 Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
ASTM C94 Standard Specification for Ready Mixed Concrete
ASTM C144 Standard Specification for Aggregate for Masonry Mortar
ASTM C150 Standard Specification for Portland Cement
ASTM C443 Standard Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
ASTM C506 Standard Specification for Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe
ASTM C507 Standard Specification for Reinforced Concrete Elliptical Culvert, Storm Drain and Sewer Pipe
ASTM C655 Standard Specification for Reinforced Concrete D-Load Culvert, Storm Drain and Sewer Pipe
ASTM C1433 Standard Specification for Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
ASTM D1056 Standard Specification for Flexible Cellular Materials Sponge or Expanded Rubber
ASTM D3034 Standard Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings
ASTM D6690 Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements
ASTM F477 Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe
ASTM F667 Standard Specification for 3 through 24 in. Corrugated Polyethylene Pipe and Fittings
ASTM F714 Standard Specification for Polyethylene (PE) Plastic Pipe (DR PR) Based on Outside Diameter
ASTM F794 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe & Fittings Based on Controlled Inside Diameter
ASTM F894 Standard Specification for Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe
ASTM F949 Standard Specification for Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings
ASTM F2562 Specification for Steel Reinforced Thermoplastic Ribbed Pipe and Fittings for Non-Pressure Drainage and Sewerage
ASTM F2736 Standard Specification for 6 to 30 in. (152 to 762 mm) Polypropylene (PP) Corrugated Single Wall Pipe and Double Wall Pipe
ASTM F2764 Standard Specification for 30 to 60 in. (750 to 1500 mm) Polypropylene (PP) Triple Wall Pipe and Fittings for Non-Pressure Sanitary Sewer Applications
ASTM F2881 Standard Specification for 12 to 60 in. (300 to 1500 mm) Polypropylene (PP) Dual Wall Pipe and Fittings for Non-Pressure Storm Sewer Applications

END ITEM D-701
Item D-705

PIPE UNDERDRAINS FOR AIRPORTS

DESCRIPTION

705-1.1 This item shall consist of the construction of pipe drains in accordance with these specifications and in reasonably close conformity with the lines and grades shown on the plans.

MATERIALS

705-2.1 General. Materials shall meet the requirements shown on the plans and specified below.

705-2.2 Pipe. The pipe shall be of the type called for on the plans or in the proposal and shall be in accordance with the following appropriate requirements.

AASHTO M304 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Wall Drain Pipe and Fittings Based on Controlled Inside Diameter

ASTM F794 Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe & Fittings Based on Controlled Inside Diameter

ASTM F949 Standard Specification for Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings

705-2.3 Joint mortar. Pipe joint mortar shall consist of one part by volume of Portland cement and two parts sand. The Portland cement shall conform to the requirements of ASTM C150, Type I. The sand shall conform to the requirements of ASTM C144.

705-2.4 Elastomeric seals. Elastomeric seals shall conform to the requirements of ASTM F477.

705-2.5 Porous backfill. Porous backfill shall be free of clay, humus, or other objectionable matter, and shall conform to the gradation in Table 1 when tested in accordance with ASTM C136.

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous Material No. 2</td>
<td></td>
</tr>
<tr>
<td>1-1/2 inch (38 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 inch (25 mm)</td>
<td>90 - 100</td>
</tr>
<tr>
<td>3/8 inch (9 mm)</td>
<td>25 - 60</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>5 - 40</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>0 - 20</td>
</tr>
<tr>
<td>No. 16 (1.18 mm)</td>
<td>-</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>-</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>-</td>
</tr>
</tbody>
</table>

When two courses of porous backfill are specified in the plans, the finer of the materials shall conform to particle size tabulated herein for porous material No. 1. The coarser granular material shall meet the gradation given in the tabulation for porous material No. 2.
705-2.6. Granular material. Granular material used for backfilling shall conform to the requirements of ASTM D2321 for Class IA, IB, or II materials, or shall meet the requirements of AASHTO Standard Specification for Highway Bridges Section 30.

<table>
<thead>
<tr>
<th>Fabric Property</th>
<th>Test Method</th>
<th>Test Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile Strength, lbs</td>
<td>ASTM D4632</td>
<td>125 min</td>
</tr>
<tr>
<td>Grab Tensile Elongation %</td>
<td>ASTM D4632</td>
<td>50 min</td>
</tr>
<tr>
<td>Burst Strength, psi</td>
<td>ASTM D3785</td>
<td>125 min</td>
</tr>
<tr>
<td>Trapezoid Tear Strength, lbs</td>
<td>ASTM D4533</td>
<td>55 min</td>
</tr>
<tr>
<td>Puncture Strength, lbs</td>
<td>ASTM D4833</td>
<td>40 min</td>
</tr>
<tr>
<td>Abrasion, lbs</td>
<td>ASTM D4886</td>
<td>15 max loss</td>
</tr>
<tr>
<td>Equivalent Opening Size</td>
<td>ASTM D4751</td>
<td>70-100</td>
</tr>
<tr>
<td>Permittivity sec^{-1}</td>
<td>ASTM D4491</td>
<td>0.80</td>
</tr>
<tr>
<td>Accelerated Weathering (UV Stability)</td>
<td>ASTM D4355</td>
<td>*(500 hrs exposure) 70</td>
</tr>
</tbody>
</table>

705-2.8. Controlled low-strength material (CLSM). Controlled low-strength material shall conform to the requirements of Item P-153. When CLSM is used all joints shall have elastomeric seals.

705-2.9. Structural Concrete. Structural concrete material shall conform to the requirements of Item P-610. When Structural Concrete is used, all joints shall have elastomeric seals.

CONSTRUCTION METHODS

705-3.1 Equipment. All equipment required for the construction of pipe underdrains shall be on the project, in good working condition, and approved by the Engineer before construction is permitted to start.

705-3.2 Excavation. The width of the pipe trench shall be sufficient to permit satisfactory jointing of the pipe and thorough tamping of the bedding material under and around the pipe, but shall not be less than the external diameter of the pipe plus 6 inches on each side of the pipe. The trench walls shall be approximately vertical.

Where rock, hardpan, or other unyielding material is encountered, it shall be removed below the foundation grade for a depth of at least 4 inches. The excavation below grade shall be backfilled with selected fine compressible material, such as silty clay or loam, and lightly compacted in layers not over 6 inches in uncompacted depth to form a uniform but yielding foundation.

Where a firm foundation is not encountered at the grade established, due to soft, spongy, or other unstable soil, the unstable soil shall be removed and replaced with approved granular material for the full trench width. The Engineer shall determine the depth of removal necessary. The granular material shall be compacted to provide adequate support for the pipe.

Excavated material not required or acceptable for backfill shall be disposed of by the Contractor as directed by the Engineer. The excavation shall not be carried below the required depth; if this occurs, the trench shall be backfilled at the Contractor’s expense with material approved by the Engineer and compacted to the density of the surrounding material.

The pipe bed shall be shaped so at least the lower quarter of the pipe shall be in continuous contact with the bottom of the trench. Spaces for the pipe bell shall be excavated to allow the pipe barrel to support the entire weight of the pipe.
The Contractor shall do trench bracing, sheathing, or shoring necessary to perform and protect the excavation as required for safety and conformance to Federal, state and local laws. Unless otherwise provided, the bracing, sheathing, or shoring shall be removed by the Contractor after the backfill has reached at least 12 inches over the top of the pipe. The sheathing or shoring shall be pulled as the granular backfill is placed and compacted to avoid any unfilled spaces between the trench wall and the backfill material. The cost of bracing, sheathing, or shoring, and the removal of same, shall be included in the unit price bid per foot (meter) for the pipe.

705-3.3 Laying and installing pipe.

a. **Concrete pipe.** The laying of the pipe in the finished trench shall be started at the lowest point and proceed upgrade. When bell and spigot pipe is used, the bells shall be laid upgrade. If tongue and groove pipe is used, the groove end shall be laid upgrade. Holes in perforated pipe shall be placed down, unless otherwise shown on the plans. The pipe shall be firmly and accurately set to line and grade so that the invert will be smooth and uniform. Pipe shall not be laid on frozen ground.

Pipe which is not true in alignment, or which shows any settlement after laying, shall be taken up and relaid by the Contractor at no additional expense.

b. **Metal pipe.** The metal pipe shall be laid with the separate sections joined firmly together with bands, with outside laps of circumferential joints pointing upgrade, and with longitudinal laps on the sides. Any metal in the pipe or bands that is not protected thoroughly by galvanizing shall be coated with a suitable asphaltum paint.

During installation, the asphalt-protected pipe shall be handled without damaging the asphalt coating. Any breaks in the bitumen or treatment of the pipe shall be refilled with the type and kind of bitumen used in coating the pipe originally.

c. **PVC or polyethylene pipe.** PVC or polyethylene pipe shall be installed in accordance with the requirements of ASTM D2321 or AASHTO Standard Specification for Highway Bridges Section 30. Perforations shall meet the requirements of AASHTO M252 or AASHTO M294 Class 2, unless otherwise indicated on the plans. The pipe shall be laid accurately to line and grade. Holes in perforated pipe shall be placed down, unless otherwise shown on the plans.

d. **All types of pipe.** The upgrade end of pipelines, not terminating in a structure, shall be plugged or capped as approved by the Engineer.

Unless otherwise shown on the plans, a 4 inch bed of granular backfill material shall be spread in the bottom of the trench throughout the entire length under all perforated pipe underdrains.

Pipe outlets for the underdrains shall be constructed when required or shown on the plans. The pipe shall be laid with tight-fitting joints. Porous backfill is not required around or over pipe outlets for underdrains. All connections to other drainage pipes or structures shall be made as required and in a satisfactory manner. If connections are not made to other pipes or structures, the outlets shall be protected and constructed as shown on the plans.

e. **Filter fabric.** The filter fabric shall be installed in accordance with the manufacturer’s recommendations, or in accordance with AASHTO M288 Appendix, unless otherwise shown on the plans.

705-3.4 Mortar. The mortar shall be of the desired consistency for caulking and filling the joints of the pipe and for making connections to other pipes or to structures. Mortar that is not used within 45 minutes after water has been added shall be discarded. Retempering of mortar shall not be permitted.

705-3.5 Joints in concrete pipe. When open or partly open joints are required or specified, they shall be constructed as indicated on the plans. The pipe shall be laid with the ends fitted together as designed. If bell and spigot pipe is used, mortar shall be placed along the inside bottom quarter of the bell to center the following section of pipe.

The open or partly open joints shall be surrounded with granular material meeting requirements of porous backfill No. 2 in Table 1 or as indicated on the plans. This backfill shall be placed so its thickness will be not less than 3 inches nor more than 6 inches, unless otherwise shown on the plans.
When the original material excavated from the trench is impervious, commercial concrete sand or granular material meeting requirements of porous backfill No. 1 shall surround porous backfill No. 2 (Table 1), as shown on the plans or as directed by the Engineer.

When the original material excavated from the trench is pervious and suitable, it may be used as backfill in lieu of porous backfill No. 1, when indicated on the plans or as directed by the Engineer.

705-3.6 Backfilling.

a. Earth. All trenches and excavations shall be backfilled soon after the pipes are installed, unless additional protection of the pipe is directed. The backfill material shall be select material from excavation or borrow and shall be approved by the Engineer. The select material shall be placed on each side of the pipe out to a distance of the nominal pipe diameter and one foot (30 cm) over the top of the pipe and shall be readily compacted. It shall not contain stones 3 inches (75 mm) or larger in size, frozen lumps, chunks of highly plastic clay, or any other material that is objectionable to the Engineer. The material shall be moistened or dried, as required to aid compaction. Placement of the backfill shall not cause displacement of the pipe. Thorough compaction under the haunches and along the sides to the top of the pipe shall be obtained.

The backfill shall be placed in loose layers not exceeding 6 inches in depth under and around the pipe, and not exceeding 8 inches over the pipe. Successive layers shall be added and thoroughly compacted by hand and pneumatic tampers, approved by the Engineer, until the trench is completely filled and brought to the planned elevation. Backfilling shall be done to avoid damaging top or side pressures on the pipe.

In embankments and other unpaved areas, the backfill shall be compacted per Item P-152 to the density required for embankments in unpaved areas. Under paved areas, the subgrade and any backfill shall be compacted per Item P-152 to the density required for embankments for paved areas.

b. Granular backfill. When granular backfill is required, placement in the trench and about the pipe shall be as shown on the plans. The granular backfill shall not contain an excessive amount of foreign matter, nor shall soil from the sides of the trench or from the soil excavated from the trench be allowed to filter into the granular backfill. When required by the Engineer, a template shall be used to properly place and separate the two sizes of backfill. The backfill shall be placed in loose layers not exceeding 6 inches in depth. The granular backfill shall be compacted by hand and pneumatic tampers to the requirements as given for embankment. Backfilling shall be done to avoid damaging top or side pressure on the pipe. The granular backfill shall extend to the elevation of the trench or as shown on the plans.

When perforated pipe is specified, granular backfill material shall be placed along the full length of the pipe. The position of the granular material shall be as shown on the plans. If the original material excavated from the trench is pervious and suitable, it shall be used in lieu of porous backfill No. 1.

If porous backfill is placed in paved or adjacent to paved areas before grading or subgrade operations is completed, the backfill material shall be placed immediately after laying the pipe. The depth of the granular backfill shall be not less than 12 inches, measured from the top of the underdrain. During subsequent construction operations, a minimum depth of 12 inches of backfill shall be maintained over the underdrains. When the underdrains are to be completed, any unsuitable material shall be removed exposing the porous backfill. Porous backfill containing objectionable material shall be removed and replaced with suitable material. The cost of removing and replacing any unsuitable material shall be at the Contractor's expense.

If a granular subbase blanket course is used which extends several feet beyond the edge of paving to the outside edge of the underdrain trench, the granular backfill material over the underdrains shall be placed in the trench up to an elevation of 2 inches (50 mm) above the bottom surface of the granular subbase blanket course. Immediately prior to the placing of the granular subbase blanket course, the Contractor shall blade this excess trench backfill from the top of the trench onto the adjacent subgrade where it can be incorporated into the granular subbase blanket course. Any unsuitable material that remains over the underdrain trench shall be removed and replaced. The subbase material shall be placed to provide clean contact between the subbase material and the underdrain granular backfill material for the full width of the underdrain trench.
c. **Controlled low-strength material (CLSM).** Controlled low-strength material shall conform to the requirements of Item P-153.

d. **Structural Concrete.** Structural concrete for encasing underdrain pipe for pavement crossings shall conform to the requirements of P-610.

e. **Deflection testing.** The Engineer may at any time, notwithstanding previous material acceptance, reject or require re-installation of pipe that exceeds 5% deflection when measured in accordance with ASTM D2321, including Appendices.

705-3.7 Connections. When the plans call for connections to existing or proposed pipe or structures, these connections shall be watertight and made to obtain a smooth uniform flow line throughout the drainage system.

705-3.8 Cleaning and restoration of site. After the backfill is completed, the Contractor shall dispose of all surplus material, soil, and rubbish from the site. Surplus soil may be deposited in embankments, shoulders, or as directed by the Engineer. Except for paved areas of the airport, the Contractor shall restore all disturbed areas to their original condition.

METHOD OF MEASUREMENT

705-4.1 The length of pipe shall be the number of linear feet of pipe underdrains in place, completed, and approved; measured along the centerline of the pipe from end or inside face of structure to the end or inside face of structure, whichever is applicable. The several classes, types, and sizes shall be measured separately. All fittings, porous backfill and filter fabric shall be included in the footage as typical pipe sections in the pipeline being measured.

Porous backfill shall not be measured for payment separately but shall be considered incidental to the pipe. Filter fabric shall not be measured for payment separately but shall be considered incidental to the pipe.

BASIS OF PAYMENT

705-5.1 Payment will be made at the contract unit price per linear foot for pipe underdrains of the type, class, and size designated.

705-5.2 Porous backfill.

- **a.** Porous backfill No. 1 shall be made at the contract unit price per cubic yard (cubic meter).
- **b.** Porous Backfill No. 2 shall be made at the contract unit price per cubic yard (cubic meter).

705-5.3 Filter fabric. Filter fabric shall be made at the contract unit price per square yard (square meter) for filter fabric.

Pipe underdrains, complete (including structural concrete, porous backfill and filter fabric) shall be made at the contract unit price per linear foot COMPLETE (including structural concrete, porous backfill and filter fabric).

These prices shall be full compensation for furnishing all materials and for all preparation, excavation, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

- Item D-705-5.1 6-Inch Perforated Underdrain, Complete - per linear foot
- Item D-705-5.2 6-Inch Non-Perforated Underdrain, Complete - per linear foot
- Item D-705-5.3 6-Inch Non-Perforated Underdrain, Concrete Encased, Complete – per linear foot
MATERIAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A760</td>
<td>Standard Specification for Corrugated Steel Pipe, Metallic Coated for Sewers and Drains</td>
</tr>
<tr>
<td>ASTM A762</td>
<td>Standard Specification for Corrugated Steel Pipe, Polymer Precoated for Sewers and Drains</td>
</tr>
<tr>
<td>ASTM C136</td>
<td>Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates</td>
</tr>
<tr>
<td>ASTM C144</td>
<td>Standard Specification for Aggregate for Masonry Mortar</td>
</tr>
<tr>
<td>ASTM C150</td>
<td>Standard Specification for Portland Cement</td>
</tr>
<tr>
<td>ASTM C444</td>
<td>Standard Specification for Perforated Concrete Pipe</td>
</tr>
<tr>
<td>ASTM C654</td>
<td>Standard Specification for Porous Concrete Pipe</td>
</tr>
<tr>
<td>ASTM D2321</td>
<td>Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications</td>
</tr>
<tr>
<td>ASTM D3034</td>
<td>Standard Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings</td>
</tr>
<tr>
<td>ASTM F477</td>
<td>Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe</td>
</tr>
<tr>
<td>ASTM F794</td>
<td>Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe & Fittings Based on Controlled Inside Diameter</td>
</tr>
<tr>
<td>ASTM F949</td>
<td>Standard Specification for Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe with a Smooth Interior and Fittings</td>
</tr>
<tr>
<td>ASTM F2562</td>
<td>Specification for Steel Reinforced Thermoplastic Ribbed Pipe and Fittings for Non-Pressure Drainage and Sewerage</td>
</tr>
<tr>
<td>AASHTO M190</td>
<td>Standard Specification for Bituminous - Coated Corrugated Metal Culvert Pipe and Pipe Arches</td>
</tr>
<tr>
<td>AASHTO M196</td>
<td>Standard Specification for Corrugated Aluminum Pipe for Sewers and Drains</td>
</tr>
<tr>
<td>AASHTO M252</td>
<td>Standard Specification for Corrugated Polyethylene Drainage Pipe</td>
</tr>
<tr>
<td>AASHTO M288</td>
<td>Standard Specification for Geotextile Specification for Highway Applications</td>
</tr>
<tr>
<td>AASHTO M294</td>
<td>Standard Specification for Corrugated Polyethylene Pipe, 300- to 1500- mm (12- to 60-in.) Diameter</td>
</tr>
<tr>
<td>AASHTO M304</td>
<td>Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Wall Drain Pipe and Fittings Based on Controlled Inside Diameter</td>
</tr>
<tr>
<td>AASHTO MP20</td>
<td>Standard Specification for Steel-Reinforced Polyethylene (PE) Ribbed Pipe, 300- to 900-mm (12- to 36-in.) diameter</td>
</tr>
<tr>
<td>AASHTO</td>
<td>Standard Specifications for Highway Bridges</td>
</tr>
</tbody>
</table>

END OF ITEM D-705
Item D-751

MANHOLES, CATCH BASINS, INLETS AND INSPECTION HOLES

DESCRIPTION

751-1.1 This item shall consist of construction of manholes, catch basins, inlets, and inspection holes, in accordance with these specifications, at the specified locations and conforming to the lines, grades, and dimensions shown on the plans or required by the Engineer.

751-1.2 Submittals. Shop drawings of each component shall be submitted to the Engineer for review and approval prior to fabrication. The submittal shall include the proposed method of installation for all components. The submittal shall include data on all component parts of this item. The data shall be sufficient, in the opinion of the Engineer, to determine compliance with the contract documents. The complete submittal shall be signed and sealed by a Professional Engineer licensed to practice in the state of Texas.

MATERIALS

751-2.1 Brick. The brick shall conform to the requirements of ASTM C32, Grade MS.

751-2.2 Mortar. Mortar shall consist of one part Portland cement and two parts sand. The Portland cement shall conform to the requirements of ASTM C150, Type I. The sand shall conform to the requirements of ASTM C144.

751-2.3 Concrete. Plain and reinforced concrete used in structures, connections of pipes with structures, and the support of structures or frames shall conform to the requirements of Item P-610, Structural Portland Cement Concrete. Concrete produced by a reputable local supplier of ready-mix or transit-mix concrete designed for a minimum compressive strength of 4,000 psi at 28 days, unless otherwise specified, may be used when approved by the Engineer. The Contractor shall submit the ready-mix or transit-mix design to the Engineer at least 15 days prior to startup of construction.

751-2.4 Precast concrete pipe manhole rings. Precast concrete pipe manhole rings shall conform to the requirements of ASTM C478. Unless otherwise specified, the risers and offset cone sections shall have an inside diameter of not less than 36 inches (90 cm) nor more than 48 inches (120 cm). There shall be a gasket between individual sections and sections cemented together with mortar on the inside of the manhole.

Precast concrete pipe manhole rings shall be designed to withstand a 250 psi tire pressure and shall meet the FAA loading conditions for heavy aircrafts.

751-2.5 Corrugated metal. Corrugated metal shall conform to the requirements of American Association of State Highway and Transportation Officials (AASHTO) M36.

751-2.6 Frames, covers, and grates. The castings shall conform to one of the following requirements:

a. ASTM A48, Class 35B: Gray iron castings
b. ASTM A47: Malleable iron castings
c. ASTM A27: Steel castings
d. ASTM A283, Grade D: Structural steel for grates and frames
e. ASTM A536, Grade 65-45-12: Ductile iron castings
f. ASTM A897:Austempered ductile iron castings

All castings or structural steel units shall conform to the dimensions shown on the plans and shall be designed to support the loadings, aircraft gear configuration and/or direct loading, specified. All castings
shall be designed to withstand a 250 psi tire pressure and loading conditions for heavy aircraft (FAA AC 150/5320-6E).

Each frame and cover or grate unit shall be provided with fastening members to prevent it from being dislodged by traffic but which will allow easy removal for access to the structure.

All castings shall be thoroughly cleaned. After fabrication, structural steel units shall be galvanized to meet the requirements of ASTM A123.

751-2.7 Steps. The steps or ladder bars shall be gray or malleable cast iron or galvanized steel. The steps shall be the size, length, and shape shown on the plans and those steps that are not galvanized shall be given a coat of bituminous paint, when directed.

751-2.8 Precast inlet structures. Manufactured in accordance with and conforming to ASTM C1433. Precast concrete structures shall be constructed on prepared or previously placed slab foundations and shall conform to the dimensions and locations shown on the contract drawings. All precast concrete sections necessary to build a completed structure shall be furnished. The different sections shall fit together readily and all joints shall be sealed with a butyl rubber gasket type sealant. The top of the upper precast concrete member shall be suitably formed and dimensioned to receive the metal frame and cover or grate as required.

751-2.9 Reinforcing steel. All reinforcing steel shall be deformed bars of new billet steel meeting the requirements of ASTM A 615, Grade 60.

751-2.10 Sealants. Joints between precast concrete sections shall be sealed with a butyl rubber gasket type sealant that meets all of the requirements of Federal Specification SS-S-210A, Sealing Compound, Preformed Plastic, for Expansion Joints and Pipe Joints.

751-2.11 Submittals. Shop drawings, catalogue data and certifications shall be submitted in accordance with appropriate sections of the specifications. Submittals required are as follows:

a. Certifications and concrete mix design submittals in accordance with Item P-610, Structural Portland Cement Concrete.

b. Catalogue data and certifications that castings meet the requirements specified.

c. Catalogue data and certification that ladders meet the requirements specified.

d. Certification that reinforcing steel meets the requirements specified.

e. Submittal of strength design calculations, shop drawings and certifications for precast units.

CONSTRUCTION METHODS

751-3.1 Unclassified excavation.

a. The Contractor shall excavate for structures and footings to the lines and grades or elevations, shown on the plans, or as staked by the Engineer. The excavation shall be of sufficient size to permit the placing of the full width and length of the structure or structure footings shown. The elevations of the bottoms of footings, as shown on the plans, shall be considered as approximately only; and the Engineer may direct, in writing, changes in dimensions or elevations of footings necessary for a satisfactory foundation.

b. Boulders, logs, or any other objectionable material encountered in excavation shall be removed. All rock or other hard foundation material shall be cleaned of all loose material and cut to a firm surface either level, stepped, or serrated, as directed by the Engineer. All seams or crevices shall be cleaned out and grouted. All loose and disintegrated rock and thin strata shall be removed. Where concrete will rest on a surface other than rock, the bottom of the excavation shall not be disturb and excavation to final grade shall not be made until immediately before the concrete or reinforcing is placed.
c. The Contractor shall do all bracing, sheathing, or shoring necessary to implement and protect the excavation and the structure as required for safety or conformance to governing laws. The cost of bracing, sheathing, or shoring shall be included in the unit price bid for the structure.

d. All bracing, sheathing, or shoring involved in the construction of this item shall be removed by the Contractor after the completion of the structure. Removal shall not disturb or damage finished masonry. The cost of removal shall be included in the unit price bid for the structure.

e. After excavation is completed for each structure, the Contractor shall notify the Engineer. No concrete or reinforcing steel shall be placed until the Engineer has approved the depth of the excavation and the character of the foundation material.

751-3.2 Brick structures. (Temporary Structures Only)

a. **Foundations.** A prepared foundation shall be placed for all brick structures after the foundation excavation is completed and accepted. Unless otherwise specified, the base shall consist of reinforced concrete mixed, prepared, and placed in accordance with the requirements of Item P-610.

b. **Laying brick.** All brick shall be clean and thoroughly wet before laying so that they will not absorb any appreciable amount of additional water at the time they are laid. All brick shall be laid in freshly made mortar. Mortar not used within 45 minutes after water has been added shall be discarded. Retempering of mortar shall not be permitted. An ample layer of mortar shall be spread on the beds and a shallow furrow shall be made in it that can be readily closed by the laying of the brick. All bed and head joints shall be filled solid with mortar. End joints of stretchers and side or cross joints of headers shall be fully buttered with mortar and a shoved joint made to squeeze out mortar at the top of the joint. Any bricks that may be loosened after the mortar has taken its set, shall be removed, cleaned, and relaid with fresh mortar. No broken or chipped brick shall be used in the face, and no spalls or bats shall be used except where necessary to shape around irregular openings or edges; in which case, full bricks shall be placed at ends or corners where possible, and the bats shall be used in the interior of the course. In making closures, no piece of brick shorter than the width of a whole brick shall be used; and wherever practicable, whole brick shall be used and laid as headers.

c. **Joints.** All joints shall be filled with mortar at every course. Exterior faces shall be laid up in advance of backing. Exterior faces shall be plastered or parged with a coat of mortar not less than 3/8 inch (9 mm) thick before the backing is laid up. Prior to parging, all joints on the back of face courses shall be cut flush. Unless otherwise noted, joints shall be not less than 1/4 inch (6 mm) nor more than 1/2 inch (12 mm) wide and the selected joint width shall be maintained uniform throughout the work.

d. **Pointing.** Face joints shall be neatly struck, using the weather-struck joint. All joints shall be finished properly as the laying of the brick progresses. When nails or line pins are used the holes shall be immediately plugged with mortar and pointed when the nail or pin is removed.

e. **Cleaning.** Upon completion of the work all exterior surfaces shall be thoroughly cleaned by scrubbing and washing with water. If necessary to produce satisfactory results, cleaning shall be done with a 5% solution of muriatic acid which shall then be rinsed off with liberal quantities of water.

f. **Curing and cold weather protection.** The brick masonry shall be protected and kept moist for at least 48 hours after laying the brick. Brick masonry work or pointing shall not be done when there is frost on the brick or when the air temperature is below 50°F (10°C) unless the Contractor has, on the project ready to use, suitable covering and artificial heating devices necessary to keep the atmosphere surrounding the masonry at a temperature of not less than 60°F (16°C) for the duration of the curing period.

Brick structures are only allowed for temporary structures.

751-3.3 Concrete structures. Concrete structures shall be built on prepared foundations, conforming to the dimensions and shape indicated on the plans. The construction shall conform to the requirements specified in Item P-610. Any reinforcement required shall be placed as indicated on the plans and shall be approved by the Engineer before the concrete is placed.
All invert channels shall be constructed and shaped accurately to be smooth, uniform, and cause minimum resistance to flowing water. The interior bottom shall be sloped to the outlet.

751-3.4 Precast concrete structures. Precast concrete structures shall conform to ASTM C478. Precast concrete structures shall be constructed on prepared or previously placed slab foundations conforming to the dimensions and locations shown on the plans. All precast concrete sections necessary to build a completed structure shall be furnished. The different sections shall fit together readily. Joints between precast concrete risers and tops shall be full-bedded in cement mortar and shall be smoothed to a uniform surface on both interior and exterior of the structure. The top of the upper precast concrete section shall be suitably formed and dimensioned to receive the metal frame and cover or grate, or other cap, as required. Provision shall be made for any connections for lateral pipe, including drops and leads that may be installed in the structure. The flow lines shall be smooth, uniform, and cause minimum resistance to flow. The metal steps that are embedded or built into the side walls shall be aligned and placed at vertical intervals of 12 inches (300 mm). When a metal ladder replaces the steps, it shall be securely fastened into position.

751-3.5 Corrugated metal structures. Corrugated metal structures shall be prefabricated. All standard or special fittings shall be furnished to provide pipe connections or branches with the correct dimensions and of sufficient length to accommodate connecting bands. The fittings shall be welded in place to the metal structures. The top of the metal structure shall be designed so that either a concrete slab or metal collar may be attached to allow the fastening of a standard metal frame and grate or cover. Steps or ladders shall be furnished as shown on the plans. Corrugated metal structures shall be constructed on prepared foundations, conforming to the dimensions and locations as shown on the plans. When indicated, the structures shall be placed on a reinforced concrete base.

Corrugated metal structures shall not be allowed.

751-3.6 Inlet and outlet pipes. Inlet and outlet pipes shall extend through the walls of the structures a sufficient distance beyond the outside surface to allow for connections. They shall be cut off flush with the wall on the inside surface of the structure, unless otherwise directed. For concrete or brick structures, mortar shall be placed around these pipes to form a tight, neat connection.

751-3.7 Placement and treatment of castings, frames, and fittings. All castings, frames, and fittings shall be placed in the positions indicated on the plans or as directed by the Engineer, and shall be set true to line and elevation. If frames or fittings are to be set in concrete or cement mortar, all anchors or bolts shall be in place before the concrete or mortar is placed. The unit shall not be disturbed until the mortar or concrete has set.

When frames or fittings are placed on previously constructed masonry, the bearing surface of the masonry shall be brought true to line and grade and shall present an even bearing surface so the entire face or back of the unit will come in contact with the masonry. The unit shall be set in mortar beds and anchored to the masonry as indicated on the plans or as directed by the Engineer. All units shall set firm and secure.

After the frames or fittings have been set in final position, the concrete or mortar shall be allowed to harden for seven (7) days before the grates or covers are placed and fastened down.

751-3.8 Installation of steps. The steps shall be installed as indicated on the plans or as directed by the Engineer. When the steps are to be set in concrete, they shall be placed and secured in position before the concrete is placed. When the steps are installed in brick masonry, they shall be placed as the masonry is being built. The steps shall not be disturbed or used until the concrete or mortar has hardened for at least seven (7) days. After seven (7) days, the steps shall be cleaned and painted, unless they have been galvanized.

When steps are required with precast concrete structures, they shall be cast into the side of the sections at the time the sections are manufactured or set in place after the structure is erected by drilling holes in the concrete and cementing the steps in place.

When steps are required with corrugated metal structures, they shall be welded into aligned position at a vertical spacing of 12 inches.

Instead of steps, prefabricated ladders may be installed. For brick or concrete structures, the ladder shall be held in place by grouting the supports in drilled holes. For metal structures, the ladder shall be secured.
by welding the top support to the structure and grouting the bottom support into drilled holes in the foundation or as directed by the Engineer.

751-3.9 Backfiling.

a. After a structure has been completed, the area around it shall be backfilled with approved material, in horizontal layers not to exceed 8 inches in loose depth, and compacted to the density required in Item P-152. Each layer shall be deposited evenly around the structure to approximately the same elevation. The top of the fill shall meet the elevation shown on the plans or as directed by the Engineer.

b. Backfill shall not be placed against any structure until approved by the Engineer. For concrete structures, approval shall not be given until the concrete has been in place seven (7) days, or until tests establish that the concrete has attained sufficient strength to withstand any pressure created by the backfill and placing methods.

c. Backfill shall not be measured for direct payment. Performance of this work shall be considered an obligation of the Contractor covered under the contract unit price for the structure involved.

751-3.10 Cleaning and restoration of site. After the backfill is completed, the Contractor shall dispose of all surplus material, dirt, and rubbish from the site. Surplus dirt may be deposited in embankments, shoulders, or as approved by the Engineer. The Contractor shall restore all disturbed areas to their original condition. The Contractor shall remove all tools and equipment, leaving the entire site free, clear, and in good condition.

751-3.11 Manhole / Inlet Frame Adjustment. Combine the aircraft rated precast concrete adjustment rings so elevation of installed casting cover matches the finish grade or pavement surface. Seal between concrete adjustment ring and precast top section with non-shrink grout; do not use mortar between adjustment rings. Apply latex-based bonding agent to precast concrete surfaces joined with non-shrink grout. Set the frame to match the finish grade. The inlet opening and type shall match the existing opening and type unless otherwise stated.

751-3.12 Manhole / Inlet Frame Adjustment/Aircraft Rating Modifications. Raise existing manhole and provide a bridging slab to accommodate.

METHOD OF MEASUREMENT

751-4.1 Manholes, catch basins, inlets, clean outs, and inspection holes shall be measured by the unit, completed in place and accepted. All required excavation, sheeting and bracing, all required backfilling, restoration of all surfaces, all required connections and dewatering shall be included as part of the unit completed.

BASIS OF PAYMENT

751-5.1 The accepted quantities of manholes, catch basins, inlets, cleanouts, and inspection holes will be paid for at the contract unit price per each in place when completed. This price shall be full compensation for furnishing all materials and for all preparation, excavation, backfilling, dewatering, trench bracing and placing of the materials; furnishing and installation of such specials and connections to pipes and other structures as may be required to complete the item as shown on the plans; and for all labor equipment, tools and incidentals necessary to complete the structure.

Payment will be made under:

Item D-751-5.1	Remove and Dispose Grate Top Inlets and Manholes - per each
Item D-751-5.2	Install Aircraft Rated Inlets with Grate Top for All Storm Sewer Sizes, Complete in Place - per each
Item D-751-5.3	Underdrain Cleanout - per each
Item D-751-5.4 Underdrain Inspection Pit - per each
Item D-751-5.5 Install Aircraft Rated Maholes for All Storm Sewer Sizes, Complete in Place - per each
Item D-751-5.6 Adjustment of Existing Inlet / Manhole - per each
Item D-751-5.7 Connect 6-Inch Underdrain Pipe to Manhole/Inlet/Catch Basin – per each
Item D-751-5.8 Temporary Manholes to Accommodate Phasing – per each
Item D-751-5.9 Modify Existing Manhole to Accommodate Aircraft Loading – per each

MATERIAL REQUIREMENT

ASTM A27 Standard Specification for Steel Castings, Carbon, for General Application
ASTM A47 Standard Specification for Ferritic Malleable Iron Castings
ASTM A48 Standard Specification for Gray Iron Castings
ASTM A283 Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates
ASTM A536 Standard Specification for Ductile Iron Castings
ASTM A897 Standard Specification for Austempered Ductile Iron Castings
ASTM C32 Standard Specification for Sewer and Manhole Brick (Made from Clay or Shale)
ASTM C144 Standard Specification for Aggregate for Masonry Mortar
ASTM C150 Standard Specification for Portland Cement
ASTM C478 Standard Specification for Precast Reinforced Concrete Manhole Sections
ASTM C1433 Standard Specification for Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
AASHTO M36 Standard Specification for Corrugated Steel Pipe, Metallic-Coated, for Sewers and Drains

END OF ITEM D-751
Item D-752

CONCRETE CULVERTS, HEADWALLS, AND MISCELLANEOUS DRAINAGE STRUCTURES

DESCRIPTION

752-1.1 This item shall consist of plain and/or reinforced concrete culverts, headwalls, and miscellaneous drainage structures constructed in accordance with these specifications, at the specified locations and conforming to the lines, grades, and dimensions shown on the plans or required by the Engineer.

MATERIALS

752-2.1 Concrete. Plain and/or Reinforced concrete shall meet the requirements of Item P-610, Structural Portland Cement Concrete.

CONSTRUCTION METHODS

752-3.1 Unclassified excavation.

a. Trenches and foundation pits for structures or structure footings shall be excavated to the lines and grades and elevations shown on the plans. The excavation shall be of sufficient size to permit the placing of the full width and length of the structure or structure footings shown. The elevations of the bottoms of footings, as shown on the plans, shall be considered as approximate only; and the Engineer may approve, in writing, changes in dimensions or elevations of footings necessary to secure a satisfactory foundation.

b. Boulders, logs, or any other objectionable material encountered in excavation shall be removed. All rock or other hard foundation material shall be cleaned of all loose material and cut to a firm surface either level, stepped, or serrated, as directed by the Engineer. All seams or crevices shall be cleaned out and grouted. All loose and disintegrated rock and thin strata shall be removed. When concrete will rest on a surface other than rock, the bottom of the excavation shall not be disturbed and excavation to final grade shall not be made until immediately before the concrete or reinforcing steel is placed.

c. The Contractor shall do all bracing, sheathing, or shoring necessary to perform and protect the excavation and the structure as required for safety or conformance to governing laws. The cost of bracing, sheathing, or shoring shall be included in the unit price bid for excavation.

d. All bracing, sheathing, or shoring shall be removed by the Contractor after the completion of the structure. Removal shall be not disturb or damage the finished concrete. The cost of removal shall be included in the unit price bid for excavation.

e. After each excavation is completed, the Contractor shall notify the Engineer. No concrete or reinforcing steel shall be placed until the Engineer has approved the depth of the excavation and the character of the foundation material.

752-3.2 Backfilling.

a. After a structure has been completed, backfilling with approved material shall be accomplished by applying the fill in horizontal layers not to exceed 8 inches (200 mm) in loose depth, and compacted. The field density of the compacted material shall be at least 90% of the maximum density for cohesive soils and 95% of the maximum density for noncohesive soils. The maximum density shall be determined in accordance with ASTM D698. The field density shall be determined in accordance with ASTM D1556.

b. No backfilling shall be placed against any structure until approved by the Engineer. For concrete, approval shall not be given until the concrete has been in place seven (7) days, or until tests establish
that the concrete has attained sufficient strength to withstand any pressure created by the backfill or the placement methods.

c. Fill placed around concrete culverts shall be deposited on each side at the same time and to approximately the same elevation. All slopes bounding or within the areas to be backfilled shall be stepped or serrated to prevent wedge action against the structure.

d. Backfill will not be measured for direct payment. Performance of this work shall be considered as a subsidiary obligation of the Contractor, covered under the contract unit price for “unclassified excavation for structures” and incidental to each structure.

752-3.3 Weep holes. Weep holes shall be constructed as shown on the plans.

752-3.4 Cleaning and restoration of site. After the backfill is completed, the Contractor shall dispose of all surplus material, dirt, and rubbish from the site. Surplus dirt may be deposited in embankment, shoulders, or as approved by the Engineer. The Contractor shall restore all disturbed areas to their original condition. The Contractor shall remove all tools and equipment, leaving the entire site free, clear, and in good condition.

METHOD OF MEASUREMENT

752-4.1 The quantity of unclassified excavation for structures shall be the number of cubic yards (cubic meters), measured in original position, of material excavated in accordance with the plans, or as approved by the Engineer; but in no case shall any yardage be included in the measurement for payment which is outside of a volume bounded by vertical planes 18 inches (0.5 m) outside of and parallel to the neat lines of the footings.

752-4.2 Concrete shall be measured by the number of cubic yards (cubic meters) of concrete, complete in place and accepted. In computing the yardage of concrete for payment, the dimensions used shall be those shown on the plans or approved by the Engineer. No measurements or other allowances shall be made for forms, false work, cofferdams, pumping, bracing, expansion joints, or finishing of the concrete. No deductions in yardage shall be made for the volumes of reinforcing steel or embedded items.

752-4.3 The quantity of reinforcing steel shall be the calculated theoretical number of pounds (km) placed as shown on the plans, complete in place and accepted. The unit weight used for deformed bars shall be the weight of plain square or round bars, as the case may be, of equal nominal size.

752-4.1 Concrete culverts, slope paving, headwalls and miscellaneous drainage structures shall be measured by the linear foot or per each unit complete and in place.

BASIS OF PAYMENT

752-5.1 Payment will be made at the contract unit price per cubic yard (cubic meter) for unclassified excavation for structures; at the contract unit price per cubic yard (cubic meter) for concrete for the structures; and at the contract unit price per pound (km) for reinforcing steel. These prices shall be full compensation for furnishing all materials and for all preparation, excavation, and placing the materials, and for all labor, equipment, tools, and incidentals necessary to complete the structure.

752-5.1 Payment will be made at the contract unit price per linear foot or per each, complete in place. These prices shall be full compensation for furnishing all materials and for all preparation, excavation, and placing the materials, and for all labor, equipment, tools, and incidentals necessary to complete the structure.

Payment will be made under:

Item D-752-5.1 Storm Sewer Outfall – per each
TESTING REQUIREMENTS

ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft3 (600 kN-m/m3))

ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method

END OF ITEM D-752
This page intentionally left blank.
Item T-901

SEEDING

DESCRIPTION

901-1.1 This item shall consist of soil preparation, seeding, fertilizing and hydromulching the areas shown on the plans or as directed by the Engineer in accordance with these specifications.

MATERIALS

901-2.1 Seed. The species and application rates of grass, legume, and cover-crop seed furnished shall be those stipulated herein. Seed shall conform to the requirements of Federal Specification JJJ-S-181, Federal Specification, Seeds, Agricultural. Fertilizing, seeding and/or mulching operations will not be permitted when wind velocities are in excess of 15 miles per hour. All seed shall meet the requirements of the (State) Department of Agriculture and Consumer Services and all applicable state laws.

Seed shall be furnished separately or in mixtures in standard containers labeled in conformance with the Agricultural Marketing Service (AMS) Seed Act and applicable state seed laws with the seed name, lot number, net weight, percentages of purity and of germination and hard seed, and percentage of maximum weed seed content clearly marked for each kind of seed. The Contractor shall furnish the Engineer duplicate signed copies of a statement by the vendor certifying that each lot of seed has been tested by a recognized laboratory for seed testing within six (6) months of date of delivery. This statement shall include: name and address of laboratory, date of test, lot number for each kind of seed, and the results of tests as to name, percentages of purity and of germination, and percentage of weed content for each kind of seed furnished, and, in case of a mixture, the proportions of each kind of seed. Wet, moldy, or otherwise damaged seed will be rejected.

Seeds shall be applied as follows:

<table>
<thead>
<tr>
<th>Seed</th>
<th>Minimum Seed Purity (Percent)</th>
<th>Minimum Germination (Percent)</th>
<th>Rate of Application lb/acre</th>
<th>Planting Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hullled Common Bermuda Grass</td>
<td>98</td>
<td>88</td>
<td>40</td>
<td>Jan 1 to Mar 31</td>
</tr>
<tr>
<td>Unhulled Common Bermuda Grass</td>
<td>98</td>
<td>88</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Hullled Common Bermuda Grass</td>
<td>98</td>
<td>88</td>
<td>40</td>
<td>Apr 1 to Sep 30</td>
</tr>
<tr>
<td>Hullled Common Bermuda Grass</td>
<td>98</td>
<td>88</td>
<td>40</td>
<td>Oct 1 to Dec 31</td>
</tr>
<tr>
<td>Annual Rye Grass (Gulf)</td>
<td>---</td>
<td>---</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Seeding shall be performed during the period between [] and [] inclusive, unless otherwise approved by the Engineer.

901-2.2 Lime. Lime shall be ground limestone containing not less than 85% of total carbonates, and shall be ground to such fineness that 90% will pass through a No. 20 mesh sieve and 50% will pass through a No. 100 mesh sieve. Coarser material will be acceptable, providing the rates of application are increased to provide not less than the minimum quantities and depth specified in the special provisions herein on the basis of the two sieve requirements above. Dolomitic lime or a high magnesium lime shall contain at least 10% of magnesium oxide. Lime shall be applied at the rate of []. All liming materials shall conform to the requirements of ASTM C602.

901-2.3 Fertilizer. Fertilizer shall be standard commercial fertilizers supplied separately or in mixtures containing the percentages of total nitrogen, available phosphoric acid, and water-soluble potash. They
shall be applied at the rate and to the depth specified, and shall meet the requirements of applicable state laws. They shall be furnished in standard containers with name, weight, and guaranteed analysis of contents clearly marked thereon. No cyanamide compounds or hydrated lime shall be permitted in mixed fertilizers.

The fertilizers may be supplied in one of the following forms:

a. A dry, free-flowing fertilizer suitable for application by a common fertilizer spreader;
b. A finely-ground fertilizer soluble in water, suitable for application by power sprayers; or
c. A granular or pellet form suitable for application by blower equipment.

 Fertilizers shall be 10-20-10 (n-p-k) commercial fertilizer and shall be spread at the rate of 500 pounds per acre.

901-2.4 Soil for repairs. The soil for fill and topsoiling of areas to be repaired shall be at least of equal quality to that which exists in areas adjacent to the area to be repaired. The soil shall be relatively free from large stones, roots, stumps, or other materials that will interfere with subsequent sowing of seed, compacting, and establishing turf, and shall be approved by the Engineer before being placed.

901-2.5 Submittals and certifications. Shop drawings for each seeding related component shall be submitted to the Engineer for review and approval and shall be approved prior to ordering any materials associated with this item. The submittals shall include the following:

a. Catalogue data and certification showing that the seed mixture percent by weight, percent purity, percent germination and date of manufacture meet the requirements specified.

b. Catalogue data and certification showing that the guaranteed analysis of the fertilizer meets the requirements specified.

901-2.7 Inspection of Seed. Prior to startup of any seeding operations, the Engineer shall inspect all bags containing seed to ensure the proper seed specified is being utilized and that no unauthorized seed will be incorporated into the work.

CONSTRUCTION METHODS

901-3.1 Advance preparation and cleanup. After grading of areas has been completed and before applying fertilizer and ground limestone, areas to be seeded shall be raked or otherwise cleared of stones larger than 2 inches (50 mm) in any diameter, sticks, stumps, and other debris that might interfere with sowing of seed, growth of grasses, or subsequent maintenance of grass-covered areas. If any damage by erosion or other causes has occurred after the completion of grading and before beginning the application of fertilizer and ground limestone, the Contractor shall repair such damage include filling gullies, smoothing irregularities, and repairing other incidental damage.

An area to be seeded shall be considered a satisfactory seedbed without additional treatment if it has recently been thoroughly loosened and worked to a depth of not less than 5 inches (125 mm) as a result of grading operations and, if immediately prior to seeding, the top 3 inches (75 mm) of soil is loose, friable, reasonably free from large clods, rocks, large roots, or other undesirable matter, and if shaped to the required grade.

When the area to be seeded is sparsely sodded, weedy, barren and unworked, or packed and hard, any grass and weeds shall first be cut or otherwise satisfactorily disposed of, and the soil then scarified or otherwise loosened to a depth not less than 5 inches (125 mm). Clods shall be broken and the top 3 inches (75 mm) of soil shall be worked into a satisfactory seedbed by discing, or by use of cultipackers, rollers, drags, harrows, or other appropriate means.

901-3.2 Dry application method.

a. Fertilizing. Following advance preparations and cleanup fertilizer shall be uniformly spread at the rate that will provide not less than the minimum quantity stated in paragraph 901-2.3.
b. **Seeding.** Grass seed shall be sown at the rate specified in paragraph 901-2.1 immediately after fertilizing. The fertilizer and seed shall be raked within the depth range stated in the special provisions herein. Seeds of legumes, either alone or in mixtures, shall be inoculated before mixing or sowing, in accordance with the instructions of the manufacturer of the inoculant. When seeding is required at other than the seasons shown on the plans or in the special provisions herein, a cover crop shall be sown by the same methods required for grass and legume seeding.

c. **Rolling.** After the seed has been properly covered, the seedbed shall be immediately compacted by means of an approved lawn roller, weighing 40 to 65 pounds per foot (60 to 97 kg per meter) of width for clay soil (or any soil having a tendency to pack), and weighing 150 to 200 pounds per foot (223 to 298 kg per meter) of width for sandy or light soils.

901-3.3 Wet application method.

a. **General.** The Contractor may elect to apply seed and fertilizer (and lime, if required) by spraying them on the previously prepared seedbed in the form of an aqueous mixture and by using the methods and equipment described herein. The rates of application shall be as specified in the special provisions herein.

b. **Spraying equipment.** The spraying equipment shall have a container or water tank equipped with a liquid level gauge calibrated to read in increments not larger than 50 gallons (190 liters) over the entire range of the tank capacity, mounted so as to be visible to the nozzle operator. The container or tank shall also be equipped with a mechanical power-driven agitator capable of keeping all the solids in the mixture in complete suspension at all times until used.

The unit shall also be equipped with a pressure pump capable of delivering 100 gallons (380 liters) per minute at a pressure of 100 lb / sq inches (690 kPa). The pump shall be mounted in a line that will recirculate the mixture through the tank whenever it is not being sprayed from the nozzle. All pump passages and pipe lines shall be capable of providing clearance for 5/8 inch (16 mm) solids. The power unit for the pump and agitator shall have controls mounted so as to be accessible to the nozzle operator. There shall be an indicating pressure gauge connected and mounted immediately at the back of the nozzle.

The nozzle pipe shall be mounted on an elevated supporting stand in such a manner that it can be rotated through 360 degrees horizontally and inclined vertically from at least 20 degrees below to at least 60 degrees above the horizontal. There shall be a quick-acting, three-way control valve connecting the recirculating line to the nozzle pipe and mounted so that the nozzle operator can control and regulate the amount of flow of mixture delivered to the nozzle. At least three different types of nozzles shall be supplied so that mixtures may be properly sprayed over distance varying from 20 to 100 feet (6 to 30 m). One shall be a close-range ribbon nozzle, one a medium-range ribbon nozzle, and one a long-range jet nozzle. The nozzle pipe shall be mounted on an elevated supporting stand in such a manner that it can be rotated through 360 degrees horizontally and inclined vertically from at least 20 degrees below to at least 60 degrees above the horizontal. There shall be a quick-acting, three-way control valve connecting the recirculating line to the nozzle pipe and mounted so that the nozzle operator can control and regulate the amount of flow of mixture delivered to the nozzle. At least three different types of nozzles shall be supplied so that mixtures may be properly sprayed over distance varying from 20 to 100 feet (6 to 30 m). One shall be a close-range ribbon nozzle, one a medium-range ribbon nozzle, and one a long-range jet nozzle. For case of removal and cleaning, all nozzles shall be connected to the nozzle pipe by means of quick-release couplings.

In order to reach areas inaccessible to the regular equipment, an extension hose at least 50 feet (15 m) in length shall be provided to which the nozzles may be connected.

c. **Mixtures.** Lime, if required, shall be applied separately, in the quantity specified, prior to the fertilizing and seeding operations. Not more than 220 pounds (100 kg) of lime shall be added to and mixed with each 100 gallons (380 liters) of water. Seed and fertilizer shall be mixed together in the relative proportions specified, but not more than a total of 220 pounds (100 kg) of these combined solids shall be added to and mixed with each 100 gallons (380 liters) of water.

All water used shall be obtained from fresh water sources and shall be free from injurious chemicals and other toxic substances harmful to plant life. Brackish water shall not be used at any time. The Contractor shall identify to the Engineer all sources of water at least two (2) weeks prior to use. The Engineer may take samples of the water at the source or from the tank at any time and have a laboratory test the samples for chemical and saline content. The Contractor shall not use any water from any source that is disapproved by the Engineer following such tests.
All mixtures shall be constantly agitated from the time they are mixed until they are finally applied to the seedbed. All such mixtures shall be used within two (2) hours from the time they were mixed or they shall be wasted and disposed of at approved locations.

d. Spraying. Lime, if required, shall be sprayed only upon previously prepared seedbeds. After the applied lime mixture has dried, the lime shall be worked into the top 3 inches (75 mm), after which the seedbed shall again be properly graded and dressed to a smooth finish.

Mixtures of seed and fertilizer shall only be sprayed upon previously prepared seedbeds on which the lime, if required, shall already have been worked in. The mixtures shall be applied by means of a high-pressure spray that shall always be directed upward into the air so that the mixtures will fall to the ground like rain in a uniform spray. Nozzles or sprays shall never be directed toward the ground in such a manner as might produce erosion or runoff.

Particular care shall be exercised to ensure that the application is made uniformly and at the prescribed rate and to guard against misses and overlapped areas. Proper predetermined quantities of the mixture in accordance with specifications shall be used to cover specified sections of known area.

Checks on the rate and uniformity of application may be made by observing the degree of wetting of the ground or by distributing test sheets of paper or pans over the area at intervals and observing the quantity of material deposited thereon.

On surfaces that are to be mulched as indicated by the plans or designated by the Engineer, seed and fertilizer applied by the spray method need not be raked into the soil or rolled. However, on surfaces on which mulch is not to be used, the raking and rolling operations will be required after the soil has dried.

901-3.4 Maintenance of seeded areas. The Contractor shall protect seeded areas against traffic or other use by warning signs or barricades, as approved by the Engineer. Surfaces gullied or otherwise damaged following seeding shall be repaired by regrading and reseeding as directed. The Contractor shall mow, water as directed, and otherwise maintain seeded areas in a satisfactory condition until final inspection and acceptance of the work.

The Contractor will be required to water seeded areas three days per week until the proper stand of grass is well established and approved by the Engineer. The Contractor shall water every other day such that the seeded areas are watered at least three times per week. It is imperative that the Contractor water consistently to ensure proper seed growth. Watering of areas that have been opened to traffic shall occur at night. The contractor will be required to coordinate with operations and pay overtime if necessary.

When either the dry or wet application method outlined above is used for work done out of season, it will be required that the Contractor establish a good stand of grass of uniform color and density to the satisfaction of the Engineer. A grass stand shall be considered adequate when bare spots are one square foot (0.01 sq m) or less, randomly dispersed, and do not exceed 3% of the area seeded.

901-3.5 Acceptable stand of grass. At the time of final inspection, a healthy, uniform, close stand of grass shall be established, free of weeds and surface irregularities, with coverage exceeding 90% over any 10 square feet and bare spots not exceeding 4-inches x 4-inches.

METHOD OF MEASUREMENT

901-4.1 The quantity of seeding to be paid for shall be the number of acres measured on the ground surface, completed and accepted.

BASIS OF PAYMENT

901-5.1 Payment shall be made at the contract unit price per acre or fraction thereof, which price and payment shall be full compensation for furnishing and placing all material and for all labor, equipment, tools, and incidentals necessary to complete the work prescribed in this item.
Payment will be made under:

Item 901-5.1 Seeding - per acre

MATERIAL REQUIREMENTS

ASTM C602 Standard Specification for Agricultural Liming Materials
ASTM D977 Standard Specification for Emulsified Asphalt
FED SPEC JJJ-S-181, Federal Specification, Seeds, Agricultural

END OF ITEM T-901
This page intentionally left blank.
Item T-904
SODDING

DESCRIPTION

904-1.1 This item shall consist of furnishing, hauling, and placing approved live sod on prepared areas in accordance with this specification at the locations shown on the plans or as directed by the Engineer.

MATERIALS

904-2.1 Sod. Sod furnished by the Contractor shall have a good cover of living or growing grass. This shall be interpreted to include grass that is seasonally dormant during the cold or dry seasons and capable of renewing growth after the dormant period. All sod shall be obtained from areas where the soil is reasonably fertile and contains a high percentage of loamy topsoil. Sod shall be cut or stripped from living, thickly matted turf relatively free of weeds or other undesirable foreign plants, large stones, roots, or other materials that might be detrimental to the development of the sod or to future maintenance. At least 70% of the plants in the cut sod shall be composed of the species stated in the special provisions herein, and any vegetation more than 6 inches in height shall be mowed to a height of 3 inches or less before sod is lifted. Sod, including the soil containing the roots and the plant growth showing above, shall be cut uniformly to a thickness not less than that stated in the special provisions herein.

904-2.2 Lime. Lime shall be ground limestone containing not less than 85% of total carbonates, and shall be ground to such fineness that 90% will pass through a No. 20 mesh sieve and 50% will pass through a No. 100 mesh sieve. Coarser material will be acceptable, providing the rates of application are increased to provide not less than the minimum quantities and depth specified in the special provisions herein on the basis of the two sieve requirements above. Dolomitic lime or a high magnesium lime shall contain at least 10% of magnesium oxide. Lime shall be applied at the rate of [__]. All liming materials shall conform to the requirements of ASTM C602.

904-2.3 Fertilizer. Fertilizer shall be standard commercial fertilizers supplied separately or in mixtures containing the percentages of total nitrogen, available phosphoric acid, and water-soluble potash. They shall be applied at the rate and to the depth specified, and shall meet the requirements of applicable state laws. They shall be furnished in standard containers with name, weight, and guaranteed analysis of contents clearly marked thereon. No cyanamide compounds or hydrated lime shall be permitted in mixed fertilizers.

The fertilizers may be supplied in one of the following forms:

a. A dry, free-flowing fertilizer suitable for application by a common fertilizer spreader;
b. A finely-ground fertilizer soluble in water, suitable for application by power sprayers; or
c. A granular or pellet form suitable for application by blower equipment.

Fertilizers shall be 10-20-10 (n-p-k) commercial fertilizer and shall be spread at the rate of 500 pounds per acre.

904-2.4 Water. The water shall be sufficiently free from oil, acid, alkali, salt, or other harmful materials that would inhibit the growth of grass. It shall be subject to the approval of the Engineer prior to use.

904-2.5 Soil for repairs. The soil for fill and topsoiling of areas to be repaired shall be at least of equal quality to that which exists in areas adjacent to the area to be repaired. The soil shall be relatively free from large stones, roots, stumps, or other materials, larger than 2-inches, that will interfere with subsequent
CONSTRUCTION METHODS

904-3.1 General. Areas to be solid, strip, or spot sodded shall be shown on the plans. Areas requiring special ground surface preparation such as tilling and those areas in a satisfactory condition that are to remain undisturbed shall also be shown on the plans.

Suitable equipment necessary for proper preparation of the ground surface and for the handling and placing of all required materials shall be on hand, in good condition, and shall be approved by the Engineer before the various operations are started. The Contractor shall demonstrate to the Engineer before starting the various operations that the application of required materials will be made at the specified rates.

904-3.2 Preparing the ground surface. After grading of areas has been completed and before applying fertilizer and limestone, areas to be sodded shall be raked or otherwise cleared of stones larger than 2 inches (50 mm) in any diameter, sticks, stumps, and other debris which might interfere with sodding, growth of grasses, or subsequent maintenance of grass-covered areas. If any damage by erosion or other causes occurs after grading of areas and before beginning the application of fertilizer and ground limestone, the Contractor shall repair such damage. This may include filling gullies, smoothing irregularities, and repairing other incidental damage.

904-3.3 Applying fertilizer and ground limestone. Following ground surface preparation, fertilizer shall be uniformly spread at a rate which will provide not less than the minimum quantity of each fertilizer ingredient, as stated in the special provisions herein. If use of ground limestone is required, it shall then be spread at a rate that will provide not less than the minimum quantity stated in the special provisions herein. These materials shall be incorporated into the soil to a depth of not less than 2 inches (50 mm) by discing, raking, or other suitable methods. Any stones larger than 2 inches (50 mm) in any diameter, large clods, roots, and other litter brought to the surface by this operation shall be removed.

904-3.4 Obtaining and delivering sod. After inspection and approval of the source of sod by the Engineer, the sod shall be cut with approved sod cutters to such a thickness that after it has been transported and placed on the prepared bed, but before it has been compacted, it shall have a uniform thickness of not less than 2 inches (50 mm). Sod sections or strips shall be cut in uniform widths, not less than 10 inches (250 mm), and in lengths of not less than 18 inches (0.5 m), but of such length as may be readily lifted without breaking, tearing, or loss of soil. Where strips are required, the sod must be rolled without damage with the grass folded inside. The Contractor may be required to mow high grass before cutting sod.

The sod shall be transplanted within 24 hours from the time it is stripped, unless circumstances beyond the Contractor’s control make storing necessary. In such cases, sod shall be stacked, kept moist, and protected from exposure to the air and sun and shall be kept from freezing. Sod shall be cut and moved only when the soil moisture conditions are such that favorable results can be expected. Where the soil is too dry, permission to cut sod may be granted only after it has been watered sufficiently to moisten the soil to the depth the sod is to be cut.

904-3.5 Laying sod. Sodding shall be performed only during the seasons when satisfactory results can be expected. Frozen sod shall not be used and sod shall not be placed upon frozen soil. Sod may be transplanted during periods of drought with the approval of the Engineer, provided the sod bed is watered to moisten the soil to a depth of at least 4 inches immediately prior to laying the sod.

The sod shall be moist and shall be placed on a moist earth bed. Pitch forks shall not be used to handle sod, and dumping from vehicles shall not be permitted. The sod shall be carefully placed by hand, edge to edge and with staggered joints, in rows at right angles to the slopes, commencing at the base of the area to be sodded and working upward. The sod shall immediately be pressed firmly into contact with the sod bed by tamping or rolling with approved equipment to provide a true and even surface, and ensure knitting without displacement of the sod or deformation of the surfaces of sodded areas. Where the sod may be displaced during sodding operations, the workmen, when replacing it, shall work from ladders or treaded planks to prevent further displacement. Screened soil of good quality shall be used to fill all cracks between...
sods. The quantity of the fill soil shall not cause smothering of the grass. Where the grades are such that the flow of water will be from paved surfaces across sodded areas, the surface of the soil in the sod after compaction shall be set approximately one inch (25 mm) below the pavement edge. Where the flow will be over the sodded areas and onto the paved surfaces around manholes and inlets, the surface of the soil in the sod after compaction shall be placed flush with pavement edges.

On slopes steeper than one (1) vertical to 2-1/2 horizontal and in v-shaped or flat-bottom ditches or gutters, the sod shall be pegged with wooden pegs not less than 12 inches (300 mm) in length and have a cross-sectional area of not less than 3/4 sq inch (18 sq mm). The pegs shall be driven flush with the surface of the sod.

904-3.6 Watering. Adequate water and watering equipment must be on hand before sodding begins, and sod shall be kept moist until it has become established and its continued growth assured. In all cases, watering shall be done in a manner that will avoid erosion from the application of excessive quantities and will avoid damage to the finished surface. The Contractor will be required to water sodded areas three days per week until the sod is well established, has good color and is approved by the Engineer. The Contractor shall water every other day such that the sod is watered at least three times per week. It is imperative that the Contractor water consistently to ensure proper sod growth.

904-3.7 Establishing turf.

a. General. The Contractor shall provide general care for the sodded areas as soon as the sod has been laid and shall continue until final inspection and acceptance of the work.

b. Protection. All sodded areas shall be protected against traffic or other use by warning signs or barricades approved by the Engineer.

c. Mowing. The Contractor shall mow the sodded areas with approved mowing equipment, depending upon climatic and growth conditions and the needs for mowing specific areas. In the event that weeds or other undesirable vegetation are permitted to grow to such an extent that, either cut or uncut, they threaten to smother the sodded species, they shall be mowed and the clippings raked and removed from the area.

904-3.8 Repairing. When the surface has become gullied or otherwise damaged during the period covered by this contract, the affected areas shall be repaired to re-establish the grade and the condition of the soil, as directed by the Engineer, and shall then be sodded as specified in paragraph 904-3.5.

METHOD OF MEASUREMENT

904-4.1 This item shall be measured on the basis of the area in square yards of the surface covered with sod and accepted.

BASIS OF PAYMENT

904-5.1 This item will be paid for on the basis of the contract unit price per square yard for sodding, which price shall be full compensation for all labor, equipment, material, staking, and incidentals necessary to satisfactorily complete the items as specified.

Payment will be made under:

Item T-904-5.1 Sodding - per square yard

MATERIAL REQUIREMENTS

ASTM C602 Standard Specification for Agricultural Liming Materials

END OF ITEM T-904
This page intentionally left blank.
Item T-905
TOPSOILING

DESCRIPTION

905-1.1 This item shall consist of preparing the ground surface for topsoil application, removing topsoil from designated stockpiles or areas to be stripped on the site or from approved sources off the site, and placing and spreading the topsoil on prepared areas in accordance with this specification at the locations shown on the plans or as directed by the Engineer.

MATERIALS

905-2.1 Topsoil. Topsoil shall be the surface layer of soil with no admixture of refuse or any material toxic to plant growth, and it shall be reasonably free from subsoil and stumps, roots, brush, stones (2 inches or more in diameter), and clay lumps or similar objects. Brush and other vegetation that will not be incorporated with the soil during handling operations shall be cut and removed. Ordinary sod and herbaceous growth such as grass and weeds are not to be removed, but shall be thoroughly broken up and intermixed with the soil during handling operations. Heavy sod or other cover, which cannot be incorporated into the topsoil by discing or other means, shall be removed. The topsoil or soil mixture, unless otherwise specified or approved, shall have a pH range of approximately 5.5 pH to 7.6 pH, when tested in accordance with the methods of testing of the Association of Official Agricultural Chemists in effect on the date of invitation of bids. The organic content shall be not less than 3% nor more than 20% as determined by the wet-combustion method (chromic acid reduction). There shall be not less than 20% nor more than 80% of the material passing the 200 mesh (0.075 mm) sieve as determined by the wash test in accordance with ASTM C117.

Natural topsoil may be amended by the Contractor with approved materials and methods to meet the above specifications.

905-2.2 Inspection and tests. Within 10 days following acceptance of the bid, the Engineer shall be notified of the source of topsoil to be furnished by the Contractor. The topsoil shall be inspected to determine if the selected soil meets the requirements specified and to determine the depth to which stripping will be permitted. At this time, the Contractor may be required to take representative soil samples from several locations within the area under consideration and to the proposed stripping depths, for testing purposes as specified in paragraph 905-2.1.

CONSTRUCTION METHODS

905-3.1 General. Areas to be topsoiled shall be shown on the plans. If topsoil is available on the site, the location of the stockpiles or areas to be stripped of topsoil and the stripping depths shall be shown on the plans.

Suitable equipment necessary for proper preparation and treatment of the ground surface, stripping of topsoil, and for the handling and placing of all required materials shall be on hand, in good condition, and approved by the Engineer before the various operations are started.

905-3.2 Preparing the ground surface. Immediately prior to dumping and spreading the topsoil on any area, the surface shall be loosened by discs or spike-tooth harrows, or by other means approved by the Engineer, to a minimum depth of 4 inches to facilitate bonding of the topsoil to the covered subgrade soil. The surface of the area to be topsoiled shall be cleared of all stones larger than 4 inches in any diameter and all litter or other material which may be detrimental to proper bonding, the rise of capillary moisture, or the proper growth of the desired planting. Limited areas, as shown on the plans, which are too compact to respond to these operations shall receive special scarification.
Grades on the area to be topsoiled, which have been established by others as shown on the plans, shall be maintained in a true and even condition. Where grades have not been established, the areas shall be smooth-graded and the surface left at the prescribed grades in an even and compacted condition to prevent the formation of low places where water will stand.

905-3.3 Obtaining topsoil. Prior to the stripping of topsoil from designated areas, any vegetation, briars, stumps and large roots, rubbish or stones found on such areas, which may interfere with subsequent operations, shall be removed using methods approved by the Engineer. Heavy sod or other cover, which cannot be incorporated into the topsoil by discing or other means shall be removed.

When suitable topsoil is available on the site, the Contractor shall remove this material from the designated areas and to the depth as directed by the Engineer. The topsoil shall be spread on areas already tilled and smooth-graded, or stockpiled in areas approved by the Engineer. Any topsoil stockpiled by the Contractor shall be rehandled and placed without additional compensation. Any topsoil that has been stockpiled on the site by others, and is required for topsoiling purposes, shall be removed and placed by the Contractor. The sites of all stockpiles and areas adjacent thereto which have been disturbed by the Contractor shall be graded if required and put into a condition acceptable for seeding.

When suitable topsoil is secured off the airport site, the Contractor shall locate and obtain the supply, subject to the approval of the Engineer. The Contractor shall notify the Engineer sufficiently in advance of operations in order that necessary measurements and tests can be made. The Contractor shall remove the topsoil from approved areas and to the depth as directed. The topsoil shall be hauled to the site of the work and placed for spreading, or spread as required. Any topsoil hauled to the site of the work and stockpiled shall be rehandled and placed without additional compensation.

905-3.4 Placing topsoil. The topsoil shall be evenly spread on the prepared areas to a uniform depth of 4 inches after compaction, unless otherwise shown on the plans or stated in the special provisions. Spreading shall not be done when the ground or topsoil is frozen, excessively wet, or otherwise in a condition detrimental to the work. Spreading shall be carried on so that turfing operations can proceed with a minimum of soil preparation or tilling.

After spreading, any large, stiff clods and hard lumps shall be broken with a pulverizer or by other effective means, and all stones or rocks (2 inches or more in diameter), roots, litter, or any foreign matter shall be raked up and disposed of by the Contractor. after spreading is completed, the topsoil shall be satisfactorily compacted by rolling with a cultipacker or by other means approved by the Engineer. The compacted topsoil surface shall conform to the required lines, grades, and cross-sections. Any topsoil or other dirt falling upon pavements as a result of hauling or handling of topsoil shall be promptly removed.

METHOD OF MEASUREMENT

905-4.1 Topsoil obtained on the site shall be measured by the number of cubic yards of topsoil measured in its original position and stripped or excavated. Topsoil stockpiled by others and removed for topsoiling by the Contractor shall be measured by the number of cubic yards of topsoil measured in the stockpile. Topsoil shall be measured by volume in cubic yards computed by the method of end areas.

905-4.2 Topsoil obtained off the site shall be measured by the number of cubic yards of topsoil measured in its original position and stripped or excavated. Topsoil shall be measured by volume in cubic yards computed by the method of end areas.

BASIS OF PAYMENT

905-5.1 Payment will be made at the contract unit price per cubic yard for topsoiling (obtained on the site). This price shall be full compensation for furnishing all materials and for all preparation, placing, and spreading of the materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

905-5.2 Payment will be made at the contract unit price per cubic yard for topsoiling (obtained off the site). This price shall be full compensation for furnishing all materials and for all preparation, placing, and
spreading of the materials, and for all labor, equipment, tools, and incidentals necessary to complete the item.

Payment will be made under:

Item T-905-5.1 Topsoiling (Obtained on Site or Removed from Stockpile - per cubic yard

TESTING MATERIALS

ASTM C117 Materials Finer than 75 \(\mu\text{m}\) (No. 200) Sieve in Mineral Aggregates by Washing

END OF ITEM T-905
This page intentionally left blank.
Item L-100

BASIC ELECTRICAL REQUIREMENTS

DESCRIPTION

100-1.1 The contractor shall maintain current copies of all referenced and applicable advisory circulars and standards on the job site. The Contractor shall be responsible to make known to the Engineer and conflict between plans and specifications that he observes or of which he is made aware of.

This work shall consist of furnish and install runway edge lights, taxiway edge lights, taxiway centerline lights, and guard lights as indicated on the plans.

All miscellaneous connections of lights to existing or new cable where shown or to ensure the lights remain operational as indicated in the phasing plans.

Additional details and information for specific system covered in this item are contained in the following latest Federal Aviation Administration Advisory Circulars.

STANDARDS

100-2.1 Applicable National Fire Protection Association (NFPA) Codes, including but not limited to the following:

- NFPA 70 National Electrical Code
- NFPA 70E Standard for the Electrical Safety in the Workplace

Applicable Code of Federal Regulations (CFR) codes, include but not limited to:

- 29 CFR 1910 Occupational Safety and Health Standards (OSHA)
- 29 CFR 1926 Safety and Health Regulations for Construction

FAA Guidelines and Advisory Circulars, including but not limited to the following:

- AC 150/5340-30G Design and Installation Details for Airport Visual Aids
- AC 150/5345-53 Approved Airport Lighting Equipment
- AC150/5345-26D Specification for L-823 Pug & Receptacle, Cable Connectors
- AC 150/5345-42J Specifications for Airport Light Base and Transformer Housings, Junction Boxes and Accessories
- AC 150/5345-46D Specification for Runway and Taxiway Light Fixtures
- AC 150/5345-47C Isolation Transformers for Airport Lighting Systems

Contractor shall utilize the most current editions of standards, which are current at time of bid and as recognized by the Authority Having Jurisdiction (AHJ) for the respective standard.
EQUIPMENT AND MATERIALS

100-3.1 GENERAL. All lighting equipment and material covered by the FAA specifications shall have the prior approval of the Federal Aviation Administration Service, and shall be listed in the most recent Advisory Circular 150/5345-1 Approved Airport Lighting Equipment.

Airport lighting equipment and materials shall also meet the Buy American Preference requirements in 49 USC 50101 and the Aviation Safety and Capacity Expansion Act. The equipment shall be approved and listed on the FAA “Equipment Meeting Buy American Requirements” located on the Federal Aviation Website the address is listed here. www.faa.gov/airports/aip/procurement/federal_contract_provisions The current version on the date that the submittals are received by the Engineer, or the Contractor may submit a signed formal letter from the manufacturer that clearly indicates the specific equipment, model number, manufacturer location, and a statement that certifies the equipment and/or materials meet the Buy American Preference.

All other equipment and materials covered by other referenced specifications shall be subject to acceptance through manufacturer’s certification of compliance with the applicable specification when requested by the Engineer. All equipment and materials shall be new and meet the applicable equipment certification standards. All other electrical components and products not covered under the FAA equipment certification program shall be tested and listed by an OSHA accepted, nationally recognized testing laboratory (NRTL) to conform to the standards indicated in these contract documents and to the industry standards required in the NEC, NEME, IEEE, and applicable FAA advisory circulars.

Manufacturer certifications shall not relieve the contractor of the contractor’s responsibility to provide materials in accordance with these specifications and acceptable to the Engineer. Materials supplied and/or installed that do not materially comply with these specifications shall be removed, when directed by the engineer and replaced with materials, which comply with these specifications, at the sole cost to the contractor.

All materials and equipment used in the construction of this project shall be submitted to the engineer for approval prior to ordering the material. Submittal consisting of marked catalog sheets or shop drawings shall be provided. Submittal data shall be presented in a clear, concise and thorough manner. Original catalog sheets are required. Photocopies may be accepted if they are as good a quality as an original sheet. Clearly and boldly mark each copy to identify pertinent products or models applicable to the project. Clearly indicate all optional equipment that is being provided. Submittals for components or electrical equipment and systems shall identify the equipment for which they apply on each submittal. Contractor is solely responsible for delays in the project accruing directly or indirectly from late submissions or resubmissions of submittals.

The data submitted shall be sufficient, in the opinion of the Engineer, to determine the compliance with the contract documents and specifications. The contractor submittal shall be neatly bound in a three ring binder, tabbed by specification section. Provide a copy of the specification section at the front of each tab. The Engineer reserves the right to reject any and all equipment, materials or procedures, which , in the Engineer’s opinion does not meet the system design and the standards and codes referenced.

All equipment and materials furnished and installed under this section shall be guaranteed against defects in materials and workmanship for a period of twelve (12) months from final acceptance by the Owner. Defective materials and/or equipment shall be repaired/replaced, at the Owners discretion, at no additional cost to the owner.
• All LED fixtures installed shall be warranted by the manufacturer for a minimum of four years after the day the Owner receives beneficial use of the equipment.

After approval of the submitted equipment the contractor shall supply the following Operation and Maintenance Manual documentation to the Owner. Two (2) complete sets of documentation shall be supplied for each model of equipment. The documentation shall be securely bound in a heavy duty three ring binder. Each piece of equipment shall be indexed using typewritten label tab. The spine of the binder shall include a typewritten label indicating equipment contained in the binder as well as project name and date. The documentation shall include the following items:

• Approved Submittals and Shop Drawings
• Cable Splicer Qualifications, Type and Voltage
• State Contractors License with Electrical Classifications
• Master, Journeyman and Apprentice Electrician Licenses and Certification
• Lockout/Tag out program
• Regulator Load and Reports for testing and adjusting as required for modified load.
• Megger Test Reports
• Ground Rod Test Reports
• Installation Manuals
• Operation Manuals
• Maintenance Manuals

After approval of the O&M manual the contractor shall provide three (3) complete electronic copies of all documentation in Adobe PDF file format on CD-R discs. The electronic files shall contain searchable text for ease in locating information within the PDF.

The Contractor is the single source of responsibility for the installation and integration of the airports lighting, power and control systems. New airport lighting equipment and materials shall be fully compatible with all other new and existing airport lighting equipment and systems. Any non-compatible components furnished by the Contractor shall be replaced at no additional cost to the owner with a similar unit that is approved by the Engineer and compatible with the remainder of the airport lighting system.

Operations and Maintenance Data
Installation manuals with the description of functions, installation and calibration manuals, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.

Operations manual shall include printed operating instructions and procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, and all equipment settings.

Maintenance Manual shall include maintenance procedures for routine preventative maintenance and troubleshooting, disassembly, repair and reassembly.

Service Manuals shall include the contact information required for any warranty work.

CONSTRUCTION METHODS

100-4.1 Lockout/Tagout Program:
The Contractor shall provide a complete copy of an electrical energy source Lockout/Tagout Program to the Owner, and another copy to the Engineer. The document shall clearly identify the on-site master electricians and their contact information, including office and mobile telephone numbers.

The Lockout/Tagout Program shall comply with Part 1910 – Occupational Safety and Health Standards (OSHA) Subpart S – Electrical, and meet the requirements of 29 CFR 1910.147, The Control of Hazardous Energy (Lockout/Tagout), including requirements listed in 1910.331 through 1910.335. Implementation of the Lockout/Tagout Program and all other related safety requirements are the sole responsibility of the Contractor.

SAFETY PROGRAM.

100-5.1 The Contractor shall implement an electrical safety program that complies with NFPA 70E and 29 CFR 1926. Implementation of the Electrical Safety Program, determining and providing proper Personal Protective Equipment (PPE), training and enforcing personnel to wear the prescribed PPE, conducting work area safety inspections (including correcting deficiencies), and all other related safety requirements are the sole responsibility of the Contractor. All work involved in the preparation and implementation of the safety program will not be measured for separate payment, but will be considered subsidiary to the lockout/tagout bid item.

GENERAL.

100-6.1 In general, the various electrical equipment and material to be installed by the various trades under this specification shall be run as indicated, as specified herein, as required by particular conditions at the site, and as required to conform to the generally accepted standards so as to complete the work in a neat and satisfactory manner. The following is a general outline concerning the running of various systems and is to be excepted where the drawings or conditions at the buildings necessitate deviating from these standards.

The Contractor shall perform megger testing on each existing regulator circuit prior to any work on the electrical system. This information shall be recorded and documented by the Contractor and submitted to the Engineer. The Contractor shall perform megger tests on each regulator circuit after the acceptance test period. This acceptance test information shall be recorded and documented by the Contractor and submitted to the Engineer. Megger test shall be performed in accordance with the requirements of Item L-108.

The drawings and specifications are complementary; any work required by one, but not by the other, shall be performed as though required by both.

Each Contractor shall thoroughly acquaint himself with the details before submitting his bid as no allowances will be made because of the Contractor's unfamiliarity with these details.

The electrical plans do not give exact locations, etc., and do not show all the offsets, control lines, junction boxes, and other installation details. Each Contractor shall carefully lay out his work at the site to conform to the job conditions, to conform to details of installation supplied by the manufacturers of the equipment to be installed, and thereby to provide complete operating systems.

The electrical plans show diagrammatically the locations of the various electrical components and apparatus and the method of routing the wire.

The Engineer reserves the right to make any reasonable change in location of any outlet or apparatus before installation, without additional cost to the Owner.

Where two or more units of the same kind or class of equipment are required, these shall be products of a single manufacturer; however, the component parts need not be the products of one manufacturer.

Each Contractor shall submit working scale drawings of all his apparatus and equipment which in any way varies from these Specifications and Plans, which shall be checked by the Engineer and approved before the work is started, and interferences with the structural conditions shall be corrected by the Contractor before the work proceeds.

The Contractor shall keep ends of conduits, including those extending through equipment and fixtures covered or closed with caps or plugs to prevent foreign material from entering during construction.
Sealing of raceways shall not occur until after the conductors and cables have been installed, tested and accepted by the Engineer. The Contractor shall install any temporary lines and connections required to maintain electric services and safely remove and dispose of them when complete. All temporary wiring shall conform to OSHA standards. Remove temporary services when work is complete. Any damage to electrical equipment caused by the Contractor shall be repaired at no cost to the Owner.

All non-current carrying parts and neutrals shall be grounded as indicated on the Drawings or as required by the Codes. White and/or gray outer finish conductors may only be used as grounded conductors or neutral conductors in accordance with NEC. Install insulated green equipment grounding conductors with all feeder and branch circuits. Provide separate insulated equipment grounding conductors from grounding system to each electrical light base and all other special electrical system equipment, and appurtenance. Location shall be accordance with NFPA 70 and other applicable standard requirements.

The bidder shall inspect the site, thoroughly acquaint himself with conditions to be met and work to be accomplished. Failure to comply with this shall not constitute grounds for any additional payments. Where electrical equipment is installed that causes electrical noise interference with other systems either existing or installed under this contract, the offending equipment shall be equipped with isolating transformers, filters, reactors, shielding, or any other means as required for the satisfactory suppression of the interferences, as determined by the Engineer. All junction boxes, expansion joints, flexible connections, instruments and similar items requiring servicing or repairs shall be installed in an accessible location.

All salvage and equipment removed by the work shall remain the property of the Owner. Material removed from the project shall be stored on the project site where and as directed. Debris shall be removed from the job site and disposed of by the Contractor. The Contractor shall maintain his work area clean and orderly at all times. Debris shall be removed promptly. The electrical system shall be thoroughly cleaned inside and outside of all enclosures to remove all metal shavings or other work debris, dust, concrete splatter, plaster, paint and lint. The Contractor shall do all excavating and backfilling made necessary by electrical work and shall remove all surplus or supply any earth required to establish the proper finished grade.

TESTING

100-7.1 General Electrical Testing:
Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification and certify compliance with test parameters. Tests shall be conducted in the presence of the engineer and shall be to their satisfaction. Correct malfunctioning units on-site where possible. And retest to demonstrate compliance; otherwise, replace with a new unit and retest. Electrical equipment will be considered defective if it does not pass the tests and inspections. Reports shall include notations of deficiencies, remedial action taken and observations after remedial action.

System and Equipment Testing: All installations shall be fully tested by continuous operation for not less than 24 hours prior to acceptance. These tests shall include functioning of the control systems not less than 10 times.

Airport lighting equipment and special systems shall be tested in accordance with the applicable FAA Advisory Circular requirements and the manufacturer's installation instructions. These tests shall include those system requirements listed within AC 150/5340-26 Maintenance of Airport Visual Aid Facilities.

Test equipment and instruments utilized by the Contractor shall have been calibrated following the manufacturers recommended schedule to verify their accuracy prior to testing the work. The contractor shall provide instrument calibration certificates on test equipment when requested by the
engineer. Retesting work due to inaccurate or defective instrumentation shall be performed by the contractor to the satisfaction of the engineer at no additional cost to the owner.

100-7.2 Megger Testing:
The Contractor shall perform megger testing on each existing regulator circuit prior to any work on the electrical system. This information shall be recorded and documented by the contractor and submitted to the Engineer. The Contractor shall perform megger tests on each regulator circuit after the acceptance test period. This acceptance test information shall be recorded and documented by the Contractor and submitted to the Engineer. Megger tests shall be performed in accordance with the requirements in L-108.

The Contractor shall submit his initial megger test reports to the Engineer and the Owner prior to the contractor proceeding with any demolition to the system.

After final acceptance testing has been completed, the Contractor shall complete and submit his final megger test reports to the Engineer and insert copies of the initial and final megger test reports in the Operations and Maintenance Manual.

Megger testing shall be performed using an insulation tester, such as a Fluke 1587 Insulation Multimeter or approved equal.

Refer to the minimum guaranteed insulation resistance requirements through the end of the contract warranty period as listed in L-108.

The installations shall be tested in operation as completed unit prior to acceptance. Tests shall include the taking megger and voltage readings in accordance with manufacturer’s requirements. Testing equipment shall be furnished by the contractor. The insulation resistance to ground for 600V rated cables shall be not less than 100 megohms when measure per NETA standards.

100-7.3 Grounding Rod Impedance Testing:
As-Built drawings shall indicate the location of all of the installed grounding rods on the project. Each grounding rod shall have a unique identifier that corresponds with its submitted ground impedance test report.

Three pole fall-of-potential testers can measure the ground resistance of a ground rod utilizing auxiliary electrodes. Units such as a Fluke 1621 Earth Ground Tester shall be utilized for testing individual dedicated equipment grounding rods at fixtures and equipment or for testing isolated counterpoise grounding rods not yet connected to the counterpoise wire.

Insulation resistance testers for 5kV series circuits shall utilize 1000V DC source output for testing. The test equipment shall be submitted for review and approval by the Engineer prior to performing the tests.

If the grounding rods impedance exceeds 25 ohms, an additional rod shall be driven in a location that is suitable and approved by the Engineer. However the additional rod must satisfy the requirements of NEC250.52 and not be less than 6 feet away from any other ground rod electrode. Additional ground rods shall not be measured for separate payment but shall be considered subsidiary to the counterpoise or respective equipment pay item.

The contractor shall perform additional tests as required and requested by the Engineer at no additional cost.
The contractor shall coordinate with the Engineer to approve tests daily before proceeding. The Contractor shall fill out a separate test report for each date. Test reports shall be submitted weekly to the Engineer for their review.

100-7.4 Cable Pulling Tension Values Log:
The enclosed “cable Tension Value Log” form shall be utilized for monitoring the cable pull tension values in the presence of the Engineer. Refer to Item L-108 for additional information and requirements.

100-7.5 Work Supervision:
The electrical contractor shall be a licensed contractor in the State of Texas having an electrical classification suitable for performing the work required within these contract documents.

The contractor shall designate in writing the qualified electrical supervisor who will provide supervision to all of the electrical work on the project. The minimum qualifications for the electrical supervisor shall be a master electrician as defined by Texas Electrical Safety and Licensing Advisory Board. The supervisor or his appointed alternate possessing at least a journeyman electrician license shall be on site whenever electrical work is being performed. The qualifications of the electrical supervisor shall be subject to approval of the Owner.

No unlicensed electrical workers shall perform electrical work on the project. Apprentice electricians in a ratio of no more than one apprentice per journeyman electrician will be allowed if the apprentices are licensed and actively participating in an apprenticeship program recognized by the state of Texas.

Refer to specification L-108 for splicer qualifications and additional requirements.

100-7.6 Training:
The training classes shall be coordinated with the Owner and the Engineer in advance of the final acceptance testing. Comprehensive operational and maintenance training manual shall be provided by the equipment manufacturer and the contractor. Provide a minimum of one (1) Six hour class for the Engineer and Staff as determined by the authority. The sessions shall be videotaped and placed on a CD so that it can be turned over to the staff.

METHOD OF MEASUREMENT

100-8.1 The general requirements contained herein shall not be measured separately for payment.

BASIS OF PAYMENT

100-9.1 The general requirements contained herein shall not be paid for separately but shall be considered incidental to the pay items which require adhesive compounds.
Item L-108
UNDERGROUND POWER CABLE FOR AIRPORTS

DESCRIPTION

108-1.1 This item shall consist of furnishing and installing power cables that are direct buried and furnishing and/or installing power cables within conduit or duct banks per these specifications at the locations shown on the plans. It includes excavation and backfill of trench for direct-buried cables only. Also included are the installation of counterpoise wires, ground wires, ground rods and connections, cable splicing, cable marking, cable testing, and all incidentals necessary to place the cable in operating condition as a completed unit to the satisfaction of the Engineer. This item shall not include the installation of duct banks or conduit, trenching and backfilling for duct banks or conduit, or furnishing or installation of cable for FAA owned/operated facilities. Requirements and payment for trenching and backfilling for the installation of underground conduit and duct banks is in Item L-110, Airport Underground Electrical Duct Banks and Conduits.

EQUIPMENT AND MATERIALS

108-2.1 General.

a. Airport lighting equipment and materials covered by advisory circulars (AC) shall be approved under the Airport Lighting Equipment Certification Program per AC 150/5345-53, current version.

b. All other equipment and materials covered by other referenced specifications shall be subject to acceptance through manufacturer’s certification of compliance with the applicable specification, when requested by the Engineer.

c. Manufacturer’s certifications shall not relieve the Contractor of the responsibility to provide materials per these specifications. Materials supplied and/or installed that do not comply with these specifications shall be removed (when directed by the Engineer) and replaced with materials that comply with these specifications at the Contractor’s cost.

d. All materials and equipment used to construct this item shall be submitted to the Engineer for approval prior to ordering the equipment. Submittals consisting of marked catalog sheets or shop drawings shall be provided. Submittal data shall be presented in a clear, precise and thorough manner. Original catalog sheets are preferred. Photocopies are acceptable provided they are as good a quality as the original. Clearly and boldly mark each copy to identify products or models applicable to this project. Indicate all optional equipment and delete any non-pertinent data. Submittals for components of electrical equipment and systems shall identify the equipment to which they apply on each submittal sheet. Markings shall be made bold and clear with arrows or circles (highlighting is not acceptable). The Contractor is solely responsible for delays in the project that may accrue directly or indirectly from late submissions or resubmissions of submittals.

e. The data submitted shall be sufficient, in the opinion of the Engineer, to determine compliance with the plans and specifications. The Contractor’s submittals shall be neatly bound in a properly sized 3-ring binder, tabbed by specification section. The Engineer reserves the right to reject any and all equipment, materials, or procedures that do not meet the system design and the standards and codes, specified in this document.

f. All equipment and materials furnished and installed under this section shall be guaranteed against defects in materials and workmanship for at least twelve (12) months from the date of final acceptance by the Owner. The defective materials and/or equipment shall be repaired or replaced, at the Owner’s discretion, with no additional cost to the Owner. The Contractor shall be responsible to maintain a minimum insulation resistance per AC 150/5340-26B, Maintenance Airport Visual aid Facilities, Table 5-1 and paragraph 5.1.3.1, with isolation transformers connected in new circuits and new segments of existing circuits through the end of the contract warranty period.
108-2.2 Cable. Underground cable for airfield lighting facilities (runway and taxiway lights and signs) shall conform to the requirements of AC 150/5345-7, Specification for L-824 Underground Electrical Cable for Airport Lighting Circuits latest edition. Conductors for use on 6.6 ampere primary airfield lighting series circuits shall be single conductor, seven strand, #8 American wire gauge AWG, L-824 Type B, 5,000 volts, nonshielded, with ethylene propylene insulation. Conductors for use on 20 ampere primary airfield lighting series circuits shall be single conductor, seven strand, #6 AWG, L-824 Type B, 5,000 volts, nonshielded, with ethylene propylene insulation. L-824 conductors for use on the L-830 secondary of airfield lighting series circuits shall be sized in accordance with the manufacturer’s recommendations. All other conductors shall comply with FAA and National Electric Code (NEC) requirements. Conductor sizes noted above shall not apply to leads furnished by manufacturers on airfield lighting transformers and fixtures.

Wire for electrical circuits up to 600 volts shall comply with Specification L-824 and/or Federal Specification J-C-30 and shall be type THWN-2, 75°C. Conductors for parallel (voltage) circuits shall be sized and installed in accordance with NFPA-70, National Electrical Code.

Unless noted otherwise, all 600-volt and less non-airfield lighting conductor sizes are based on a 75°C, THWN-2, 600 volt insulation, copper conductors, not more than three single insulated conductors, in raceway, in free air. The conduit/duct sizes are based on the use of THWN-2, 600 volt insulated conductors. The Contractor shall make the necessary increase in conduit/duct sizes for other types of wire insulation. In no case shall the conduit/duct size be reduced. The minimum power circuit wire size shall be #12 AWG.

Conductor sizes may have been adjusted due to voltage drop or other engineering considerations. Equipment provided by the Contractor shall be capable of accepting the quantity and sizes of conductors shown in the Contract Documents. All conductors, pigtailed, cable step-down adapters, cable step-up adapters, terminal blocks and splicing materials necessary to complete the cable termination/splice shall be considered incidental to the respective pay items provided.

Cable type, size, number of conductors, strand and service voltage shall be as specified in the Contract Document.

108-2.3 Bare copper wire (counterpoise, bare copper wire ground and ground rods). Wire for counterpoise or ground installations for airfield lighting systems shall be No. 6 AWG bare solid copper wire for counterpoise and/or No. 6 AWG insulated stranded for ground wire per ASTM B3 and ASTM B8, and shall be bare copper wire per ASTM B33. See AC 150/5340-30 for additional details about counterpoise and ground wire types and installation. For voltage powered circuits, the equipment ground conductor shall be minimum No. 6 AWG, 600V rated, Type XHHW insulated, green color, stranded copper equipment ground conductor.

Ground rods shall be copper. The ground rods shall be of the length and diameter specified on the plans, but in no case be less than 10 feet (2.54 m) long and 5/8 inch (16 mm) in diameter.

108-2.4 Cable connections. In-line connections or splices of underground primary cables shall be of the type called for on the plans, and shall be one of the types listed below. No separate payment will be made for cable connections.

a. **The cast splice.** A cast splice, employing a plastic mold and using epoxy resin equivalent to that manufactured by 3M™ Company, “Scotchcast” Kit No. 82-B, or as manufactured by Hydol® Corporation, “Hyseal Epoxy Splice” Kit No. E1135, or an approved equivalent, used for potting the splice is acceptable.

b. **The field-attached plug-in splice.** Figure 3 of AC 150/5345-26, Specification for L-823 Plug and Receptacle, Cable Connectors, employing connector kits, is acceptable for field attachment to single conductor cable. It shall be the Contractor’s responsibility to determine the outside diameter of the cable to be spliced and to furnish appropriately sized connector kits and/or adapters and heat shrink tubing with integral sealant.

c. **The factory-molded plug-in splice.** Specification for L-823 Connectors, Factory-Molded to Individual Conductors, is acceptable.

d. **The taped or heat-shrink splice.** Taped splices employing field-applied rubber, or synthetic rubber tape covered with plastic tape is acceptable. The rubber tape should meet the requirements of ASTM D4388 and the plastic tape should comply with Military Specification MIL-I-24391 or Commercial Item Description.
A-A-55809. Heat shrinkable tubing shall be heavy-wall, self-sealing tubing rated for the voltage of the wire being spliced and suitable for direct-buried installations. The tubing shall be factory coated with a thermoplastic adhesive-sealant that will adhere to the insulation of the wire being spliced forming a moisture- and dirt-proof seal. Additionally, heat shrinkable tubing for multi-conductor cables, shielded cables, and armored cables shall be factory kits that are designed for the application. Heat shrinkable tubing and tubing kits shall be manufactured by Tyco Electronics/ Raychem Corporation, Energy Division, or approved equivalent.

In all the above cases, connections of cable conductors shall be made using crimp connectors using a crimping tool designed to make a complete crimp before the tool can be removed. All L-823/L-824 splices and terminations shall be made per the manufacturer’s recommendations and listings.

All connections of counterpoise, grounding conductors and ground rods shall be made by the exothermic process or approved equivalent, except that a light base ground clamp connector shall be used for attachment to the light base. See AC 150/5340-30 for additional information about methods of attaching a ground to a galvanized light base. All exothermic connections shall be made per the manufacturer’s recommendations and listings.

108-2.5 Splicer qualifications. Every airfield lighting cable splicer shall be qualified in making airport cable splices and terminations on cables rated at or above 5,000 volts AC. The Contractor shall submit to the Engineer proof of the qualifications of each proposed cable splicer for the airport cable type and voltage level to be worked on. Cable splicing/terminating personnel shall have a minimum of three (3) years continuous experience in terminating/splicing medium voltage cable.

108-2.6 Concrete. Concrete for cable markers shall be per Specification Item P-610, Structural Portland Cement Concrete.

108-2.7 Flowable backfill. Flowable material used to backfill trenches for power cable trenches shall conform to the requirements of Item P-153, Controlled Low Strength Material.

108-2.8 Cable identification tags. Cable identification tags shall be made from a non-corrosive material with the circuit identification stamped or etched onto the tag. The tags shall be of the type as detailed on the plans.

108-2.9 Tape. Electrical tapes shall be Scotch™ Electrical Tapes –Scotch™ 88 (1-1/2 inch (38 mm) wide) and Scotch™ 130C® linerless rubber splicing tape (2-inch (50 mm) wide), as manufactured by the Minnesota Mining and Manufacturing Company (3M™), or an approved equivalent.

108-2.10 Electrical coating. Electrical coating shall be Scotchkote™ as manufactured by 3M™, or an approved equivalent.

108-2.11 Existing circuits. Whenever the scope of work requires connection to an existing circuit, the circuit’s insulation resistance shall be tested, in the presence of the Engineer. The test shall be performed per this item and prior to any activity that will affect the respective circuit. The Contractor shall record the results on forms acceptable to the Engineer. When the work affecting the circuit is complete, the circuit’s insulation resistance shall be checked again, in the presence of the Engineer. The Contractor shall record the results on forms acceptable to the Engineer. The second reading shall be equal to or greater than the first reading or the Contractor shall make the necessary repairs to the circuit to bring the second reading above the first reading. All repair costs including a complete replacement of the L-823 connectors, L-830 transformers and L-824 cable, if necessary, shall be borne by the Contractor. All test results shall be submitted in the Operation and Maintenance (O&M) Manual.

108-2.12 Detectable warning tape. Plastic, detectable, American Wood Preservers Association (AWPA) Red (electrical power lines, cables, conduit and lighting cable) with continuous legend magnetic tape shall be polyethylene film with a metalized foil core and shall be 3-6 inches (75-150 mm) wide. Detectable tape is incidental to the respective bid item.
CONSTRUCTION METHODS

108-3.1 General. The Contractor shall install the specified cable at the approximate locations indicated on the plans. Unless otherwise shown on the plans, all cable required to cross under pavements expected to carry aircraft loads shall be installed in concrete encased duct banks. Wherever possible, cable shall be run without splices, from connection to connection.

Cable connections between lights will be permitted only at the light locations for connecting the underground cable to the primary leads of the individual isolation transformers. The Contractor shall be responsible for providing cable in continuous lengths for home runs or other long cable runs without connections unless otherwise authorized in writing by the Engineer or shown on the plans.

In addition to connectors being installed at individual isolation transformers, L-823 cable connectors for maintenance and test points shall be installed at locations shown on the plans. Cable circuit identification markers shall be installed on both sides of the L-823 connectors installed or at least once in each access point where L-823 connectors are not installed.

Provide not less than 3 feet (1 m) of cable slack on each side of all connections, isolation transformers, light units, and at points where cable is connected to field equipment. Where provisions must be made for testing or for future above grade connections, provide enough slack to allow the cable to be extended at least one foot (30 cm) vertically above the top of the access structure. This requirement also applies where primary cable passes through empty light bases, junction boxes, and access structures to allow for future connections, or as designated by the Engineer.

Primary airfield lighting cables installed shall have cable circuit identification markers attached on both sides of each L-823 connector and on each airport lighting cable entering or leaving cable access points, such as manholes, hand holes, pull boxes, junction boxes, etc. Markers shall be of sufficient length for imprinting the cable circuit identification legend on one line, using letters not less than 1/4 inch (6 mm) in size. The cable circuit identification shall match the circuits noted on the construction plans.

108-3.2 Installation in duct banks or conduits. This item includes the installation of the cable in duct banks or conduit per the following paragraphs. The maximum number and voltage ratings of cables installed in each single duct or conduit, and the current-carrying capacity of each cable shall be per the latest version of the National Electric Code, or the code of the local agency or authority having jurisdiction.

The Contractor shall make no connections or splices of any kind in cables installed in conduits or duct banks.

Unless otherwise designated in the plans, where ducts are in tiers, use the lowest ducts to receive the cable first, with spare ducts left in the upper levels. Check duct routes prior to construction to obtain assurance that the shortest routes are selected and that any potential interference is avoided.

Duct banks or conduits shall be installed as a separate item per Item L-110, Airport Underground Electrical Duct Banks and Conduit. The Contractor shall run a mandrel through duct banks or conduit prior to installation of cable to ensure that the duct bank or conduit is open, continuous and clear of debris. The mandrel size shall be compatible with the conduit size. The Contractor shall swab out all conduits/ducts and clean light bases, manholes, etc., interiors immediately prior to pulling cable. Once cleaned and swabbed, the light bases and all accessible points of entry to the duct/conduit system shall be kept closed except when installing cables. Cleaning of ducts, light bases, manholes, etc., is incidental to the pay item of the item being cleaned. All raceway systems left open, after initial cleaning, for any reason shall be re-cleaned at the Contractor’s expense. The Contractor shall verify existing ducts proposed for use in this project as clear and open. The Contractor shall notify the Engineer of any blockade in the existing ducts.

The cable shall be installed in a manner that prevents harmful stretching of the conductor, damage to the insulation, or damage to the outer protective covering. The ends of all cables shall be sealed with moisture-seal tape providing moisture-tight mechanical protection with minimum bulk, or alternately, heat shrinkable tubing before pulling into the conduit and it shall be left sealed until connections are made. Where more than one cable is to be installed in a conduit, all cable shall be pulled in the conduit at the same time. The pulling of a cable through duct banks or conduits may be accomplished by hand winch or power winch with the use of cable grips or pulling eyes. Maximum pulling tensions shall not exceed the cable manufacturer’s
recommendations. A non-hardening cable-pulling lubricant recommended for the type of cable being installed shall be used where required.

The Contractor shall submit the recommended pulling tension values to the Engineer prior to any cable installation. If required by the Engineer, pulling tension values for cable pulls shall be monitored by a dynamometer in the presence of the Engineer. Cable pull tensions shall be recorded by the Contractor and reviewed by the Engineer. Cables exceeding the maximum allowable pulling tension values shall be removed and replaced by the Contractor at the Contractor's expense.

The manufacturer’s minimum bend radius or NEC requirements (whichever is more restrictive) shall apply. Cable installation, handling and storage shall be per manufacturer’s recommendations. During cold weather, particular attention shall be paid to the manufacturer’s minimum installation temperature. Cable shall not be installed when the temperature is at or below the manufacturer’s minimum installation temperature. At the Contractor’s option, the Contractor may submit a plan, for review by the Engineer, for heated storage of the cable and maintenance of an acceptable cable temperature during installation when temperatures are below the manufacturer’s minimum cable installation temperature.

Cable shall not be dragged across base can or manhole edges, pavement or earth. When cable must be coiled, lay cable out on a canvas tarp or use other appropriate means to prevent abrasion to the cable jacket.

108-3.3 Installation of direct-buried cable in trenches. Unless otherwise specified, the Contractor shall not use a cable plow for installing the cable. Cable shall be unreeled uniformly in place alongside or in the trench and shall be carefully placed along the bottom of the trench. The cable shall not be unreeled and pulled into the trench from one end. Slack cable sufficient to provide strain relief shall be placed in the trench in a series of S curves. Sharp bends or kinks in the cable shall not be permitted.

Where cables must cross over each other, a minimum of 3 inches (75 mm) vertical displacement shall be provided with the topmost cable depth at or below the minimum required depth below finished grade.

a. Trenching. Where turf is well established and the sod can be removed, it shall be carefully stripped and properly stored. Trenches for cables may be excavated manually or with mechanical trenching equipment. Walls of trenches shall be essentially vertical so that a minimum of surface is disturbed. Graders shall not be used to excavate the trench with their blades. The bottom surface of trenches shall be essentially smooth and free from coarse aggregate. Unless otherwise specified, cable trenches shall be excavated to a minimum depth of 18 inches (0.45 m) below finished grade per NEC Table 300.5, except as follows:

(1) When off the airport or crossing under a roadway or driveway, the minimum depth shall be 36 inches (91 cm) unless otherwise specified.

(2) Minimum cable depth when crossing under a railroad track, shall be 42 inches (1 m) unless otherwise specified.

Dewatering necessary for cable installation, erosion and turbidity control, per Federal, state, and local requirements is incidental to its respective pay items as part of Item L-108. The cost of all excavation regardless of type of material encountered, shall be included in the unit price bid for the L-108 Item.

The Contractor shall excavate all cable trenches to a width not less than 6 inches (150 mm). Unless otherwise specified on the plans, all cables in the same location and running in the same general direction shall be installed in the same trench.

When rock is encountered, the rock shall be removed to a depth of at least 3 inches (75 mm) below the required cable depth and it shall be replaced with bedding material of earth or sand containing no mineral aggregate particles that would be retained on a 1/4 inch (6 mm) sieve. Flowable backfill material may alternatively be used. The Contractor shall ascertain the type of soil or rock to be excavated before bidding. All such rock removal shall be performed and paid for under Item P-152.

Duct bank or conduit markers temporarily removed for trench excavations shall be replaced as required.

It is the Contractor's responsibility to locate existing utilities within the work area prior to excavation. Where existing active cables cross proposed installations, the Contractor shall ensure that these cables are
adequately protected. Where crossings are unavoidable, no splices will be allowed in the existing cables, except as specified on the plans. Installation of new cable where such crossings must occur shall proceed as follows:

(1) Existing cables shall be located manually. Unearthed cables shall be inspected to assure absolutely no damage has occurred.

(2) Trenching, etc., in cable areas shall then proceed, with approval of the Engineer, with care taken to minimize possible damage or disruption of existing cable, including careful backfilling in area of cable.

In the event that any previously identified cable is damaged during the course of construction, the Contractor shall be responsible for the complete repair or replacement.

b. Backfilling. After the cable has been installed, the trench shall be backfilled. The first layer of backfill in the trench shall be 3 inches (75 mm) deep, loose measurement, and shall be either earth or sand containing no mineral aggregate particles that would be retained on a 1/4 inch (6 mm) sieve. This layer shall not be compacted. The second layer shall be 5 inches (125 mm) deep, loose measurement, and shall contain no particles that would be retained on a one inch (25 mm) sieve. The remaining third and subsequent layers of backfill shall not exceed 8 inches (20 cm) of loose measurement and be excavated or imported material and shall not contain stone or aggregate larger than 4 inches (100 mm) maximum diameter.

The second and subsequent layers shall be thoroughly tamped and compacted to at least the density of the adjacent undisturbed soil, and to the satisfaction of the Engineer. If necessary to obtain the desired compaction, the backfill material shall be moistened or aerated as required.

If the cable is to be installed in locations or areas where other compaction requirements are specified (under pavements, embankments, etc.) the compaction requirements per Item P-152 for that area shall be followed.

Trenches shall not contain pools of water during backfilling operations. The trench shall be completely backfilled and tamped level with the adjacent surface, except that when turf is to be established over the trench, the backfilling shall be stopped at an appropriate depth consistent with the type of turfing operation to be accommodated. A proper allowance for settlement shall also be provided. Any excess excavated material shall be removed and disposed of per the plans and specifications.

Underground electrical warning (caution) tape shall be installed in the trench above all direct-buried cable. Contractor shall submit a sample of the proposed warning tape for acceptance by the Engineer. If not shown on the plans, the warning tape shall be located 6 inches (150 mm) above the direct-buried cable or the counterpoise wire if present. A 4-6 inch (100 - 150 mm) wide polyethylene film detectable tape, with a metalized foil core, shall be installed above all direct buried cable or counterpoise. The tape shall be of the color and have a continuous legend as indicated on the plans. The tape shall be installed 8 inch (200 mm) minimum below finished grade.

c. Restoration. Following restoration of all trenching near airport movement surfaces, the Contractor shall visually inspect the area for foreign object debris (FOD) and remove any that is found. Where soil and sod has been removed, it shall be replaced as soon as possible after the backfilling is completed. All areas disturbed by work shall be restored to its original condition. The Contractor shall be held responsible for maintaining all disturbed surfaces and replacements until final acceptance. When trenching is through paved areas, restoration shall be equal to existing conditions and compaction shall meet the requirements of Item P-152. Restoration shall be considered incidental to the pay item of which it is a component part.

108-3.4 Cable markers for direct-buried cable. The location of direct buried circuits shall be marked by a concrete slab marker, 2 feet (60 cm) square and 4-6 inch (10 - 15 cm) thick, extending approximately one inch (25 mm) above the surface. Each cable run from a line of lights and signs to the equipment vault shall be marked at approximately every 200 feet (61 m) along the cable run, with an additional marker at each change of direction of cable run. All other direct-buried cable shall be marked in the same manner. Cable markers shall be installed directly above the cable. The Contractor shall impress the word “CABLE” and directional arrows on each cable marking slab. The letters shall be approximately 4 inches (100 mm) high and 3 inches (75 mm) wide, with width of stroke 1/2 inch (12 mm) and 1/4 inch (6 mm) deep.
At the location of each underground cable connection, except at lighting units, or isolation transformers, or power a concrete marker slab must mark adapters placed above the connection. The Contractor shall impress the word “SPLICE” on each slab. The Contractor also shall impress additional circuit identification symbols on each slab as directed by the Engineer. All cable markers and splice markers shall be painted international orange. Paint shall be specifically manufactured for uncured exterior concrete. After placement, all cable or splice markers shall be given one coat of high-visibility aviation orange paint as approved by the Engineer. Furnishing and installation of cable markers is incidental to the respective cable pay item.

108-3.5 Splicing. Connections of the type shown on the plans shall be made by experienced personnel regularly engaged in this type of work and shall be made as follows:

 a. Cast splices. These shall be made by using crimp connectors for jointing conductors. Molds shall be assembled, and the compound shall be mixed and poured per the manufacturer’s instructions and to the satisfaction of the Engineer.

 b. Field-attached plug-in splices. These shall be assembled per the manufacturer’s instructions. These splices shall be made by plugging directly into mating connectors. In all cases the joint where the connectors come together shall be wrapped with at least one layer of rubber or synthetic rubber tape and one layer of plastic tape, one-half lapped, extending at least 1-1/2 inches (38 mm) on each side of the joint.

 c. Factory-molded plug-in splices. These shall be made by plugging directly into mating connectors. In all cases, the joint where the connectors come together shall be wrapped with at least one layer of rubber or synthetic rubber tape and one layer of plastic tape, one-half lapped, extending at least 1-1/2 inches (38 mm) on each side of the joint.

 d. Taped or heat-shrink splices. A taped splice shall be made in the following manner:

Bring the cables to their final position and cut so that the conductors will butt. Remove insulation and jacket allowing for bare conductor of proper length to fit compression sleeve connector with 1/4 inch (6 mm) of bare conductor on each side of the connector. Prior to splicing, the two ends of the cable insulation shall be penciled using a tool designed specifically for this purpose and for cable size and type. Do not use emery paper on splicing operation since it contains metallic particles. The copper conductors shall be thoroughly cleaned. Join the conductors by inserting them equidistant into the compression connection sleeve. Crimp conductors firmly in place with crimping tool that requires a complete crimp before tool can be removed. Test the crimped connection by pulling on the cable. Scrape the insulation to assure that the entire surface over which the tape will be applied (plus 3 inches (75 mm) on each end) is clean. After scraping wipe the entire area with a clean lint-free cloth. Do not use solvents.

Apply high-voltage rubber tape one-half lapped over bare conductor. This tape should be tensioned as recommended by the manufacturer. Voids in the connector area may be eliminated by highly elongating the tape, stretching it just short of its breaking point. Throughout the rest of the splice less tension should be used. Always attempt to exactly half-lap to produce a uniform buildup. Continue buildup to 1-1/2 times cable diameter over the body of the splice with ends tapered a distance of approximately one inch (25 mm) over the original jacket. Cover rubber tape with two layers of vinyl pressure-sensitive tape one-half lapped. Do not use glyptol or lacquer over vinyl tape as they react as solvents to the tape. No further cable covering or splice boxes are required.

Heat shrinkable tubing shall be installed following manufacturer’s instructions. Direct flame heating shall not be permitted unless recommended by the manufacturer. Cable surfaces within the limits of the heat-shrink application shall be clean and free of contaminate prior to application.

Surfaces of equipment or conductors being terminated or connected shall be prepared in accordance with industry standard practice and manufacturer’s recommendations. All surfaces to be connected shall be thoroughly cleaned to remove all dirt, grease, oxides, nonconductive films, or other foreign material. Paints and other nonconductive coatings shall be removed to expose base metal. Clean all surfaces at least 1/4 inch (6.4 mm) beyond all sides of the larger bonded area on all mating surfaces. Use a joint compound suitable for the materials used in the connection. Repair painted/coated surface to original condition after completing the connection.
108-3.6 Bare counterpoise wire installation for lightning protection and grounding. If shown on the plans or included in the job specifications, bare solid #6 AWG copper counterpoise wire shall be installed for lightning protection of the underground cables. The Engineer shall select one of two methods of lightning protection for the airfield lighting circuit based on the frequency of local lightning:

a. Equipotential. – may be used by the Engineer for areas that have high rates of lightning strikes. This is where the counterpoise is bonded to the light base (edge lights included) and counterpoise size is determined by the Engineer.

b. Isolation – used in areas where lightning strikes are not common. The counterpoise is not bonded to edge light fixtures, in-pavement fixtures are boned to the counterpoise. Counterpoise size is selected by the Engineer.

Counterpoise wire shall be installed in the same trench for the entire length of buried cable, conduits and duct banks that are installed to contain airfield cables.

For raceways installed under pavement; for raceways and cables not installed adjacent to the full strength pavement edge; for fixtures installed in full strength pavement and shoulder pavement and for optional method of edge lights installed in turf (stabilized soils); and for raceways or cables adjacent to the full strength pavement edge, the counterpoise conductor shall be centered over the raceway or cable to be protected as described below.

The counterpoise conductor shall be installed no less than 8 inches (203 mm) above the raceway or cable to be protected, except as permitted below.

The minimum counterpoise conductor height above the raceway or cable to be protected shall be permitted to be adjusted subject to coordination with the airfield lighting and pavement designs.

Where raceway is installed by the directional bore, jack and bore, or other drilling method, the counterpoise conductor shall be permitted to be installed concurrently with the directional bore, jack and bore, or other drilling method raceway, external to the raceway or sleeve.

The counterpoise conductor shall be installed no more than 12 inches (305 mm) above the raceway or cable to be protected.

The counterpoise conductor height above the protected raceway(s) or cable(s) shall be calculated to ensure that the raceway or cable is within a 45-degree area of protection.

The counterpoise conductor shall be bonded to each metallic light base, mounting stake, and metallic airfield lighting component.

All metallic airfield lighting components in the field circuit on the output side of the constant current regulator (CCR) or other power source shall be bonded to the airfield lighting counterpoise system.

The counterpoise wire shall also be exothermically welded to ground rods installed as shown on the plans but not more than 500 feet (150 m) apart around the entire circuit. The counterpoise system shall be continuous and terminate at the transformer vault or at the power source. It shall be securely attached to the vault or equipment external ground ring or other made electrode-grounding system. The connections shall be made as shown on the plans and in the specifications.

If shown on the plans or in the specifications, a separate equipment (safety) ground system shall be provided in addition to the counterpoise wire using one of the following methods:

c. A ground rod installed at and securely attached to each light fixture base, mounting stake, and to all metal surfaces at junction/access structures via #6 AWG wire.

d. For parallel voltage systems only, install a #6 AWG green insulated equipment ground conductor internal to the conduit system and securely attached it to each light fixture base internal grounding lug and to all metal surfaces at junction/access structures. Dedicated ground rods shall be installed and exothermically welded to the counterpoise wires at each end of a duct bank crossing under pavement.
Where an existing airfield lighting system is being extended or modified, the new counterpoise conductors shall be interconnected to existing counterpoise conductors at each intersection of the new and existing airfield lighting counterpoise systems.

108-3.7 Counterpoise installation above multiple conduits and duct banks. Counterpoise wires shall be installed above multiple conduits/duct banks for airfield lighting cables, with the intent being to provide a complete area of protection over the airfield lighting cables. When multiple conduits and/or duct banks for airfield cable are installed in the same trench, the number and location of counterpoise wires above the conduits shall be adequate to provide a complete cone of protection measured 22-1/2 degrees each side of vertical.

Where duct banks pass under pavement to be constructed in the project, the counterpoise shall be placed above the duct bank. Reference details on the construction plans.

108-3.8 Counterpoise installation at existing duct banks. When airfield lighting cables are indicated on the plans to be routed through existing duct banks, the new counterpoise wiring shall be terminated at ground rods at each end of the existing duct bank where the cables being protected enter and exit the duct bank. The new counterpoise conductor shall be bonded to the existing counterpoise system.

108-3.9 Exothermic bonding. Bonding of counterpoise wire shall be by the exothermic welding process. Only personnel experienced in and regularly engaged in this type of work shall make these connections.

Contractor shall demonstrate to the satisfaction of the Engineer, the welding kits, materials and procedures to be used for welded connections prior to any installations in the field. The installations shall comply with the manufacturer’s recommendations and the following:

a. All slag shall be removed from welds.

b. Using an exothermic weld to bond the counterpoise to a lug on a galvanized light base is not recommended unless the base has been specially modified. Consult the manufacturer’s installation directions for proper methods of bonding copper wire to the light base. See also AC 150/5340-30 for galvanized light base exception.

c. If called for in the plans, all buried copper and weld material at weld connections shall be thoroughly coated with 6 mm of 3M Scotchkote, or approved equivalent, or coated with coal tar Bitumastic® material to prevent surface exposure to corrosive soil or moisture.

108-3.10 Testing. The Contractor shall furnish all necessary equipment and appliances for testing the airport electrical systems and underground cable circuits before and after installation. The Contractor shall perform all tests in the presence of the Engineer. The Contractor shall demonstrate the electrical characteristics to the satisfaction of the Engineer. All costs for testing are incidental to the respective item being tested. For phased projects, the tests must be completed by phase. The Contractor must maintain the test results throughout the entire project as well as during the warranty period that meet the following:

a. Earth resistance testing methods shall be submitted to the Engineer for approval. Earth resistance testing results shall be recorded on an approved form and testing shall be performed in the presence of the Engineer. All such testing shall be at the sole expense of the Contractor.

b. Should the counterpoise or ground grid conductors be damaged or suspected of being damaged by construction activities the Contractor shall test the conductors for continuity with a low resistance ohmmeter. The conductors shall be isolated such that no parallel path exists and tested for continuity. The Engineer shall approve of the test method selected. All such testing shall be at the sole expense of the Contractor.

After installation, the Contractor shall test and demonstrate to the satisfaction of the Engineer the following:

c. That all affected lighting power and control circuits (existing and new) are continuous and free from short circuits.

d. That all affected circuits (existing and new) are free from unspecified grounds.
e. That the insulation resistance to ground of all new non-grounded high voltage series circuits or cable segments is not less than 50 megohms.

f. That the insulation resistance to ground of all new non-grounded conductors of new multiple circuits or circuit segments is not less than 100 megohms.

g. That all affected circuits (existing and new) are properly connected per applicable wiring diagrams.

h. That all affected circuits (existing and new) are operable. Tests shall be conducted that include operating each control not less than 10 times and the continuous operation of each lighting and power circuit for not less than 1/2 hour.

i. That the impedance to ground of each ground rod does not exceed 25 ohms prior to establishing connections to other ground electrodes. The fall-of-potential ground impedance test shall be used, as described by American National Standards Institute/Institute of Electrical and Electronic Engineers (ANSI/IEEE) Standard 81, to verify this requirement. As an alternate, clamp-on style ground impedance test meters may be used to satisfy the impedance testing requirement. Test equipment and its calibration sheets shall be submitted for review and approval by the Engineer prior to performing the testing.

Two copies of tabulated results of all cable tests performed shall be supplied by the Contractor to the Engineer. Where connecting new cable to existing cable, ground resistance tests shall be performed on the new cable prior to connection to the existing circuit.

There are no approved “repair” procedures for items that have failed testing other than complete replacement.

METHOD OF MEASUREMENT

108-4.1 The cost of all excavation, backfill, dewatering and restoration regardless of the type of material encountered shall be included in the unit price bid for the work.

108-4.2 Cable or counterpoise wire installed in trench, duct bank or conduit shall be measured by the number of linear feet (meters) installed and grounding connectors, and trench marking tape ready for operation, and accepted as satisfactory. Separate measurement shall be made for each cable or counterpoise wire installed in trench, duct bank or conduit. The measurement for this item shall include additional quantities required for slack.

108-4.3 Ground rods shall be measured by each 10-foot section installed complete.

BASIS OF PAYMENT

108-5.1 Payment will be made at the contract unit price for trenching, cable and bare counterpoise wire installed in trench (direct-buried), or cable and equipment ground installed in duct bank or conduit, in place by the Contractor and accepted by the Engineer. This price shall be full compensation for furnishing all materials and for all preparation and installation of these materials, and for all labor, equipment, tools, and incidentals, including ground rods and ground connectors and trench marking tape, necessary to complete this item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item L-108-5.1</th>
<th>No. 6 5Kv L-824C Cable, Installed in Conduit - per linear foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item L-108-5.2</td>
<td>No. 8 5Kv L-824C Cable, Installed in Conduit - per liner foot</td>
</tr>
<tr>
<td>Item L-108-5.3</td>
<td>No. 8 5Kv L-824C Temporary Cable Connections (Jumpers) - Lump Sum</td>
</tr>
<tr>
<td>Item L-108-5.4</td>
<td>No. 6 Copper Counterpoise Wire in Trench, – per linear foot.</td>
</tr>
<tr>
<td>Item L-108-5.5</td>
<td>No. 6 Copper Counterpoise Wire in Centerline Trench – per linear foot</td>
</tr>
<tr>
<td>Item L-108-5.6</td>
<td>No. 6 Copper Counterpoise Wire in Installed At Duct Bank – per linear foot</td>
</tr>
</tbody>
</table>
Item L-108-5.7 ¾"x10' Copper Clad Ground Rods @ Centerline Lights - Each
Item L-108-5.8 ¾"x10' Copper Clad Ground Rods @ Edge Lights - Each
Item L-108-5.9 ¾"x10' Copper Clad Ground Rods @ Counterpoise - Each
Item L-108-5.10 Remove and Dispose of Existing L-824 Series Circuit Cabling – Lump Sum

MATERIAL REQUIREMENTS
AC 150/5340-26 Maintenance of Airport Visual Aid Facilities
AC 150/5340-30 Design and Installation Details for Airport Visual Aids
AC 150/5345-7 Specification for L-824 Underground Electrical Cable for Airport Lighting Circuits
AC 150/5345-26 Specification for L-823 Plug and Receptacle, Cable Connectors
AC 150/5345-53 Airport Lighting Equipment Certification Program
Commercial Item Description A-A-59544
 Cable and Wire, Electrical (Power, Fixed Installation)
Commercial Item Description A-A-55809
 Insulation Tape, Electrical, Pressure-Sensitive Adhesive, Plastic
ASTM B3 Standard Specification for Soft or Annealed Copper Wire
ASTM B8 Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes
ASTM D4388 Standard Specification for Nonmetallic Semi-Conducting and Electrically Insulating Rubber Tapes
FED SPEC J-C-30 Cable and Wire, Electrical (Power, Fixed Installation)
MIL-I-24391 Insulation Tape, Electrical, Plastic, Pressure Sensitive

REFERENCE DOCUMENTS
NFPA-70 National Electrical Code (NEC)
NFPA-780 Standard for the Installation of Lightning Protection Systems
MIL-S-23586F Performance Specification: Sealing Compound (with Accelerator), Silicone Rubber, Electrical

END OF ITEM L-108
This page intentionally left blank.
Item L-110

AIRPORT UNDERGROUND ELECTRICAL DUCT BANKS AND CONDUITS

DESCRIPTION

110-1.1 This item shall consist of underground electrical conduits and duct banks (single or multiple conduits encased in concrete or buried in sand) installed per this specification at the locations and per the dimensions, designs, and details shown on the plans. This item shall include furnishing and installing of all underground electrical duct banks and individual and multiple underground conduits. It shall also include all turfing trenching, backfilling, removal, and restoration of any paved or turfed areas; concrete encasement, mandrelling, pulling lines, duct markers, plugging of conduits, and the testing of the installation as a completed system ready for installation of cables per the plans and specifications. This item shall also include furnishing and installing conduits and all incidentals for providing positive drainage of the system. Verification of existing ducts is incidental to the pay items provided in this specification.

EQUIPMENT AND MATERIALS

110-2.1 General.

a. All equipment and materials covered by referenced specifications shall be subject to acceptance through manufacturer’s certification of compliance with the applicable specification when requested by the Engineer.

b. Manufacturer’s certifications shall not relieve the Contractor of the responsibility to provide materials per these specifications and acceptable to the Engineer. Materials supplied and/or installed that do not comply with these specifications shall be removed, when directed by the Engineer and replaced with materials, that comply with these specifications, at the Contractor’s cost.

c. All materials and equipment used to construct this item shall be submitted to the Engineer for approval prior to ordering the equipment. Submittals consisting of marked catalog sheets or shop drawings shall be provided. Submittal data shall be presented in a clear, precise and thorough manner. Original catalog sheets are preferred. Photocopies are acceptable provided they are as good a quality as the original. Clearly and boldly mark each copy to identify products or models applicable to this project. Indicate all optional equipment and delete non-pertinent data. Submittals for components of electrical equipment and systems shall identify the equipment for which they apply on each submittal sheet. Markings shall be made bold and clear with arrows or circles (highlighting is not acceptable). The Contractor is solely responsible for delays in project that accrue directly or indirectly from late submissions or resubmissions of submittals.

d. The data submitted shall be sufficient, in the opinion of the Engineer, to determine compliance with the plans and specifications. The Contractor’s submittals shall be neatly bound in a properly sized 3-ring binder, tabbed by specification section. The Engineer reserves the right to reject any and all equipment, materials or procedures that do not meet the system design and the standards and codes specified in this document.

e. All equipment and materials furnished and installed under this section shall be guaranteed against defects in materials and workmanship for a period of at least twelve (12)
months from final acceptance by the Owner. The defective materials and/or equipment shall be repaired or replaced, at the Owner’s discretion, with no additional cost to the Owner.

110-2.2 Steel conduit. Rigid galvanized steel (RGS) conduit and fittings shall be hot dipped galvanized inside and out and conform to the requirements of Underwriters Laboratories Standards 6, 514B, and 1242. All RGS conduits or RGS elbows installed below grade, in concrete, permanently wet locations or other similar environments shall be painted with a 10 mil thick coat of asphaltum sealer or shall have a factory bonded polyvinyl chloride (PVC) cover. Any exposed galvanizing or steel shall be coated with 10 mil of asphaltum sealer. When using PVC coated RGS conduit, care shall be exercised not to damage the factory PVC coating. Damaged PVC coating shall be repaired per the manufacturer's written instructions.

110-2.3 Plastic conduit. Plastic conduit and fittings—shall conform to the following requirements:

- UL 514B covers W-C-1094-Conduit fittings all types, classes 1 thru 3 and 6 thru 10.
- UL 514C covers W-C-1094- all types, Class 5 junction box and cover in plastic (PVC).
- UL 651 covers W-C-1094-Rigid PVC Conduit, types I and II, Class 4.
- UL 651A covers W-C-1094-Rigid PVC Conduit and high density polyethylene (HDPE) Conduit type III and Class 4.

Underwriters Laboratories Standards UL-651 and Article 352 of the current National Electrical Code shall be one of the following, as shown on the plans:

a. Type I—Schedule 40 PVC suitable for underground use either direct-buried or encased in concrete.

b. Type II—Schedule 40 PVC suitable for either above ground or underground use.

c. Type III – Schedule 80 PVC suitable for either above ground or underground use either direct-buried or encased in concrete.

d. Type III –HDPE pipe, minimum standard dimensional ratio (SDR) 11, suitable for placement with directional boring under pavement.

The type of solvent cement shall be as recommended by the conduit/fitting manufacturer.

110-2.4 Split conduit. Split conduit shall be pre-manufactured for the intended purpose and shall be made of steel or plastic.

110-2.5 Conduit spacers. Conduit spacers shall be prefabricated interlocking units manufactured for the intended purpose. They shall be of double wall construction made of high grade, high density polyethylene complete with interlocking cap and base pads, They shall be designed to accept No. 4 reinforcing bars installed vertically.

110-2.6 Concrete. Concrete shall conform to Item P-610, Structural Portland Cement Concrete, using 1 inch maximum size coarse aggregate with a minimum 28-day compressive strength of 4000 psi. Where reinforced duct banks are specified, reinforcing steel shall conform to ASTM A615 Grade 60. Concrete and reinforcing steel are incidental to the respective pay item of which they are a component part.

110-2.7 Flowable backfill. Flowable material used to back fill conduit and duct bank trenches shall conform to the requirements of Item P-153, Controlled Low Strength Material. Fill shall be designed to achieve a 28-day compressive strength of 200 psi (1.4 MPa) under pavement.
110-2.8 **Detectable warning tape.** Plastic, detectable, American Wood Preservers Association (AWPA) Red (electrical power lines, cables, conduit and lighting cable) with continuous legend magnetic tape shall be polyethylene film with a metallized foil core and shall be 3-6 inches (75-150 mm) wide. Detectable tape is incidental to the respective bid item.

CONSTRUCTION METHODS

110-3.1 **General.** The Contractor shall install underground duct banks and conduits at the approximate locations indicated on the plans. The Engineer shall indicate specific locations as the work progresses, if required to differ from the plans. Duct banks and conduits shall be of the size, material, and type indicated on the plans or specifications. Where no size is indicated on the plans or in the specifications, conduits shall be not less than 2 inches (50 mm) inside diameter or comply with the National Electrical Code based on cable to be installed, whichever is larger. All duct bank and conduit lines shall be laid so as to grade toward access points and duct or conduit ends for drainage. Unless shown otherwise on the plans, grades shall be at least 3 inches (75 mm) per 100 feet (30 m). On runs where it is not practicable to maintain the grade all one way, the duct bank and conduit lines shall be graded from the center in both directions toward access points or conduit ends, with a drain into the storm drainage system. Pockets or traps where moisture may accumulate shall be avoided. No duct bank or underground conduit shall be less than 18 inches (0.5 m) below finished grade. Where under pavement, the top of the duct bank shall not be less than 18 inches (0.5 m) below the subgrade.

The Contractor shall mandrel each individual conduit whether the conduit is direct-buried or part of a duct bank. An iron-shod mandrel, not more than 1/4 inch (6 mm) smaller than the bore of the conduit shall be pulled or pushed through each conduit. The mandrel shall have a leather or rubber gasket slightly larger than the conduit hole.

The Contractor shall swab out all conduits/ducts and clean base can, manhole, pull boxes, etc., interiors IMMEDIATELY prior to pulling cable. Once cleaned and swabbed the light bases, manholes, pull boxes, etc., and all accessible points of entry to the duct/conduit system shall be kept closed except when installing cables. Cleaning of ducts, base cans, manholes, etc., is incidental to the pay item of the item being cleaned. All raceway systems left open, after initial cleaning, for any reason shall be recleaned at the Contractor’s expense. All accessible points shall be kept closed when not installing cable. The Contractor shall verify existing ducts proposed for use in this project as clear and open. The Contractor shall notify the Engineer of any blockage in the existing ducts.

For pulling the permanent wiring, each individual conduit, whether the conduit is direct-buried or part of a duct bank, shall be provided with a 200 pound (90 kg) test polypropylene pull rope. The ends shall be secured and sufficient length shall be left in access points to prevent it from slipping back into the conduit. Where spare conduits are installed, as indicated on the plans, the open ends shall be plugged with removable tapered plugs, designed for this purpose.

All conduits shall be securely fastened in place during construction and shall be plugged to prevent contaminants from entering the conduits. Any conduit section having a defective joint shall not be installed. Ducts shall be supported and spaced apart using approved spacers at intervals not to exceed 5 feet (1.5 m).

Unless otherwise shown on the plans, concrete encased duct banks shall be used when crossing under pavements expected to carry aircraft loads, such as runways, taxiways, taxilanes, ramps and aprons. When under paved shoulders and other paved areas, conduit and duct banks shall be encased using flowable fill for protection.
All conduits within concrete encasement of the duct banks shall terminate with female ends for ease in current and future use. Install factory plugs in all unused ends. Do not cover the ends or plugs with concrete.

Where turf is well established and the sod can be removed, it shall be carefully stripped and properly stored.

Trenches for conduits and duct banks may be excavated manually or with mechanical trenching equipment unless in pavement, in which case they shall be excavated with mechanical trenching equipment. Walls of trenches shall be essentially vertical so that a minimum of shoulder surface is disturbed. Blades of graders shall not be used to excavate the trench.

When rock is encountered, the rock shall be removed to a depth of at least 3 inches (75 mm) below the required conduit or duct bank depth and it shall be replaced with bedding material of earth or sand containing no mineral aggregate particles that would be retained on a 1/4 inch (6 mm) sieve. Flowable backfill may alternatively be used. The Contractor shall ascertain the type of soil or rock to be excavated before bidding. All such rock removal shall be performed and paid for under Item P-152.

Underground electrical warning (Caution) tape shall be installed in the trench above all underground duct banks and conduits in unpaved areas. Contractor shall submit a sample of the proposed warning tape for approval by the Engineer. If not shown on the plans, the warning tape shall be located 6 inches above the duct/conduit or the counterpoise wire if present.

Joints in plastic conduit shall be prepared per the manufacturer's recommendations for the particular type of conduit. Plastic conduit shall be prepared by application of a plastic cleaner and brushing a plastic solvent on the outside of the conduit ends and on the inside of the couplings. The conduit fitting shall then be slipped together with a quick one-quarter turn twist to set the joint tightly. Where more than one conduit is placed in a single trench, or in duct banks, joints in the conduit shall be staggered a minimum of 2 feet (60 cm).

Changes in direction of runs exceeding 10 degrees, either vertical or horizontal, shall be accomplished using manufactured sweep bends.

Whether or not specifically indicated on the drawings, where the soil encountered at established duct bank grade is an unsuitable material, as determined by the Engineer, the unsuitable material shall be removed per Item P-152 and replaced with suitable material. Alternatively, additional duct bank supports that are adequate and stable shall be installed, as approved by the Engineer.

All excavation shall be unclassified and shall be considered incidental to the respective L-110 pay item of which it is a component part. Dewatering necessary for duct installation, erosion and turbidity control, per Federal, state, and local requirements is incidental to its respective pay item as a part of Item L-110. The cost of all excavation regardless of type of material encountered, shall be included in the unit price bid for the L-110 Item.

Unless otherwise specified, excavated materials that are deemed by the Engineer to be unsuitable for use in backfill or embankments shall be removed and disposed of offsite.

Any excess excavation shall be filled with suitable material approved by the Engineer and compacted per Item P-152.

It is the Contractor's responsibility to locate existing utilities within the work area prior to excavation. Where existing active cables cross proposed installations, the Contractor shall ensure that these cables are adequately protected. Where crossings are unavoidable, no
splices will be allowed in the existing cables, except as specified on the plans. Installation of new cable where such crossings must occur shall proceed as follows:

a. Existing cables shall be located manually. Unearthed cables shall be inspected to assure absolutely no damage has occurred

b. Trenching, etc., in cable areas shall then proceed with approval of the Engineer, with care taken to minimize possible damage or disruption of existing cable, including careful backfilling in area of cable.

In the event that any previously identified cable is damaged during the course of construction, the Contractor shall be responsible for the complete repair.

110-3.2 Duct banks. Unless otherwise shown in the plans, duct banks shall be installed so that the top of the concrete envelope is not less than 18 inches (0.5 m) below the bottom of the base or stabilized base course layers where installed under runways, taxiways, aprons, or other paved areas, and not less than 18 inches (0.5 m) below finished grade where installed in unpaved areas.

Unless otherwise shown on the plans, duct banks under paved areas shall extend at least 3 feet (1 m) beyond the edges of the pavement or 3 feet (1 m) beyond any under drains that may be installed alongside the paved area. Trenches for duct banks shall be opened the complete length before concrete is placed so that if any obstructions are encountered, provisions can be made to avoid them. Unless otherwise shown on the plans, all duct banks shall be placed on a layer of concrete not less than 3 inches (75 mm) thick prior to its initial set. The Contractor shall space the conduits not less than 3 inch (75 mm) apart (measured from outside wall to outside wall). All such multiple conduits shall be placed using conduit spacers applicable to the type of conduit. As the conduit laying progresses, concrete shall be placed around and on top of the conduits not less than 3 inches (75 mm) thick unless otherwise shown on the plans. All conduits shall terminate with female ends for ease of access in current and future use. Install factory plugs in all unused ends. Do not cover the ends or plugs with concrete.

Conduits forming the duct bank shall be installed using conduit spacers. No. 4 reinforcing bars shall be driven vertically into the soil a minimum of 6 inches (150 mm) to anchor the assembly into the earth prior to placing the concrete encasement. For this purpose, the spacers shall be fastened down with locking collars attached to the vertical bars. Spacers shall be installed at 5-foot (1.5-m) intervals. Spacers shall be in the proper sizes and configurations to fit the conduits. Locking collars and spacers shall be submitted to the Engineer for review prior to use.

When specified, the Contractor shall reinforce the bottom side and top of encasements with steel reinforcing mesh or fabric or other approved metal reinforcement. When directed, the Contractor shall supply additional supports where the ground is soft and boggy, where ducts cross under roadways, or where shown on the plans. Under such conditions, the complete duct structure shall be supported on reinforced concrete footings, piers, or piles located at approximately 5-foot (1.5-m) intervals.

All pavement surfaces that are to have ducts installed therein shall be neatly saw cut to form a vertical face. All excavation shall be included in the contract with price for the duct.

Install a plastic, detectable, color as noted, 3 to 6 inches (75 to 150 mm) wide tape, 8 inches (200 mm) minimum below grade above all underground conduit or duct lines not installed under pavement. Utilize the 3-inch (75-mm) wide tape only for single conduit runs. Utilize the 6-inch (150-mm) wide tape for multiple conduits and duct banks. For duct banks equal to or greater than 24 inches (600 mm) in width, utilize more than one tape for sufficient coverage and identification of the duct bank as required.
When existing cables are to be placed in split duct, encased in concrete, the cable shall be carefully located and exposed by hand tools. Prior to being placed in duct, the Engineer shall be notified so that he may inspect the cable and determine that it is in good condition. Where required, split duct shall be installed as shown on the drawings or as required by the Engineer.

110-3.3 Conduits without concrete encasement. Trenches for single-conduit lines shall be not less than 6 inches (150 mm) nor more than 12 inches (300 mm) wide. The trench for 2 or more conduits installed at the same level shall be proportionately wider. Trench bottoms for conduits without concrete encasement shall be made to conform accurately to grade so as to provide uniform support for the conduit along its entire length.

Unless otherwise shown on the plans, a layer of fine earth material, at least 4 inches (100 mm) thick (loose measurement) shall be placed in the bottom of the trench as bedding for the conduit. The bedding material shall consist of soft dirt, sand or other fine fill, and it shall contain no particles that would be retained on a 1/4 inch (6 mm) sieve. The bedding material shall be tamped until firm. Flowable backfill may alternatively be used.

Unless otherwise shown on plans, conduits shall be installed so that the tops of all conduits within the Airport’s secured area where trespassing is prohibited are at least 18 inches (0.5 m) below the finished grade. Conduits outside the Airport’s secured area shall be installed so that the tops of the conduits are at least 24 inches (60 cm) below the finished grade per National Electric Code (NEC), Table 300.5.

When two or more individual conduits intended to carry conductors of equivalent voltage insulation rating are installed in the same trench without concrete encasement, they shall be spaced not less than 3 inches (75 mm) apart (measured from outside wall to outside wall) in a horizontal direction and not less than 6 inches (150 mm) apart in a vertical direction. Where two or more individual conduits intended to carry conductors of differing voltage insulation rating are installed in the same trench without concrete encasement, they shall be placed not less than 3 inches (75 mm) apart (measured from outside wall to outside wall) in a horizontal direction and lot less than 6 inches (150 mm) apart in a vertical direction.

Trenches shall be opened the complete length between normal termination points before conduit is installed so that if any unforeseen obstructions are encountered, proper provisions can be made to avoid them.

Conduits shall be installed using conduit spacers. No. 4 reinforcing bars shall be driven vertically into the soil a minimum of 6 inches (150 mm) to anchor the assembly into the earth while backfilling. For this purpose, the spacers shall be fastened down with locking collars attached to the vertical bars. Spacers shall be installed at 5-foot (1.5-m) intervals. Spacers shall be in the proper sizes and configurations to fit the conduits. Locking collars and spacers shall be submitted to the Engineer for review prior to use.

110-3.4 Markers. The location of each end and of each change of direction of conduits and duct banks shall be marked by a concrete slab marker 2 feet (60 cm) square and 4 - 6 inches (100 - 150 mm) thick extending approximately one inch (25 mm) above the surface. The markers shall also be located directly above the ends of all conduits or duct banks, except where they terminate in a junction/access structure or building. Each cable or duct run from a line of lights and signs to the equipment vault must be marked at approximately every 200 feet (61 m) along the cable or duct run, with an additional marker at each change of direction of cable or duct run.

The Contractor shall impress the word “DUCT” or “CONDUIT” on each marker slab. Impression of letters shall be done in a manner, approved by the Engineer, for a neat, professional appearance. All letters and words must be neatly stenciled. After placement, all markers shall be given one coat of high-visibility orange paint, as approved by the Engineer. The Contractor
shall also impress on the slab the number and size of conduits beneath the marker along with all other necessary information as determined by the Engineer. The letters shall be 4 inches (100 mm) high and 3 inches (75 mm) wide with width of stroke 1/2 inch (12 mm) and 1/4 inch (6 mm) deep or as large as the available space permits. Furnishing and installation of duct markers is incidental to the respective duct pay item.

110-3.5 Backfilling for conduits. For conduits, 8 inches (200 mm) of sand, soft earth, or other fine fill (loose measurement) shall be placed around the conduits ducts and carefully tamped around and over them with hand tampers. The remaining trench shall then be backfilled and compacted per Item P-152 “Excavation and Embankment” except that material used for back fill shall be select material not larger than 4 inches (100 mm) in diameter.

Flowable backfill may alternatively be used.

Trenches shall not contain pools of water during back filling operations.

The trench shall be completely backfilled and tamped level with the adjacent surface; except that, where sod is to be placed over the trench, the backfilling shall be stopped at a depth equal to the thickness of the sod to be used, with proper allowance for settlement.

Any excess excavated material shall be removed and disposed of per instructions issued by the Engineer at no additional cost to the owner.

110-3.6 Backfilling for duct banks. After the concrete has cured, the remaining trench shall be backfilled and compacted per Item P-152 “Excavation and Embankment” except that the material used for backfill shall be select material not larger than 4 inches (100 mm) in diameter. In addition to the requirements of P-152, where duct banks are installed under pavement, one moisture/density test per lift shall be made for each 250 linear feet (76 m) of duct bank or one work period’s construction, whichever is less.

Flowable backfill may alternatively be used.

Trenches shall not contain pools of water during backfilling operations.

The trench shall be completely backfilled and tamped level with the adjacent surface; except that, where sod is to be placed over the trench, the backfilling shall be stopped at a depth equal to the thickness of the sod to be used, with proper allowance for settlement.

Any excess excavated material shall be removed and disposed of per instructions issued by the Engineer.

110-3.7 Restoration. Where sod has been removed, it shall be replaced as soon as possible after the backfilling is completed. All areas disturbed by the work shall be restored to its original condition. The Contractor shall be held responsible for maintaining all disturbed surfaces and replacements until final acceptance. All restoration shall be considered incidental to the respective L-110 pay item. Following restoration of all trenching near airport movement surfaces, the Contractor shall thoroughly visually inspect the area for foreign object debris (FOD), and remove any such FOD that is found. This FOD inspection and removal shall be considered incidental to the pay item of which it is a component part.

METHOD OF MEASUREMENT

110-4.1 Underground conduits and duct banks shall be measured by the linear feet (meter) of conduits and duct banks installed, including encasement, locator tape, trenching and backfill with designated material, and for drain lines, the termination at the drainage structure, all
measured in place, completed, and accepted. Separate measurement shall be made for the various types and sizes.

BASIS OF PAYMENT

110-5.1 Payment will be made at the contract unit price per linear foot for each type and size of conduit and duct bank completed and accepted, including trench and backfill with the designated material, and, for drain lines, the termination at the drainage structure. This price shall be full compensation for furnishing all materials and for all preparation, assembly, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete this item per the provisions and intent of the plans and specifications.

Payment will be made under:

- **Item L-110-5.1** 2” Sch. 40 PVC Conduit, Concrete Encased, in Proposed Taxiway Pavement – Per Linear Foot
- **Item L-110-5.2** 2” Sch. 40 PVC Conduit, Concrete Encased, in Proposed Taxiway Pavement at Runway Guard Lights – Per Linear Foot
- **Item L-110-5.3** 2” Sch. 40 PVC Conduit, Concrete Encased Under Proposed Bituminous Shoulder Pavement – Per Linear Foot
- **Item L-110-5.4** 16-Way, 4” Sch. 40 PVC Conduit Duct Bank, Concrete Encased – Per Linear Foot
- **Item L-110-5.5** 2-Way, 4” Sch. 40 PVC Conduit Duct Bank, Concrete Encased – Per Linear Foot
- **Item L-110-5.6** Remove and Dispose of Existing PVC Conduit – Per Linear Foot
- **Item L-110-5.7** 16-Way, 2” Sch. 40 PVC conduit Duct Bank, Concrete Encased – Per Linear Foot

MATERIAL REQUIREMENTS

Advisory Circular (AC) 150/5340-30
Design and Installation Details for Airport Visual Aids

AC 150/5345-53
Airport Lighting Equipment Certification Program

ASTM A615
Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM D1556
Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method

ASTM D1557
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))

ASTM D2167
Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D2922
Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

NFPA-70
National Electrical Code (NEC)
Underwriters Laboratories Standard 6
 Electrical Rigid Metal Conduit - Steel

Underwriters Laboratories Standard 514B
 Conduit, Tubing, and Cable Fittings

Underwriters Laboratories Standard 514C
 Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

Underwriters Laboratories Standard 1242
 Electrical Intermediate Metal Conduit Steel

Underwriters Laboratories Standard 651
 Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

Underwriters Laboratories Standard 651A
 Type EB and A Rigid PVC Conduit and HDPE Conduit

END OF ITEM L-110
This page intentionally left blank.
Item L-115
ELECTRICAL MANHOLES AND JUNCTION STRUCTURES

DESCRIPTION
115-1.1 This item shall consist of electrical manholes and junction structures (hand holes, pull boxes, junction cans, etc.) installed or modified per this specification, at the indicated locations and conforming to the lines, grades and dimensions shown on the plans or as required by the Engineer. This item shall include the installation of each electrical manhole and/or junction structures with all associated excavation, backfilling, sheeting and bracing, concrete, reinforcing steel, ladders, appurtenances, testing, dewatering and restoration of surfaces to the satisfaction of the Engineer.

EQUIPMENT AND MATERIALS
115-2.1 General.
 a. All equipment and materials covered by referenced specifications shall be subject to acceptance through manufacturer’s certification of compliance with the applicable specification when so requested by the Engineer.
 b. Manufacturer’s certifications shall not relieve the Contractor of the responsibility to provide materials per these specifications. Materials supplied and/or installed that do not comply with these specifications shall be removed (when directed by the Engineer) and replaced with materials that comply with these specifications at the Contractor’s cost.
 c. All materials and equipment used to construct this item shall be submitted to the Engineer for approval prior to ordering the equipment. Submittals consisting of marked catalog sheets or shop drawings shall be provided. Submittal data shall be presented in a clear, precise and thorough manner. Original catalog sheets are preferred. Photocopies are acceptable provided they are as good a quality as the original. Clearly and boldly mark each copy to identify products or models applicable to this project. Indicate all optional equipment and delete any non-pertinent data. Submittals for components of electrical equipment and systems shall identify the equipment to which they apply on each submittal sheet. Markings shall be made bold and clear with arrows or circles (highlighting is not acceptable). The Contractor is solely responsible for delays in the project that may accrue directly or indirectly from late submissions or resubmissions of submittals.
 d. The data submitted shall be sufficient, in the opinion of the Engineer, to determine compliance with the plans and specifications. The Contractor’s submittals shall be neatly bound in a properly sized 3-ring binder, tabbed by specification section. The Engineer reserves the right to reject any and all equipment, materials or procedures that do not meet the system design and the standards and codes, specified in this document.
 e. All equipment and materials furnished and installed under this section shall be guaranteed against defects in materials and workmanship for a period of at least twelve (12) months from the date of final acceptance by the Owner. The defective materials and/or equipment shall be repaired or replaced, at the Owner’s discretion, with no additional cost to the Owner.

115-2.2 Concrete structures. Cast-in-place concrete structures shall be per the details and dimensions shown on the plans.
Provide precast concrete structures where shown on the plans. Precast concrete structures shall be an approved standard design of the manufacturer. Precast units shall have mortar or bitumastic sealer placed between all joints to make them watertight. The structure shall be designed to withstand 200,000 lb aircraft loads, unless otherwise shown on the plans. Openings or knockouts shall be provided in the structure as detailed on the plans.

Threaded inserts and pulling eyes shall be cast in as shown.

If the Contractor chooses to propose a different structural design, signed and sealed shop drawings, design calculations, and other information requested by the Engineer shall be submitted by the Contractor to allow for a full evaluation by the Engineer. The Engineer shall review per the process defined in the General Provisions.

115-2.3 Junction boxes. Junction boxes shall be L-867 Class 1 (non-load bearing) or L-868 Class 1 (load bearing) airport light bases that are encased in concrete. The light bases shall have a galvanized steel blank cover, gasket, and stainless steel or coated steel hardware per FAA Engineering Brief (EB) #83. Covers shall be 3/8-inch (9-mm) thickness for L-867 and 3/4-inch (19-mm) thickness for L-868.

115-2.4 Mortar. The mortar shall be composed of one part of Portland cement and two parts of mortar sand, by volume. The Portland cement shall be per the requirements in ASTM C150, Type I. The sand shall be per the requirements in ASTM C144. Hydrated lime may be added to the mixture of sand and cement in an amount not to exceed 15% of the weight of cement used. The hydrated lime shall meet the requirements of ASTM C6. Water shall be potable, reasonably clean and free of oil, salt, acid, alkali, sugar, vegetable, or other substances injurious to the finished product.

115-2.5 Concrete. All concrete used in structures shall conform to the requirements of Item P-610, Structural Portland Cement Concrete.

115-2.6 Frames and covers. The frames shall conform to one of the following requirements:

a. ASTM A48 Gray iron castings
b. ASTM A47 Malleable iron castings
c. ASTM A27 Steel castings
d. ASTM A283, Grade D Structural steel for grates and frames
e. ASTM A536 Ductile iron castings
f. ASTM A897 Austempered ductile iron castings

All castings specified shall withstand a maximum load of 200,000 lbs.

All castings or structural steel units shall conform to the dimensions shown on the plans and shall be designed to support the loadings specified.

Each frame and cover unit shall be provided with fastening members to prevent it from being dislodged by traffic, but which will allow easy removal for access to the structure.

All castings shall be thoroughly cleaned. After fabrication, structural steel units shall be galvanized to meet the requirements of ASTM A123.

Each cover shall have the word “ELECTRIC” or other approved designation cast on it. Each frame and cover shall be as shown on the plans or approved equivalent. No cable notches are required.
Each manhole shall be provided with a “DANGER -- PERMIT-REQUIRED CONFINED SPACE, DO NOT ENTER” safety warning sign as detailed in the Contract Documents and in accordance with OSHA 1910.146 (c)(2).

115-2.7 Ladders. Ladders, if specified, shall be galvanized steel or as shown on the plans.

115-2.8 Reinforcing steel. All reinforcing steel shall be deformed bars of new billet steel meeting the requirements of ASTM A615, Grade 60.

115-2.9 Bedding/special backfill. Bedding or special backfill shall be as shown on the plans.

115-2.10 Flowable backfill. Flowable material used to backfill shall conform to the requirements of Item P-153, Controlled Low Strength Material.

115-2.11 Cable trays. Cable trays shall be of galvanized steel, plastic, or aluminum. Cable trays shall be located as shown on the plans.

115-2.13 Conduit terminators. Conduit terminators shall be pre-manufactured for the specific purpose and sized as required or as shown on the plans.

115-2.14 Pulling-in irons. Pulling-in irons shall be manufactured with 7/8 inch (22 mm) diameter hot-dipped galvanized steel or stress-relieved carbon steel roping designed for concrete applications (7 strand, 1/2 inch (12 mm) diameter with an ultimate strength of 270,000 psi (1862 MPa)). Where stress-relieved carbon steel roping is used, a rustproof sleeve shall be installed at the hooking point and all exposed surfaces shall be encapsulated with a polyester coating to prevent corrosion.

115-2.15 Ground rods. Ground rods shall be one piece, copper. The ground rods shall be of the length and diameter specified on the plans, but in no case shall they be less than 8 feet (2.4 m) long nor less than 5/8 inch (16 mm) in diameter.

CONSTRUCTION METHODS

115-3.1 Unclassified excavation. It is the Contractor’s responsibility to locate existing utilities within the work area prior to excavation. Damage to utility lines, through lack of care in excavating, shall be repaired or replaced to the satisfaction of the Engineer without additional expense to the Owner.

The Contractor shall perform excavation for structures and structure footings to the lines and grades or elevations shown on the plans or as staked by the Engineer. The excavation shall be of sufficient size to permit the placing of the full width and length of the structure or structure footings shown.

All excavation shall be unclassified and shall be considered incidental to the respective L-115 pay item of which it is a component part. Dewatering necessary for L-115 structure installation, erosion and turbidity control, per Federal, state, and local requirements is incidental to its respective pay item as a part of Item L-115. The cost of all excavation regardless of type of material encountered, shall be included in the unit price bid for the L-115 Item.

Boulders, logs and all other objectionable material encountered in excavation shall be removed. All rock and other hard foundation material shall be cleaned of all loose material and cut to a firm surface either level, stepped or serrated, as directed by the Engineer. All seams, crevices, disintegrated rock and thin strata shall be removed. When concrete is to rest on a surface other
than rock, special care shall be taken not to disturb the bottom of the excavation. Excavation to final grade shall not be made until just before the concrete or reinforcing is to be placed.

The Contractor shall provide all bracing, sheeting and shoring necessary to implement and protect the excavation and the structure as required for safety or conformance to governing laws. The cost of bracing, sheeting and shoring shall be included in the unit price bid for the structure.

Unless otherwise provided, bracing, sheeting and shoring involved in the construction of this item shall be removed by the Contractor after the completion of the structure. Removal shall be effected in a manner that will not disturb or mar finished masonry. The cost of removal shall be included in the unit price bid for the structure.

After each excavation is completed, the Contractor shall notify the Engineer. Structures shall be placed after the Engineer has approved the depth of the excavation and the suitability of the foundation material.

Prior to installation the Contractor shall provide a minimum of 6 inches (150 mm) of sand or a material approved by the Engineer as a suitable base to receive the structure. The base material shall be compacted and graded level and at proper elevation to receive the structure in proper relation to the conduit grade or ground cover requirements, as indicated on the plans.

115-3.2 Concrete structures. Concrete structures shall be built on prepared foundations conforming to the dimensions and form indicated on the plans. The concrete and construction methods shall conform to the requirements specified in Item P-610. Any reinforcement required shall be placed as indicated on the plans and shall be approved by the Engineer before the concrete is placed.

115-3.3 Precast unit installations. Precast units shall be installed plumb and true. Joints shall be made watertight by use of sealant at each tongue-and-groove joint and at roof of manhole. Excess sealant shall be removed and severe surface projections on exterior of neck shall be removed.

115-3.4 Placement and treatment of castings, frames and fittings. All castings, frames and fittings shall be placed in the positions indicated on the Plans or as directed by the Engineer and shall be set true to line and to correct elevation. If frames or fittings are to be set in concrete or cement mortar, all anchors or bolts shall be in place and position before the concrete or mortar is placed. The unit shall not be disturbed until the mortar or concrete has set.

Field connections shall be made with bolts, unless indicated otherwise. Welding will not be permitted unless shown otherwise on the approved shop drawings and written permission is granted by the casting manufacturer. Erection equipment shall be suitable and safe for the workman. Errors in shop fabrication or deformation resulting from handling and transportation that prevent the proper assembly and fitting of parts shall be reported immediately to the Engineer and approval of the method of correction shall be obtained. Approved corrections shall be made at Contractor’s expense.

Anchor bolts and anchors shall be properly located and built into connection work. Bolts and anchors shall be preset by the use of templates or such other methods as may be required to locate the anchors and anchor bolts accurately.

Pulling-in irons shall be located opposite all conduit entrances into structures to provide a strong, convenient attachment for pulling-in blocks when installing cables. Pulling-in irons shall be set directly into the concrete walls of the structure.
115-3.5 Installation of ladders. Ladders shall be installed such that they may be removed if necessary. Mounting brackets shall be supplied top and bottom and shall be cast in place during fabrication of the structure or drilled and grouted in place after erection of the structure.

115-3.6 Removal of sheeting and bracing. In general, all sheeting and bracing used to support the sides of trenches or other open excavations shall be withdrawn as the trenches or other open excavations are being filled. That portion of the sheeting extending below the top of a structure shall be withdrawn, unless otherwise directed, before more than 6 inches (150 mm) of material is placed above the top of the structure and before any bracing is removed. Voids left by the sheeting shall be carefully refilled with selected material and rammed tight with tools especially adapted for the purpose or otherwise as may be approved.

The Engineer may order the Contractor to delay the removal of sheeting and bracing if, in his judgment, the installed work has not attained the necessary strength to permit placing of backfill.

115-3.7 Backfilling. After a structure has been completed, the area around it shall be backfilled in horizontal layers not to exceed 6 inches (150 mm) in thickness measured after compaction to the density requirements in Item P-152. Each layer shall be deposited all around the structure to approximately the same elevation. The top of the fill shall meet the elevation shown on the plans or as directed by the Engineer.

Backfill shall not be placed against any structure until permission is given by the Engineer. In the case of concrete, such permission shall not be given until tests made by the laboratory under supervision of the Engineer establish that the concrete has attained sufficient strength to provide a factor of safety against damage or strain in withstanding any pressure created by the backfill or the methods used in placing it.

Where required, the Engineer may direct the Contractor to add, at his own expense, sufficient water during compaction to assure a complete consolidation of the backfill. The Contractor shall be responsible for all damage or injury done to conduits, duct banks, structures, property or persons due to improper placing or compacting of backfill.

115-3.8 Connection of duct banks. To relieve stress of joint between concrete-encased duct banks and structure walls, reinforcement rods shall be placed in the structure wall and shall be formed and tied into duct bank reinforcement at the time the duct bank is installed.

115-3.9 Grounding. A ground rod shall be installed in the floor of all concrete structures so that the top of rod extends 6 inches (150 mm) above the floor. The ground rod shall be installed within one foot (30 cm) of a corner of the concrete structure. Ground rods shall be installed prior to casting the bottom slab. Where the soil condition does not permit driving the ground rod into the earth without damage to the ground rod, the Contractor shall drill a 4 inch (100 mm) diameter hole into the earth to receive the ground rod. The hole around the ground rod shall be filled throughout its length, below slab, with Portland cement grout. Ground rods shall be installed in precast bottom slab of structures by drilling a hole through bottom slab and installing the ground rod. Bottom slab penetration shall be sealed watertight with Portland cement grout around the ground rod.

A grounding bus of 4/0 bare stranded copper shall be exothermically bonded to the ground rod and loop the concrete structure walls. The ground bus shall be a minimum of one foot (30 cm) above the floor of the structure and separate from other cables. No. 2 American wire gauge (AWG) bare copper pigtails shall bond the grounding bus to all cable trays and other metal hardware within the concrete structure. Connections to the grounding bus shall be exothermic. If an exothermic weld is not possible, connections to the grounding bus shall be made by using connectors approved for direct burial in soil or concrete per UL 467. Hardware connections may be mechanical, using a lug designed for that purpose.
115-3.10 Cleanup and repair. After erection of all galvanized items, damaged areas shall be repaired by applying a liquid cold-galvanizing compound per MIL-P-21035. Surfaces shall be prepared and compound applied per the manufacturer’s recommendations.

Prior to acceptance, the entire structure shall be cleaned of all dirt and debris.

115-3.11 Restoration. After the backfill is completed, the Contractor shall dispose of all surplus material, dirt and rubbish from the site. The Contractor shall restore all disturbed areas equivalent to or better than their original condition. All sodding, grading and restoration shall be considered incidental to the respective L-115 pay item.

The Contractor shall grade around structures as required to provide positive drainage away from the structure.

Areas with special surface treatment, such as roads, sidewalks, or other paved areas shall have backfill compacted to match surrounding areas, and surfaces shall be repaired using materials comparable to original materials.

Following restoration of all trenching near airport movement surfaces, the Contractor shall thoroughly visually inspect the area for foreign object debris (FOD), and remove any such FOD that is found. This FOD inspection and removal shall be considered incidental to the pay item of which it is a component part.

After all work is completed, the Contractor shall remove all tools and other equipment, leaving the entire site free, clear and in good condition.

115-3.12 Inspection. Prior to final approval, the electrical structures shall be thoroughly inspected for conformance with the plans and this specification. Any indication of defects in materials or workmanship shall be further investigated and corrected. The earth resistance to ground of each ground rod shall not exceed 25 ohms. Each ground rod shall be tested using the fall-of-potential ground impedance test per American National Standards Institute / Institute of Electrical and Electronic Engineers (ANSI/IEEE) Standard 81. This test shall be performed prior to establishing connections to other ground electrodes.

115-3.13 Manhole elevation adjustments. The Contractor shall adjust the tops of existing manholes in areas designated in the Contract Documents to the new elevations shown. The Contractor shall be responsible for determining the exact height adjustment required to raise the top of each manhole to the new elevations. The existing top elevation of each manhole to be adjusted shall be determined in the field and subtracted/added from the proposed top elevation.

The Contractor shall remove/extend the existing top section or ring and cover on the manhole structure or manhole access. The Contractor shall then install precast concrete sections or grade rings of the required dimensions to adjust the manhole top to the new proposed elevation or shall cut the existing manhole walls to shorten the existing structure, as required by final grades. Finally, the Contractor shall reinstall the manhole top section or ring and cover on top and check the new top elevation.

The Contractor shall construct a concrete slab around the top of adjusted structures located in graded areas that are not to be paved. The concrete slab shall conform to the dimensions shown on the plans.
115-3.14 Duct extension to existing ducts. Where existing concrete encased ducts are to be extended, the duct extension shall be concrete encased plastic conduit. The fittings to connect the ducts together shall be standard manufactured connectors designed and approved for the purpose. The duct extensions shall be installed according to the concrete encased duct detail and as shown on the plans.

METHOD OF MEASUREMENT

115-4.1 Electrical manholes and junction structures shall be measured by each unit completed in place and accepted. The following additional items are specifically included in each unit:

- All Required Excavation, Dewatering
- Sheeting and Bracing
- All Required Backfilling with On-Site Materials
- Restoration of All Surfaces and Finished Grading, Sodding
- All Required Connections
- Dewatering If Required
- Temporary Cables and Connections
- Ground Rod Testing

115-4.2 Manhole elevation adjustments shall be measured by the completed unit installed, in place, completed, and accepted. Separate measurement shall not be made for the various types and sizes.

BASIS OF PAYMENT

115-5.1 The accepted quantity of electrical manholes and junction structures will be paid for at the Contract unit price per each, complete and in place. This price shall be full compensation for furnishing all materials and for all preparation, excavation, backfilling and placing of the materials, furnishing and installation of appurtenances and connections to duct banks and other structures as may be required to complete the item as shown on the plans and for all labor, equipment, tools and incidentals necessary to complete the structure.

115-5.2 Payment shall be made at the contract unit price for manhole elevation adjustments. This price shall be full compensation for furnishing all materials and for all preparation, assembly, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary, including but not limited to, spacers, concrete, rebar, dewatering, excavating, backfill, topsoil, sodding and pavement restoration, where required, to complete this item as shown in the plans and to the satisfaction of the Engineer.

Payment will be made under:

- Item L-115-5.1 Adjust Elevation and Aircraft-Rating of existing Electrical Manhole Structure - Per Each
- Item L-115-5.2 Adjust Elevation and Aircraft-Rating of Existing Federal Aviation Administration Manhole Structure – Per Each
Item L-115-5.3 Adjust Elevation and Aircraft-Rating of Existing Communication Manhole Structure – Per Each
Item L-115-5.4 Install New L867 Type D Pull Box – Per Each
Item L-115-5.5 Install New Aircraft Rated Electrical Manhole Structure – Per Each

MATERIAL REQUIREMENTS

Advisory Circular (AC) 150/5345-7 Specification for L-824 Underground Electrical Cable for Airport Lighting Circuits
AC 150/5345-26 Specification for L-823 Plug and Receptacle, Cable Connectors
AC 150/5345-42 Specification for Airport Light Bases, Transformer Housings, Junction Boxes, and Accessories
AC 150/5340-30 Design and Installation Details for Airport Visual Aids
AC 150/5345-53 Airport Lighting Equipment Certification Program
Commercial Item Description A-A 59544 Cable and Wire, Electrical (Power, Fixed Installation)
ASTM A27 Standard Specification for Steel Castings, Carbon, for General Application
ASTM A47 Standard Specification for Ferritic Malleable Iron Castings
ASTM A48 Standard Specification for Gray Iron Castings
ASTM A283 Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates
ASTM A536 Standard Specification for Ductile Iron Castings
ASTM A615 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM A897 Standard Specification for Austempered Ductile Iron Castings
ASTM C144 Standard Specification for Aggregate for Masonry Mortar
ASTM C150 Standard Specification for Portland Cement
ASTM C206 Standard Specification for Finishing Hydrated Lime
FAA EB #83 In Pavement Light Fixture Bolts
MIL-P-21035 Paint High Zinc Dust Content, Galvanizing Repair
NFPA-70 National Electrical Code (NEC)

END OF ITEM L-115
ITEM L-125

INSTALLATION OF AIRPORT LIGHTING SYSTEMS

DESCRIPTION

125-1.1 This item shall consist of airport lighting systems furnished and installed in accordance with the contract drawings, the referenced specifications, and applicable FAA Advisory Circulars. The systems shall be installed at the location and in accordance with the dimensions, design and details shown on the contract drawings. This item shall include furnishing and installing of all equipment, materials, services, testing and incidentals necessary to place the systems in operation as completed units to the satisfaction of the Engineer.

EQUIPMENT AND MATERIALS

125-2.1 GENERAL.

a. Airport lighting equipment and materials covered by advisory circulars (AC) shall be approved under the Airport Lighting Equipment Certification Program per AC 150/5345-53, current version.

b. All other equipment and materials covered by other referenced specifications shall be subject to acceptance through manufacturer’s certification of compliance with the applicable specification, when requested by the Engineer.

c. Manufacturer’s certifications shall not relieve the Contractor of the responsibility to provide materials per these specifications. Materials supplied and/or installed that do not comply with these specifications shall be removed (when directed by the Engineer) and replaced with materials that comply with these specifications at the Contractor’s cost.

d. All materials and equipment used to construct this item shall be submitted to the Engineer for approval prior to ordering the equipment. Submittals consisting of marked catalog sheets or shop drawings shall be provided. Submittal data shall be presented in a clear, precise and thorough manner. Original catalog sheets are preferred. Photocopies are acceptable provided they are as good a quality as the original. Clearly and boldly mark each copy to identify products or models applicable to this project. Indicate all optional equipment and delete any non-pertinent data. Submittals for components of electrical equipment and systems shall identify the equipment to which they apply on each submittal sheet. Markings shall be made bold and clear with arrows or circles (highlighting is not acceptable). The Contractor is solely responsible for delays in the project that may accrue directly or indirectly from late submissions or resubmissions of submittals.

e. The data submitted shall be sufficient, in the opinion of the Engineer, to determine compliance with the plans and specifications. The Contractor’s submittals shall be neatly bound in a properly sized 3-ring binder, tabbed by specification section. The Engineer reserves the right to reject any and all equipment, materials, or procedures that do not meet the system design and the standards and codes, specified in this document.

f. Only Third Party certified manufacturers, listed in AC 150/5345-53, Appendix 3 Addendum (as required) and meeting the BUY AMERICAN preference requirements can provide equipment and materials specified in the Contract Documents. Documentation certifying compliance with the BUY AMERICAN preference rules for Airport Improvement Program (AIP) cited in 49 USC §50101) shall be included with each equipment and material submittal.
g. Except as indicated in the paragraph below, all equipment and materials furnished and installed under this section shall be guaranteed against defects in materials and workmanship for at least twelve (12) months from the date of final acceptance by the Owner. The defective materials and/or equipment shall be repaired or replaced, at the Owner’s discretion, with no additional cost to the Owner.

In accordance with Engineering Brief EB-67D, Light Sources Other Than Incandescent and Xenon for Airport and Obstruction Lighting Fixtures, all LED light fixtures with the exception of obstruction lighting (AC 150/5345-43) shall be warranted by the manufacturer for a minimum of four (4) years after date of installation. The defective materials and/or equipment shall be repaired or replaced, at the Owner’s discretion, with no additional cost to the Owner.

125-2.2 Basis of Design. The airfield lighting systems are designed using the below listed maximum fixture volt-ampere/watt loads. The VA load represents the total load as seen by the CCR for the equipment, isolation transformer, and other incidentals. The watt load represents the actual load of the equipment only.

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Description</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-850A(L)</td>
<td>In-pavement runway centerline light, LED</td>
<td>74 VA</td>
</tr>
<tr>
<td>L-850B(L)</td>
<td>In-pavement runway touchdown zone light, LED</td>
<td>36 VA</td>
</tr>
<tr>
<td>L-850C</td>
<td>In-pavement runway edge light, quartz</td>
<td>210 W</td>
</tr>
<tr>
<td>L-850D</td>
<td>In-pavement runway threshold light, quartz</td>
<td>62 W</td>
</tr>
<tr>
<td>L-852C(L)</td>
<td>In-pavement taxiway centerline light, straight section, LED</td>
<td>56 VA</td>
</tr>
<tr>
<td>L-852G(L)</td>
<td>In-pavement taxiway guard light, LED</td>
<td>104 VA</td>
</tr>
<tr>
<td>L-852K(L)</td>
<td>In-pavement taxiway centerline light, curve section, LED</td>
<td>58 VA</td>
</tr>
<tr>
<td>L-804(L)</td>
<td>Elevated runway guard light, LED</td>
<td>83 VA</td>
</tr>
<tr>
<td>L-862</td>
<td>Elevated runway edge light, quartz</td>
<td>200 W</td>
</tr>
<tr>
<td>L-862E</td>
<td>Elevated runway end light, quartz</td>
<td>200 W</td>
</tr>
<tr>
<td>L-858Y/R/L(L)</td>
<td>Guidance Sign, FAA Size 3, Style 2, 1 Module, LED</td>
<td>95 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 2, 2 Module, LED</td>
<td>95 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 2, 3 Module, LED</td>
<td>100 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 2, 4 Module, LED</td>
<td>115 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 3, 1 Module, LED</td>
<td>95 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 3, 2 Module, LED</td>
<td>100 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 3, 3 Module, LED</td>
<td>100 VA</td>
</tr>
<tr>
<td></td>
<td>Guidance Sign, FAA Size 3, Style 3, 4 Module, LED</td>
<td>115 VA</td>
</tr>
<tr>
<td>L-858B(L)</td>
<td>Distance Remaining Sign, FAA Size 4, Style 3, LED</td>
<td>95 VA</td>
</tr>
</tbody>
</table>

125-2.3 Fixtures - General.

a. All in-pavement fixtures shall be style 3 unless noted otherwise. The total height of the fixture above the finished grade, x, shall be x ≤ 1/4 inches. All in-pavement fixtures shall be Class 2. All fixtures shall be Mode 1, 6.6 ampere.

b. Light output shall increase with increasing lamp current steps and decrease with decreasing lamp
current steps in accordance with Table 1 for white light and Table 2 for colored light contained in FAA EB-67D.

c. All airfield lighting fixtures shall be capable of FAA compliant operation on any manufacturer’s CCR regardless of technology used (SCR, ferroresonant, etc.).

d. The fixture pay items shall include, where applicable, a deep base can, top can section, base plate, spacer ring, pavement ring, properly sized L-830 isolation transformer, L-823 connectors, gasket, stainless steel bolts, and all incidentals required to provide a fully functional and operational system to the satisfaction of the Engineer. All alignment, leveling, and aiming is considered incidental to the fixture pay item for which it applies.

125-2.4 Light Bases (Base Cans).

a. All light bases shall meet the requirements of FAA AC 150/5345-42, current version. The light bases shall be Type L-867 for the non-load bearing units and Type L-868 for the load bearing units. The sizes of the light bases shall be as indicated in the Contract Documents. Telescoping light bases may be used for the L-867 non-load bearing units. Two-piece light bases may be used where paving interferences required their use. Two-piece light bases shall be used in asphalt pavement. All light bases shall be Class 1A, galvanized steel. All light bases shall have a minimum depth of 24 inches, not including the height of the fixture or spacer rings, unless noted otherwise. A maximum of three (3) spacer rings may be used on each light base.

b. L-868 light bases installed for future fixtures shall be installed with spacer rings as needed to make the top of the pavement ring 3/4 inch below pavement level. Provide a 3/4 inch steel blank cover. When L-868 light bases with blank covers are installed, it is intended that in the future the cover will be replaced with a fixture. The light base shall be installed level at the correct location, elevation, and azimuth such that a future fixture will be correctly orientated.

c. The Contractor shall be responsible for correctly measuring and determining the specific components required to properly adjust the light base level, height, and azimuth in accordance with FAA requirements. The Contractor shall individually measure and record the bolt circle center of each light base to be extended and the required height of the light base top can section necessary to install the fixture level at the correct elevation and azimuth.

125-2.5 Taxiway Centerline Lights. Taxiway centerline lights shall be FAA L-852C(L) with LED lamp for straight sections and FAA L-852K(L) with LED lamp for curved sections. Lens color and light beam direction shall be as indicated in the Contract Drawings. The fixtures shall be designed to operate on a 5-step CCR.

125-2.6 Runway Edge Lights. Elevated runway edge lights shall be FAA L-862 with quartz lamp. In-pavement elevated runway edge lights shall be FAA L-850C with quartz lamp. Lens color and light beam direction shall be as indicated in the Contract Drawings. The fixtures shall be designed to operate on a 5-step CCR.

125-2.7 Runway End Lights. Runway end lights shall be FAA L-862E with quartz lamp. Lens color and light beam direction shall be as indicated in the Contract Drawings. The fixtures shall be designed to operate on a 5-step CCR.

125-2.8 Runway Threshold Lights. Runway threshold lights shall be FAA L-850D with quartz lamp. Lens color and light beam direction shall be as indicated in the Contract Drawings. The fixtures shall be designed to operate on a 5-step CCR.
125-2.9 Runway Guard Lights. Elevated runway guard lights shall be FAA L-804(L) with LED lamp. In-pavement runway guard lights shall be FAA L-852G(L) with LED lamp. The guard lights shall be designed to operate on a 3-step CCR.

125-2.10 Taxiway Edge Lights. Taxiway edge lights shall be FAA Type L-861T(L) with LED lamp and blue lens. The fixtures shall be designed to operate on a 3-step CCR.

125-2.11 Guidance and Distance Remaining Signs.

a. FAA L-858 signs shall utilize LED light sources. The signs shall be L-858Y, R, L, and B and shall be internally lighted. The L-858Y, L and R guidance signs shall be FAA size 3. The L-858B distance remaining signs shall be FAA size 4. The signs shall be furnished with lamps installed. All signs shall be style 2, 3 or 5 as applicable. Contractor shall verify the sign styles and note such in the submittal prior to ordering the signs. All signs shall be Class 2.

b. All signs shall be furnished with one tether per module. In addition to installing one tether per module, each sign array shall be equipped with a tether on each end. One module signs shall be equipped with two tethers. The sign base plate shall not be used to attach the sign tethers to the concrete pad. The tethers shall be fabricated from 3/16 inch stainless steel aircraft cable with a formed eye on both ends and shall be of ample length to attach to the sign hard point in accordance with the manufacturer’s recommendation and to the concrete foundation by being sandwiched between two stainless steel fender washers with a 1/2 inch x 6 inch minimum stainless steel adhesive anchor, Hilti HIT RES00 or equivalent. The tether shall be of sufficient length to have a minimum of 6” of slack and allow for the frangible coupling and disconnect plug to function properly.

c. The bolt pattern, method of anchoring, etc., shall be per the sign manufacturer’s recommendations. Sign bolts shall be 1/2 inch diameter by 6 inches long stainless steel adhesive anchor, Hilti HIT RES00 or equivalent. The signs shall be supplied with the messages indicated in the Contract Documents.

d. Each sign shall be furnished with an on-off toggle switch with weatherproof cover. The switch shall be used by maintenance personnel to de-energize the sign for maintenance work. The switch shall be physically and electrically located immediately adjacent to the load side of the L-823 disconnect plug. When the switch is in the off position, the sign shall be isolated from the series circuit and the secondary of the L-830 isolation transformer shall be shorted. The weatherproof cover shall provide protection from driving rain, ice, and snow and shall have a spring operated closing device. The weatherproof cover shall also provide protection for the switch handle.

e. Provide white reflective numbers on a black background with pressure-sensitive adhesive backing suitable for exterior application. Labels shall be UV resistant. Text shall be Helvetica medium, upper case, 3 inches tall. Numbers shall be installed on the end of the sign toward the pavement.

f. The quantity of sign modules is based on two (2) characters per module. Payment shall be made on the basis of a module consisting of 2 characters, regardless of the manufacturing methods or techniques.

125-2.12 Sign Panels.

a. Furnish new sign panels to be installed on existing signs. Panels shall be compatible with existing sign. Contractor shall be responsible to investigate and determine the existing signs manufacturer model number and size. The new sign panel legend shall be as indicated in the Contract Documents.

b. The new legends shall not affect the lumen output of the existing sign. New sign panels shall be installed and secured to the existing sign in the same manner as the original panels. Legend text size and style shall be in accordance with FAA AC 150/5345-44, current version.
c. Sign panels provided for existing signs that are to remain shall be by the original sign manufacturer. Provide letter of certification from the manufacturer that the legend replacement does not change any of the performance parameters under which the sign was FAA certified.

d. Sign panels shall include all incidentals required for a complete and operational unit to the satisfaction of the Engineer.

125-2.13 Tape. Tape and heat shrink tubing shall comply with Item L-108.

125-2.14 Concrete.

a. Concrete shall conform to Item P-610, Structural Portland Cement Concrete, using 1 inch maximum size coarse aggregate with a minimum 28 day compressive strength of 3500 PSI. Where reinforcing is specified, reinforcing steel shall conform to ASTM A615 Grade 60. Concrete and reinforcing steel are incidental to the respective pay item of which they are a component part.

b. High early strength P-610 concrete will be required for use with ducts, conduits, light bases, and sign foundations in existing operational areas and within the safety areas of operational pavement to comply with the project phasing and scheduling requirements. The extra cost of the early strength concrete shall be considered incidental to the respective pay item of which it is a component part. Concrete shall obtain 4000 PSI prior to opening to aircraft.

125-2.15 Conduit. Conduit shall comply with Item L-110.

125-2.16 Isolation Transformers. Isolation transformers shall be of the rating compatible with the associated light fixture or sign and shall conform to the requirements of FAA AC 150/5345-47, current version.

125-2.17 Ground Rods. Ground rods shall comply with Item L-108.

125-2.18 Fillers and Adhesives. Joint sealing filler shall be FAA Type P-605 and adhesive compounds shall be FAA Type P-606. P-605 and P-606 shall be formulated so they are compatible with the pavement type with which they are used.

125-2.19 Anti-Seize Compound.

a. Use an approved anti-seize compound on all bolted connections, KOPR-SHIELD or equivalent.

b. Use a non-curing sealant between light base sections, spacer rings, and other rings, GE RTV-118 or equivalent. No sealant shall be used between the fixture and the flange/pavement ring.

c. Use an antioxidant compound on all aluminum to aluminum mechanical or electrical connections, Ideal NOALOX or equivalent. Use KOPR-SHIELD, or equivalent, on all rigid galvanized steel conduit connections and all copper grounding connections using mechanical lugs.

125-2.20 Light Base Hardware.

a. All hardware shall be stainless steel and shall meet FAA requirements. All bolts 1/4 inch and larger shall be hex head type. All bolts smaller than 1/4 inch shall be recessed Allen type.

b. All bolted connections shall utilize a two-piece anti-rotational locking type device, NORD-LOCK self-locking washers or equivalent.

c. All fixtures and light bases shall be installed with new bolts of the proper thread length with new two-piece anti-rotational locking type devices. An accepted anti-seize compound shall be used on all bolts.
connecting light base sections or elevated fixture base plates to light bases. In-pavement fixture bolts shall utilize anti-seize compounds in accordance with the manufacturer’s recommendations. All bolts shall be torqued in accordance with the manufacturer’s requirements.

d. Light base bolts shall extend thru the mounting flange into the base a minimum of 1/2 inch. The bolts shall have enough thread length so they do not shoulder out before the fixture is securely tightened.

e. The Contractor shall take extreme care when removing existing light base bolts. The Contractor shall be responsible for the proper removal/repair/replacement of all stripped/broken/damaged bolts. The drilling or tapping of a light base shall be considered incidental to the respective pay item of which it is a component part.

125-2.21 Spares. The following table lists the electrical spare parts required to be furnished by the Contractor. All spare parts shall be identical to the same parts approved and installed in the project. The cost of all defined spare parts to be furnished to the Owner shall be included in the various unit bid items for which the spare parts are provided. The Contractor shall provide spare parts for 10 per cent of the number of an item being installed. Should the total quantity of a specific fixture type be less than 10, the Contractor shall provide 1 complete spare fixture assembly unit for that item.

CONSTRUCTION METHODS

125-3.1 Installation - General.

a. All fixtures, signs, etc. shall be installed as shown on the Contract Documents or accepted shop drawings and in accordance with the applicable FAA Advisory Circulars and manufacturers’ recommendations. Survey instruments shall be used to position all items to insure precise orientation. Items not installed in accordance with the FAA Advisory Circulars and the Contract Documents shall be replaced by the Contractor and no additional expense to the Owner.

b. Assemble the units and connect to the system in accordance with the manufacturer’s recommendations and instructions.

c. The identification number for each unit is as assigned in the plans. Identification of the elevated runway edge lights shall be accomplished by attaching a brass identification tap, stamped with the corresponding light number, to the base plate of each fixture. A hole of adequate diameter shall be drilled through one end of the tag to attach the tag to a mounting bolt prior to installation. Drilling of the hole shall not affect the durability of the tag. Identification tags shall be brass with letters stamped into the surface. Tags shall not be smaller than 2 inches x 3 inches x 1/10 inch thick and suitable for outdoor use, with characters not less than 1 inch high.

d. Painted and galvanized surfaces that are damaged shall be repaired according to the manufacturer’s recommendations, to the satisfaction of the Engineer.

e. If a light base is installed incorrectly or the duct/conduit is blocked/broken, 600 square feet asphalt pavement around the light base shall be removed. The pavement shall be replaced in accordance with the Contract Documents with the light base properly reinstalled. The removal and replacement of the pavement and light base shall be at the Contractor’s expense.

f. Dewatering necessary for the installation of fixtures and signs is considered incidental to its respective pay item. The cost of all excavation regardless of the type of material encountered shall be included in the unit price for the bid item.

125-3.2 Installation - Signs.

a. Stake the location of all signs prior to installation to demonstrate accuracy of layout and coordination.
with site features. Bring conflicts to the attention of the Engineer.

b. Signage shall be installed on concrete bases finished level as shown. Provide 4 feet wide protective slab around base finished level or sloped as required to match surrounding grades. The face of the sign shall be approximately 90 degrees to the direction of the taxiing path from which it is viewed.

c. Guidance signs shall be provided with appropriate number of modules as required in order to accommodate the sign messages as indicated on the drawings. Transformer housing shall be located at end of concrete base to allow full access to housing without interference from or removal of sign structure. Mounting legs for each sign shall have frangible points located 2 inches or less above the concrete pad or stake. The frangible points shall withstand wind loads due to jet blasts of 200 mph but will break before reaching an applied static load over the legend panel of 1.3 psi. Legend panels and panel supports shall withstand, at a minimum, the pressure at which the frangible points break. Modify conduit and sign support locations as required to adapt to manufacturer’s standards.

d. Install sign panels in accordance with the Contract Documents and the sign manufacturer’s recommendations and instructions.

125-3.3 Installation - Fixtures and Light Bases.

a. Stake the location of all light bases prior to installation to demonstrate accuracy of layout and coordination with site features. Bring conflicts to the attention of the Engineer.

b. Light bases for elevated fixtures shall be installed at the designated locations with top flanges at the required elevation and within 2 degrees of level. All elevated lights shall be installed at an equal height above grade.

c. All in-pavement lights shall be installed level with the top edge between +0 inches to -1/16 inches from the pavement’s final finished grade. Light bases must be aligned parallel to the centerline of the runway or taxiway with a tolerance of ± 1/2 degree.

d. A jig or fixture approved by the Engineer is required to hold the base in position while the concrete anchor is being placed. The Engineer must approve the light base azimuth alignment and elevation before the concrete anchor is placed and it is the electrical contractor’s responsibility for maintaining correct alignment of the light base throughout construction operations. The jig must remain in place until the concrete has set. Care must be taken while placing the concrete anchor that neither the jig nor the light base be disturbed. The surface of the replacement pavement around the light fixture must be flush with the surrounding area.

e. Following milling and paving operations, the Contractor shall commence the 2 inch core boring used to find the center of the light base and to determine the height of the top can section (less fixture and flange ring thickness) within one working day of the final lift of asphalt being placed. The Contractor shall expedite the completion of this task in support of placing the order for the final top can sections within five working days of the completion of the finished paving.

f. When the Contractor begins the process of extending the in-pavement lights to the finished grades, the Contractor shall demonstrate to the Engineer the process to precisely locate the center of the light base. Oval shaped holes for the cores are unacceptable. The core drill diameter shall be limited to 1/2 inch, +1/4 inch larger than the top can section that is being installed. Following the coring operation, the Contractor shall remove the core, mud plate, and plywood cover and clean the light base section flange surfaces prior to installation of the top can section, spacer ring, pavement ring, and fixture.

g. The Engineer shall verify the fixture has been installed level at the proper elevation and azimuth. Following this validation, the Contractor shall install P-606 and P605 in the voids around the top can section.
section, spacer ring, and pavement ring to complete the installation to final grade.

125-3.4 Removals. Removal of existing equipment, etc., shall be performed carefully to prevent damage to existing equipment. Removed items not to be reinstalled shall be delivered and turned over to airport maintenance, unless otherwise directed by the Engineer, in which case these items shall be disposed of off airport property at the Contractor’s expense.

125-3.5 Relocating Equipment. Fixtures and signs identified to be relocated shall be done carefully to prevent damage to the lights, filters, base plates, sign panels, or sign frames. Prior to relocation, report in writing to the Engineer any broken components, lamp burnouts, or other defects found at the time of relocation. It shall be the Contractor’s responsibility to safely and properly store the equipment and to repair or replace any damaged equipment during relocation. After fixtures and signs are removed from the existing bases, the light bases and foundations shall be removed and disposed of at the Contractor’s expense. The light fixtures and signs shall be reinstalled on new light bases and foundations at the approximate location indicated in the plans.

125-3.6 Maintenance of Airport Lighting Systems. The Contractor shall maintain the airport lighting systems during the various phases of the work as shown on the phasing plan(s) or as directed by the Engineer. The Contractor shall be responsible for all temporary connections in the field or at the regulator necessary for operation of the circuits during construction. All existing electrical equipment and lighting systems shall be kept in operation, unless prior approval of the Engineer has been received and as otherwise specified below and on the Drawings. The Contractor may use salvaged materials for temporary construction where required. The permission for temporary work and using salvaged materials shall be obtained from the Engineer. Lighting for active runway and taxiway surfaces shall be maintained at all times. Temporary electrical fixtures and conductors are allowable when necessary, but shall be installed as follows:

a. Temporary lights shall be bolted to the pavement in a manner rendering the light stationery and allowing space for conductors to enter or exit and to be spliced.

b. When the above is not practical, lights shall be fastened to a weighted object adaptable for the purpose and of sufficient weight to inhibit movement by jet engine blast.

c. Temporary conductors supplying temporary lights shall be installed in a rigid galvanized steel conduit system and secured every five feet to prevent movement by jet engine blast. Conduit shall comply with Item L-110.

d. All joints or splices in temporary conductors shall have heat shrink tubing with integral sealant applied to secure mechanical and electrical connection and prevent water entry.

e. All plug-in connections shall have heat shrink tubing with integral sealant applied to prevent accidental disconnection and shall be color code taped to expedite quick, efficient disconnection and restoration.

f. Temporary airfield lighting and signage shall conform as closely as possible to permanent locations normally on the taxiway or runway and that shall guide aircraft in a safe path away from all possible accident prone areas.

Closed taxiways and runways shall be so marked in a manner acceptable to FAA and the Owner and said marking shall be kept in acceptable condition. This item shall include, at the Engineer’s discretion the temporary removal or covering of airfield signage.

CAUTION: The series lighting circuit must always be complete before a regulator is energized. Normal circuit voltage is less than 5,000 volts, open circuit voltage can be more than 10,000 volts. All personnel shall be instructed to protect the integrity of the lighting circuit. Turn off, lock out and tag the constant
current regulator at the vault before opening the circuit. Continuity of the circuit shall be checked before
the regulator is reconnected and reenergized.

The installation and/or removal of lighting equipment may be critical to airport operations; therefore, the
Contractor shall follow work schedules established in the plans and specifications or as directed by the
Engineer. The temporary system shall be installed in accordance with the contract documents, FAA
Advisory Circulars and if applicable the National Electrical Code and/or local code requirements.

The Contractor shall provide temporary wiring as required to reconnect existing airfield lighting and signage
to provide guidance for aircraft to pass through the construction areas on those taxiways/runways, which
must remain open. Cable shall comply with Item L-108.

It shall be the Contractor's responsibility to determine that all airfield lighting circuits, except those that are
serving closed taxiways or runways, are completely operational, using tower controls (if applicable), at the
end of each work shift and shall so certify to the Engineer before leaving the work site. Day shift report of
system operation shall be at 4 p.m. Second shift report shall be 1 hour before dark. Any other shift shall
report 1 hour prior to the need for airfield lighting or as determined by the Engineer. Should bad weather
cause poor visibility, the Engineer may require additional status reports of system operability and may call
for the operation of the lighting system at any time. In the event of lighting system failure, the Contractor
shall immediately take the necessary steps to restore proper operation.

Whenever the scope of work requires connection to an existing circuit, the circuit’s insulation resistance
shall be tested, in the presence of the Engineer. This test shall be performed in accordance with paragraph
L-108-2.1g and L-108-2.11 prior to any activity affecting the respective circuit. The Contractor shall record
the results. When the circuit is returned to its final condition, the circuit’s insulation resistance shall be
checked again in the presence of the Engineer. The Contractor shall record the results. The second
reading shall be equal to or greater than the first reading or the Contractor shall make the necessary repairs,
to the circuit, to bring the second reading above the first reading. All repair costs including a complete
replacement of the L-823 connectors, L-830 transformers and L-824 cable, etc. if necessary, shall be borne
by the Contractor. All test results shall be submitted in the Operation and Maintenance (O&M) Manual.

125-3.6 Restoration. After the backfill is completed, the contractor shall dispose of all surplus material, dirt
and rubbish from the site. The Contractor shall restore all disturbed areas equivalent to or better than their
original condition. The restoration shall include [seeding] [mulching]. The Contractor shall grade around
structures as required to provide positive drainage away from the structure. The Contractor shall be held
responsible for maintaining all disturbed surfaces and replacement until final acceptance. All restoration
shall be considered incidental to the item for which it applies.

125-3.6 Inspection and Testing. The most important of all inspection and test procedures is thorough
visual inspections. Visual inspections shall be made frequently during installation, at completion of
installation, and before energizing the circuits. A careful visual inspection can reveal defects that can
be corrected prior to acceptance tests and energization. Serious damage may occur if defects are
subjected to electrical tests or energization.

a. Each fixture is installed correctly, at the proper height, in line with the other fixtures, level and
 properly oriented.

b. Light fixtures with symmetrical lenses are properly oriented with respect to the runway longitudinal
 sides. Check all lights for alignment.

c. Manufacturers have supplied approved equipment for all equipment covered by Federal Aviation
 Administration specifications. Check equipment for general conformance with specification
 requirements.

d. All cables, wiring and splices have been installed in accordance with these detailed specifications,
the plans, the National Electrical Code and Local codes. Inspect and test insulation resistance of underground cables before backfilling.

e. Grading around sign pads.

125-3.7 Electrical Tests on Series Lighting Circuits. Before modifying any series circuit, verify the performance of the existing circuit by checking the supply voltage to the regulator and measuring the output current from the regulator on all brightness steps under existing load. Check cable connections and perform electrical tests on cable as specified in Item L-108.

125-3.8 Miscellaneous Components. All components being installed or modified shall be visually inspected for damage, correct connections, proper fuse and circuit breaker ratings, and compliance with codes.

125-3.9 Final Acceptance Tests. After components and circuits have been inspected, as specified in the preceding paragraphs, the entire system shall be inspected and tested as follows:

a. Each lighting circuit shall be tested by operating it continuously at maximum brightness for at least 15 minutes, and at medium intensity for 2 hours. Visual inspection shall be made at the beginning and end of this test to determine that the correct number of lights is operating at full brightness. Dimming of some or all of the lights in a circuit is an indication of grounded cables.

b. Repeat the above test using the local control switches on the regulators.

c. Each lighting circuit shall be tested by operating it continuously at maximum brightness for at least 15 minutes and at medium brightness for 6 hours. Visual inspection shall be made at the beginning and end of this test to determine that the correct numbers of lights are operating at full brightness. Dimming of some or all of the lights in a circuit is an indication of grounded cables.

d. All circuits must be continuous and free of short circuits and unspecified grounds.

e. In addition to the above, all equipment shall be subjected any and all performance tests specified in the manufacturer's instructions.

f. Contractor shall submit all test results to Engineer in writing.

125-3.10 Record Drawings. All items shall be shown in actual location installed. All underground ducts, conduits, drains, ground grids, force mains, etc. (all underground utilities) installed by the Contractor or located by the Contractor during construction of this project shall be surveyed. The data shall be sufficiently accurate to locate the utility at a later date. The data shall include North-South and East-West coordinates and an elevation. All structures installed by the Contractor shall be surveyed. The center of the structure shall be located by a North-South and East-West coordinate and an elevation. Change the equipment schedules to agree with items actually furnished. At the end of the project, all changes shall be transferred to a set of reproducible design drawings marked “As-Built” and dated and stamped by the electrical contractor.

125-3.10 Operation and Maintenance Manuals. Within each major division of work, each specification section in the Contract Documents which require submission of O & M information shall be individually identified by a typed index tab. The Contractor shall provide two (2) copies of manufacturer's manuals in book form as required by this item, for all installed equipment. As a minimum, it shall contain the following:

a. Safety precautions used while maintaining the equipment.

b. Theory of circuit and system operation.
c. Complete schematic and interconnecting wiring diagrams.

d. Complete parts list with each circuit component keyed to designations assigned on schematics and wiring diagrams. Complete information shall be given for each part to permit ordering for replacement purposes. This information shall include the components rating, name of manufacturer and the manufacturer’s part number.

e. Recommended preventive maintenance, including care, cleaning, lubrication, service intervals, etc.

f. Troubleshooting procedures.

g. Physical characteristics (weight, size, mounting dimensions, etc.).

h. Installation instructions.

i. Operating instructions.

j. Recommended spare parts and usage for a 1 year period.

k. Submit for checking purposes a specific set of written operating instructions on each item, which requires instructions to operate. After approval, provide one copy for insertion in each Operation and Maintenance Manual.

l. Submit for approval maintenance information consisting of manufacturer’s printed instructions and parts list for each major item of equipment. After approval, insert information in each Operations and Maintenance Manuals. Detailed schematic diagrams shall be furnished for all electrical/electronic equipment.

m. Bill of materials.

n. Physical layout plans.

o. Equipment supplier list.

p. Panel schedules shall be submitted with the respective panel data.

q. Special instructions.

r. Service maintenance contracts including the name, address and 24-hour phone number and contact of Manufacturer’s authorized repair company.

O&M Manuals shall consist of a hard cover, view type, 3-ring binders sized to hold 8 1/2” x 11” sheets. Provide designation of project in each pocket. Designation is to describe project and contents. Manual shall include approved shop drawings, product data, and warranty.

METHOD OF MEASUREMENT

125-4.1 Airfield lights and guidance signs will be measured for payment on a unit basis per each, for each type installed as completed units in place, accepted, and ready for operation.

125-4.2 Relocated airfield lights and guidance signs will be measured for payment on a unit basis per each, for each type installed as completed units in place, accepted, and ready for operation. Measurement for this item shall also include the removal of the light base and foundation.
125-4.3 Measurement for removal of airfield lights and guidance signs will be per each for the quantity removed. Measurement for this item will also include the removal of the light base and foundation.

125-4.4 Maintenance of airport lighting systems will be measured for payment on a lump sum basis. Work for this item shall include [temporary equipment], [cables], [conduit], and [connections] required to keep the airfield lighting systems operational during construction. This item shall also include the removal of the items when no longer needed.

BASIS OF PAYMENT

125-5.1 Payment will be made at the contract unit price for each complete Airfield Light and Guidance Sign, of the type indicated, installed and accepted by the Engineer. This price shall be full compensation for furnishing all materials and for all preparation, assembly, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete this item in accordance with the provisions and intent of the plans and specifications.

Airfield light units include fixtures, stems, frangible couplings, base cans, base plates, gaskets, isolation transformers, grounding connections, ground rods, excavation, backfill, restoration, testing, and incidental items required to provide a functioning unit in accordance with the Contract Documents.

Guidance sign units include modules of the type specified, foundations, base cans, cover plates, gaskets, isolation transformers, conduit and conduit hubs, grounding connections, ground rods, excavation, backfill, restoration, testing, and incidental items required to provide a functioning unit in accordance with the Contract Documents.

125-5.2 Payment will be made at the contract unit price for each Relocated Airfield Light and Relocated Guidance Sign, of the type indicated, installed and accepted by the Engineer. This price shall be full compensation for furnishing all materials and for all preparation, assembly, and installation of these materials, and for all labor, equipment, tools, and incidentals necessary to complete this item in accordance with the provisions and intent of the plans and specifications.

Relocated airfield light units include disconnection from the electrical system, removing and storing the fixture and isolation transformer, removing and disposing of the existing light base, the installation of the airfield light on a new light base, gaskets, installation of the isolation transformers, conduit and conduit hubs, grounding connections, ground rods, excavation, backfill, restoration, testing, and incidental items required to provide a functioning unit in accordance with the Contract Documents.

Relocated guidance sign units include disconnection from the electrical system, removing and storing the fixture and isolation transformer, removing and disposing of the existing foundation, the installation of the guidance sign on a new foundation, base can, gaskets, installation of the isolation transformers, conduit and conduit hubs, grounding connections, ground rods, excavation, backfill, restoration, testing, and incidental items required to provide a functioning unit in accordance with the Contract Documents.

125-5.3 Payment will be made at the contract unit price for each Airfield Light and Guidance Sign removed. This price shall be full compensation for the disconnection from the electrical system, removing and disposing of all materials, site restoration, and for all labor, equipment, tools, and incidentals necessary to complete this item in accordance with the provisions and intent of the plans and specifications. This payment shall also include the transportation of salvaged materials to the Owner's designated location.

125-5.4 Payment will be made at the contract lump sum price for Maintenance of Airport Lighting Systems. This price shall be full compensation for temporary jumpers, connections, conduit, and for all labor, equipment, tools, and incidentals necessary to complete this item in accordance with the provisions and intent of the plans and specifications.

Payment will be made under:
Item L-125-5.1 Remove and Dispose of Existing Taxiway Edge Light, Isolation Transformer, and Base – Per Each

Item L-125-5.2 Remove and Dispose of Existing Runway Centerline Light, Isolation Transformer, and Base – Per Each

Item L-125-5.3 Furnish and Install L-861T Omni-Directional, Blue, LED Taxiway Edge Light Mounted on a New Base – Per Each

Item L-125-5.4 Furnish and Install New Uni-Directional Centerline Lights L852-C (L), Isolation Transformer and Base – Per Each

Item L-125-5.5 Furnish and Install New Bi-Directional Centerline Lights L-852-C (L), Isolation Transformer and Base – Per Each

Item L-125-5.6 Furnish and install new L-852C (L) Bi-Directional centerlinelight and isolation transformer on an existing base.

Item L-125-5.7 Furnish and install new L858B Mod 3 TW Guidance Sign, 2-4 modules size 3 style 5 mounted on new concrete foundation. Provide new base can isolation Xfmr and splice kit – Per Each

Item L-125-5.8 Furnish and install new L-852 C/D (quartz) uni-directional lights, isolation transformer on an existing base.

Item L-125-5.9 Furnish And Install New Isolation Transformers And Connectors And Relamp Signs Per Sign Schedule – Per Each

Item L-125-5.10 L-823, Cable Splice Kit for Circuit Modification – Per Each

Item L-125-5.11 Stainless Steel Cable Identification Tag (CenterLine Lights) – Per Each

Item L-125-5.12 Stainless Steel Cable Identification Tag (Edge Lights) – Per Each

Item L-125-5.13 Furnish and install new in-pavement taxiway edge light, isolation transformer and base – Per Each

Item L-125-5.14 Furnish and install new in-pavement runway edge light, isolation transformer and base – Per Each

Item L-125-5.15 Furnish and install new in-pavement runway guard light, isolation transformer and base – Per Each

Item L-125-5.16 Furnish and install new L-852K (L) centerline light , isolation transformers and base – Per Each

Item L-125-5.17 Furnish and install new L-852C/D (quartz) bi directional centerline light, isolation transformer, and a new base – Per Each

Item L-125-5.18 Furnish and install new L-852 C/D (quartz) centerline light, isolation transformer on an existing base can.
Item L-125-5.19 Furnish and install new L-852 C (L) Uni-directional centerline light and isolation transformer on an existing base can.

MATERIAL REQUIREMENTS

AC 150/5340-18 Standards for Airport Sign Systems
AC 150/5340-26 Maintenance of Airport Visual Aid Facilities
AC 150/5340-30 Design and Installation Details for Airport Visual Aids
AC 150/5345-7 Specification for L-824 Underground Electrical Cable for Airport Lighting Circuits
AC 150/5345-26 Specification for L-823 Plug and Receptacle Cable Connectors
AC 150/5345-42 Specification for Airport Light Bases, Transformer Housings, Junction Boxes, and Accessories
AC 150/5345-44 Specification for Runway and Taxiway Signs
AC 150/5345-46 Specification for Runway and Taxiway Light Fixtures
AC 150/5345-47 Specification for Series to Series Isolation Transformers for Airport Lighting Systems

END OF ITEM L-125
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Cast-in-place concrete manholes for sanitary sewers, water lines and storm sewers, including box sewers.

B. Pile-supported concrete foundation used for unstable subgrade treatment for manhole base.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. Payment for manholes is on a unit price basis for each manhole installed.

2. Payment for Type C manhole with BB inlet top is on a unit price basis for each.

3. Payment for pile-supported concrete foundation used for unstable subgrade treatment for manhole base is on a unit price basis for each foundation installed.

4. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated Price.

1.03 REFERENCES

L. AWWA C 213 - Standard for Fusion Bonded Epoxy Coating for Interior and Exterior of Steel Water Pipelines.

1.04 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit proposed design mix and test data for each type and strength of concrete.

C. Submit manufacturer's data and details of following items for approval:

1. Frames, grates, rings, and covers.

2. Materials to be used in fabricating drop connections.

3. Materials to be used for pipe connections at manhole walls.

4. Materials to be used for stubs and stub plugs.

5. Plugs to be used for sanitary sewer hydrostatic testing.

6. Installation instructions for forms.

PART 2 PRODUCTS
2.01 CONCRETE
 A. Conform to requirements of Section 03315 - Concrete for Utility Construction.
 B. Provide Class A concrete with minimum compressive strength of 4000 psi unless otherwise indicated on Drawings.

2.02 REINFORCING STEEL
 A. Conform to requirements of Section 03315 - Concrete for Utility Construction.

2.03 MORTAR
 A. Conform to requirements of Section 04061 - Mortar

2.04 MISCELLANEOUS METALS
 A. Provide cast-iron frames, grates, rings, and covers conforming to requirements of Section 02084 - Frames, Grates, Rings, and Covers.

2.05 DROP CONNECTIONS AND STUBS
 A. Provide drop connections and stubs conforming to same pipe material requirements used in main pipe, unless otherwise indicated on Drawings.

2.06 PIPE CONNECTIONS
 A. Sanitary Sewers.
 1. Provide resilient connectors conforming to requirements of ASTM C 923. Use the following materials for metallic mechanical devices as defined in ASTM C 923:
 a. External clamps: Type 304 stainless steel
 b. Internal, expandable clamps on Standard manholes: Type 304 stainless steel, 11 gauge minimum
 c. Internal, expandable clamps on corrosion-resistant manholes:
 (1) Type 316 stainless steel, 11 gauge minimum
 (2) Type 304 stainless steel, 11 gauge minimum, coated with minimum 16 mil fusion-bonded epoxy conforming to AWWA C 213
 2. Where rigid joints between pipe and cast-in-place manhole base are specified or shown on Drawings, provide polyethylene-isoprene waterstop meeting physical
property requirements of **ASTM C 923**, such as Pres-Seal WS Series, or approved equal.

B. Storm Sewers: Use non-shrink grout for storm sewer pipe connections to concrete manholes, unless otherwise shown on Drawings. Grout pipe penetration in place on both inside and outside of manhole.

C. Water Lines

1. Where smooth exterior pipes, i.e., steel, ductile iron, or PVC pipes are connected to manhole base or barrel, seal space between pipe and manhole wall with assembly consisting of rubber gasket or links mechanically compressed to form a watertight barrier. Assemblies: Press-Wedge, Pres-Seal, Thunderline, Link-Seals, or approved equal. See Drawings for placement of assembly in manhole sections.

2. When connecting concrete or cement mortar coated steel pipes, or as option for connecting exterior pipes to manhole base or barrel, space between pipe and manhole wall may be sealed with an assembly consisting of a stainless steel power sleeve, stainless steel take-up clamp and a rubber gasket. Take-up clamp: Minimum of 9/16 inch wide. Provide PSX positive seal gasket system by Press-Seal Gasket Corporation or approved equal.

2.07 SEALANT MATERIALS

A. Provide sealing materials between precast concrete adjustment ring and manhole cover frame, such as Adeka Ultraceal P 201, or approved equal.

B. Provide external sealing material from Canusa Wrapid Seal manhole encapsulation system, or approved equal.

C. Butyl Sealant: Provide Press-Seal EZ Stick, or equal, for HDPE rings.

2.08 CORROSION-RESISTANT MANHOLE MATERIALS

A. Where corrosion-resistant manholes are indicated on the Drawings, refer to City of Houston Approved Product List for liner and/or coating materials.

2.09 BACKFILL MATERIALS

A. Conform to the requirements of Section 02317 - Excavation and Backfill for Utilities.

2.10 NON-SHRINK GROUT
A. Provide prepackaged, inorganic, flowable, non-gas-liberating, non-metallic, cement-based non-shrink grout requiring only addition of water.

B. Provide grout meeting requirements of ASTM C 1107 and having minimum 28-day compressive strength of 7000 psi.

2.11 VENT PIPES

A. Provide external vent pipes for manholes where indicated on Drawings.

B. Buried Vent Pipes: Provide 3 inch or 4 inch PVC DWV pipe conforming to ASTM D 2665. Alternatively, provide FRP pipe as specified for vent outlet assembly.

C. Vent Outlet Assembly: Provide vent outlet assembly as shown on Drawings, constructed of following specified materials:

1. FRP Pipe: Provide filament-wound FRP conforming to ASTM D 2996 or centrifugally cast FRP conforming to ASTM D 2997. Seal cut ends in accordance with manufacturer's recommendations.

2. Joints and Fittings: Provide epoxy-bodied fittings and join pipe to fittings with epoxy adhesive, according to pipe manufacturer's instructions.

3. Flanges: Provide socket-flange fittings for epoxy adhesive bonding to pipe ends where shown on Drawings. Meet bolt pattern and dimensions for ASME B 16.1, 125-pound flanges. Use Type 304 stainless steel or hot-dip zinc coated, conforming to ASTM A 307, Class A or B flange bolts.

4. Coating: Provide 2-component, aliphatic polyurethane coating, using primer or tie coat recommended by manufacturer. Provide two or more coats to yield dry film thickness of at least 3 mils. Provide Amershield, Tnemec 74, or approved equal. Project Manager selects color from manufacturer's standard colors.

2.12 MANHOLE LADDER FOR WATERLINE MANHOLES

A. Manhole Ladder: Fiberglass with 300-lb rating at appropriate length; conform to requirements of Occupational Safety and Health Standards (OSHA), U.S. Department of Labor except where shown on Drawings.

1. Use components, including rungs, made of fiberglass, fabricated with nylon or aluminum rivets and/or epoxy. Apply non-skid coating to ladder rungs. Mount ladder using manufacturer's recommended hardware.

2. Provide ladder as manufactured by Saf-Rail or approved equal. Locate ladder as shown on Drawings.

02081-5
01/01/2011
3. Fiberglass: Premium type polyester resin, reinforced with fiberglass; constructed to provide complete wetting of glass by resin; resistant to rot, fungi, bacterial growth and adverse effects of acids, alkalis and residential and industrial waste; yellow in color.

4. Provide approved petroleum-based tape encapsulating bolts in access manhole.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify lines and grades are correct.

B. Determine if subgrade, when scarified and recompacted, can be compacted to 95 percent of maximum Standard Proctor Density at ±3% optimum moisture content according to ASTM D 698 prior to placement of material and base section. If it does not meet the moisture-density requirement, condition the subgrade until the required moisture-density requirement is met or treat as an unstable subgrade.

C. Do not build manholes in ditches, swales, or drainage paths unless approved by Project Manager.

3.02 MANHOLES

A. Construct manholes to dimensions shown on Drawings. Commence construction as soon as possible after pipes are laid. On monolithic sewers, construct manholes at same time sewer is being constructed.

B. Unstable Subgrade Treatment: When unstable subgrade is encountered, notify Project Manager for examination of subgrade to determine if subgrade has heaved upwards after being excavated. When heaving has not occurred, over-excavate subgrade to allow for 24-inch-thick layer of crushed stone wrapped in filter fabric as foundation material under manhole base. When there is evidence of heaving, provide pile-supported concrete foundation, as detailed on Drawings, under manhole base.

C. Cast manhole foundations and walls monolithically. Use cold joint with approved waterstop when manhole flow line depth exceeds 12 feet. No other joints will be allowed unless shown on Drawings. Wrap cold joints with external sealing material, minimum 6-inch with.

D. For concrete containing micro silica admixtures, place, finish, and cure concrete for manholes following procedures in Section 03315 - Concrete for Utility Construction.
E. Top of manhole elevations shown on Drawings are approximate, based on current pavement and natural ground conditions as determined from elevations measured on 50-foot spacing. No additional payment will be made if final elevation of manhole ring and cover is higher or lower due to requirements of finished grade or replaced pavement surface.

F. For water lines place concrete for manhole base on 12” thick (minimum) foundation of cement stabilized sand. Compact cement stabilized sand in accordance with requirements of 02321 – Cement Stabilized Sand.

G. For manholes located over large diameter water lines, place base on a foundation of cement stabilized sand extending from bottom of manhole to bottom of trench. Manhole base is to be a minimum of 12-inches above water line.

3.03 PIPE CONNECTIONS

A. Install approved resilient connectors at each pipe entering and exiting water line and sanitary sewer manholes in accordance with manufacturer's instructions.

B. Grout storm sewer connections to manhole unless otherwise shown on Drawings. Grout pipe penetrations both inside and outside of manhole.

C. Ensure no concrete, cement stabilized sand, fill, or other solid material is allowed to enter space between pipe and edge of wall opening at and around resilient connector on interior or exterior of manhole. When necessary, fill space with compressible material to ensure resilient connector will maintain full flexibility where evidence of reduced flexibility is encountered.

D. Where new manhole is to be constructed on existing sewer, a rigid joint pipe may be used. Install waterstop gasket around existing pipe at center of cast-in-place wall. Join ends of split waterstop material at pipe spring line using adhesive recommended and supplied by waterstop manufacturer.

E. Do not construct joints on sanitary sewer pipe within wall sections of manholes. Use approved connection material.

F. Construct pipe stubs with resilient connectors for future connections at locations and with material indicated on Drawings. Install approved stub plugs at interior of manhole.

G. Test connection for watertight seal before backfilling.

3.04 INVERTS FOR SANITARY SEWERS

A. Construct invert channels to provide smooth flow transition waterway with no disruption of flow at pipe-manhole connections. Conform to following criteria:
1. Slope of invert bench: 1 inch per foot minimum; 1 1/2 inch per foot maximum.

2. Depth of bench to invert:
 a. Pipes smaller than 15 inches: one-half of largest pipe diameter
 b. Pipes 15 to 24 inches: three-fourths of largest pipe diameter
 c. Pipes larger than 24 inches: equal to largest pipe diameter

3. Invert slope through manhole: 0.10 foot drop across manhole with smooth transition of flow at pipe-manhole connections. Conform to following criteria.
 B. Form invert channels with Class A concrete if not integral with manhole base. For direction changes of mains, construct channels tangent to mains with maximum possible radius of curvature. Provide curves for side inlets and smooth invert fillets for flow transition between pipe inverts.

3.05 DROP CONNECTIONS FOR SANITARY SEWERS
 A. Backfill drop assembly with crushed stone wrapped in filter fabric, cement-stabilized sand, or Class A concrete to form solid mass. Extend cement stabilized sand or concrete encasement minimum of 4 inches outside bells.
 B. Install connection when sewer line enters manhole higher than 24 inches above invert of manhole.

3.06 STUBS FOR FUTURE CONNECTIONS
 A. In manholes where future connections are indicated on Drawings, install resilient connectors and pipe stubs with approved watertight plugs.

3.07 ADJUSTMENT RINGS AND FRAME
 A. Combine precast concrete or HDPE adjustment rings so elevation of installed casting cover matches pavement surface. Seal between concrete adjustment ring and precast top section with non-shrink grout; do not use mortar between adjustment rings. Apply latex-based bonding agent to precast concrete surfaces to be joined with non-shrink grout. Set cast iron frame on adjustment ring in a bed of approved sealant material. Install a sealant bed consisting of two beads of sealant, each bead having minimum dimensions of 1/2-inch and 1/2-inch wide.
 B. Wrap manhole frame and adjustment rings with external sealing material, minimum 3 inches beyond joint between ring and frame, and ring and precast section.
C. For manholes in unpaved areas, set top of frame minimum of 6 inches above existing ground line unless otherwise indicated on Drawings. Encase manhole frame in mortar or non-shrink grout placed flush with face of manhole ring and top edge of frame. Provide rounded corner around perimeter.

3.08 BACKFILL

A. After concrete obtains adequate strength, place and compact backfill materials in area of excavation surrounding manholes in accordance with requirements of Section 02317 - Excavation and Backfill for Utilities. Use embedment zone backfill material for adjacent utilities, as shown in City of Houston Standard Details over each pipe connected to manhole. Provide trench zone backfill, as specified for adjacent utilities, above embedment zone backfill.

B. Where rigid joints are used for connecting existing sewers to manhole, backfill under existing sewer up to spring line of pipe with Class B concrete or flowable fill.

C. In unpaved areas, provide positive drainage away from manhole frame to natural grade. Provide minimum of 4 inches of topsoil conforming to requirements of Section 02911 - Topsoil. Seed in accordance with Section 02921 - Hydro-mulch Seeding, or sod disturbed areas in accordance with Section 02922 - Sodding.

3.09 FIELD QUALITY CONTROL

A. Conduct leakage testing of Sanitary Sewer manholes in accordance with requirements of Section 02533 - Acceptance Testing for Sanitary Sewers.

3.10 PROTECTION

A. Protect manholes from damage until subsequent work has been accepted. Repair or replace damaged elements of manholes at no additional cost to City.

END OF SECTION
Section 02082

PRECAST CONCRETE STORM MANHOLES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Precast concrete manholes for sanitary sewers, storm sewers, and water lines. Manhole bases maybe round or square.

B. Precast concrete sanitary sewer manholes with PVC liner where corrosion resistant manholes are specifically indicated in Drawings.

C. Pile-supported concrete foundation used for unstable subgrade treatment for manhole base.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices

1. Payment for normal depth manholes, up to 8 feet deep, is on a unit price basis for each manhole installed. Manhole depth is measured from top of cover to sewer invert. Air release manhole depth is measured from top of cover to inside base for air release or vacuum release manholes. Manholes for water lines are measured from top of cover to inside base of manhole.

2. Payment for shallow depth manholes is on a unit price basis for each manhole installed. Shallow manholes have a depth of 5 feet or less measured from top of cover to sewer invert.

3. Payment for extra depth manholes is on a unit price basis per vertical foot for each foot of depth greater than 8 feet. Sewer manhole depth is measured from top of cover to sewer invert. Air release manhole depth is measured from top of cover to inside base for air release or vacuum release manholes. Manholes for water lines are measured from top of cover to inside base of manhole.

4. Payment for normal depth corrosion resistant manholes is on a unit price basis for each manhole installed

5. Payment for standard manhole drops is on a unit price basis for each drop installed. Standard manhole drops include both internal and external drops.

6. Payment for watertight manholes, including external vent pipe is on a unit price basis for each.
7. Payment for air-release manhole with valves and fittings installed is on a unit price basis for each manhole with air-release valves and fittings installed.

8. Payment for pile-supported concrete foundation used for unstable subgrade treatment for manhole base is on a unit price basis for each foundation installed.

9. Pay estimates for partial payments will be made as measured above according to the following schedule for sanitary sewer manholes:

1. Estimate for 90 percent payment will be authorized when the manhole is completely installed and surrounding soil backfilled

2. Estimate for 100 percent payment will be authorized when manhole has been tested as specified in Section 02533 - Acceptance Testing for Sanitary Sewers

10. Refer to Section 01270 - Measurement and Payment for unit price procedures

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated Price.

1.03 REFERENCES

A. ASME B 16.1 - Cast Iron Pipe Flanges and Flanged Fittings

B. ASTM A 307 - Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile

C. ASTM A 615 - Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement

D. ASTM C 270 - Standard Specification for Mortar for Unit Masonry

F. ASTM C 478 - Standard Specification for Precast Reinforced Concrete Manhole Sections

E. ASTM C 890 - Standard Practice for Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures.

F. ASTM C 913 – Standard Specifications for Precast Concrete Water and Wastewater Structures.

G. ASTM C 923 - Standard Specifications for Resilient Connectors Between Reinforced Concrete Manhole Structures and Pipes

I. ASTM D 698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft³)

K. ASTM D 2996 - Standard Specification for Filament-Wound “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe

L. ASTM D 2997 - Standard Specification for Centrifugally Cast “Fiberglass” (Glass-Fiber-Reinforced Thermosetting Resin) Pipe

O. AWWA C 213 - Standard for Fusion Bonded Epoxy Coating for Interior and Exterior of Steel Water Pipelines

P. American Association of State Highway and Transportation Officials (AASHTO)

1.04 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit manufacturer's data and details of following items for approval:

1. Shop drawings of manhole sections, base units and construction details, including reinforcement, jointing methods, materials and dimensions.

2. Summary of criteria used in manhole design including, as minimum, material properties, loadings, load combinations, and dimensions assumed. Include certification from manufacturer that precast manhole design is in full accordance with ASTM C 478 and/or ASTM C 890 and design criteria as established in Paragraph 2.01E of this Specification.

3. Frames, grates, rings, and covers

4. Materials to be used in fabricating drop connections
5. Materials to be used for pipe connections at manhole walls
6. Materials to be used for stubs and stub plugs, if required
7. Materials and procedures for corrosion-resistant liner and coatings, if required.
8. Plugs to be used for sanitary sewer hydrostatic testing
9. Manufacturer's data for pre-mix (bag) concrete, if used for channel inverts and benches

C. Seal submittal drawings by Professional Engineer registered in State of Texas.

PART 2 PRODUCTS

2.01 PRECAST CONCRETE MANHOLES

A. Provide manhole sections, base sections, and related components conforming to ASTM C 478. Provide base riser section with integral floors, unless shown otherwise. Provide adjustment rings which are standard components of manufacturer of manhole sections. Mark date of manufacture and name or trademark of manufacturer on inside of barrel.

B. Construct barrels for precast manholes from standard reinforced concrete manhole sections of diameter indicated on Drawings. Use various lengths of manhole sections in combination to provide correct height with fewest joints. Design wall sections for depth and loading conditions in Paragraph 2.01 E, with minimum thickness of 5 inches. Base section shall have minimum thickness of 12 inches under invert.

C. Provide tops to support cast iron casting meeting AASHTO M-306 Section 5 loading, and receive manhole frame & covers, as indicated on Drawings.

D. Where manholes larger than 48-inch diameter are indicated on Drawings, provide precast base sections with flat slab top precast sections used to transition to 48-inch diameter manhole access riser sections. Transition can be concentric or eccentric unless otherwise shown on Drawings. Locate transition to provide minimum of 7-foot head clearance from base to underside of transition unless otherwise approved by Project Manager.

E. Design Loading Criteria: Manhole walls, transition slabs, cone tops, and manhole base slab shall be designed, by manufacturer, to requirements of ASTM C 478, ASTM C 890 and/or ASTM C 913 for depth as shown on Drawings and to resist following loads.

1. AASHTO M-306 H-20 / HS-20 design live loading loads as referred to in AASHTO M-306 applied to manhole cover and transmitted down to transition and base slabs

02082-4
12/01/2014
2. Unit soil weight of 120 pcf located above portions of manhole, including base slab projections

3. Lateral soil pressure based on saturated soil conditions producing an at-rest equivalent fluid pressure of 100 pcf

4. Internal liquid pressure based on unit weight of 63 pcf

5. Dead load of manhole sections fully supported by transition and base slabs

F. Design: Manhole walls, transition slabs, cone tops, and manhole base slab shall be designed according to requirements of ASTM C 478, ASTM C 890 and/or ASTM C 913 and following:

1. Design additional reinforcing steel to transfer stresses at openings. Area of steel to be no less than shown on Drawings.

2. Wall loading conditions:
 a. Saturated soil pressure acting on empty manhole
 b. Manhole filled with liquid to a halfway depth as measured from invert to cover, with no balancing external soil pressure

3. Minimum clear distance between two wall penetrations shall be 12 inches or half diameter of smaller penetration, whichever is greater

G. Provide joints between sections with askets conforming to ASTM C 443 and/or ASTM C-990.

H. When base is cast monolithic with portion of vertical section, extend reinforcing in vertical section into base.

I. Precast Concrete Base: Suitable cutouts or holes to receive pipe and connections. Lowest edge of holes or cutouts: For water line manhole, no less than 6 inches above inside surface of floor of base.

2.02 CONCRETE

A. Conform to requirements of Section 03315 - Concrete for Utility Construction.

B. Channel Inverts: Use 5 sack premix (bag) concrete or Class A concrete for inverts not integrally formed with manhole base, with minimum compressive strength of 4000 psi.
2.03 REINFORCING STEEL

A. Conform to requirements of Section 03315 - Concrete for Utility Construction.

2.04 MORTAR

A. Conform to requirements of Section 04061 - Mortar.

2.05 MISCELLANEOUS METALS

A. Provide cast-iron frames, rings, and covers conforming to requirements of Section 02084 - Frames, Grates, Rings and Covers.

2.06 DROP CONNECTIONS AND STUBS

A. Provide drop connections and stubs conforming to same pipe material requirements used in main pipe, unless otherwise indicated on Drawings.

2.07 PIPE CONNECTIONS TO MANHOLE

A. Sanitary Sewers

1. Provide resilient connectors conforming to requirements of ASTM C 923. Use the following materials for metallic mechanical devices as defined in ASTM C 923:

 a. External clamps: Type 304 stainless steel

 b. Internal, expandable clamps on standard manholes: Type 304 stainless steel, 11 gauge minimum.

 c. Internal, expandable clamps on corrosion-resistant manholes:

 1) Type 316 stainless steel, 11 gauge minimum

 2) Type 304 stainless steel, 11 gauge minimum, coated with minimum 16 mil fusion-bonded epoxy conforming to AWWA C 213

2. Where rigid joints between pipe and cast-in-place manhole base are specified or shown on Drawings, provide polyethylene-isoprene water-stop meeting physical
property requirements of ASTM C 923, such as Press-Seal WS Series, or approved equal.

B. Storm Sewer Connections:

1. Provide watertight connections in accordance with ASTM C 923 and ASTM F 2510 as applicable for flexible (hdpe and cmp) pipe. Rigid (concrete) pipe to manhole connections do not have to comply with ASTM C 923 and may grouted instead.

C. Water Lines:

1. Where smooth exterior pipes, i.e., steel, ductile iron, or PVC pipes are connected to manhole base or barrel, seal space between pipe and manhole wall with assembly consisting of rubber gasket or links mechanically compressed to form a watertight barrier. Assemblies: Press-Wedge, Res-Seal, Thunderline Link-Seal, or approved equal. See Drawings for placement of assembly in manhole sections.

2. When connecting concrete or cement mortar coated steel pipes, or as option for connecting smooth exterior pipes to manhole base or barrel, space between pipe and manhole wall may be sealed with an assembly consisting of a stainless steel power sleeve, stainless steel -up clamp and a rubber gasket. Take-up clamp: Minimum of 9/16 inch wide. Provide PSX positive seal gasket system by Press-Seal Gasket Corporation or approved equal.

2.08 SEALANT MATERIALS

A. Approved products in accordance with Section 01630 - Product Substitution Procedures.

B. Provide sealing materials between precast concrete adjustment ring and manhole cover frame, Adeka Ultraseal P201, or approved equal.

C. Provide approved external sealing material from Canusa Wrapid Seal manhole encapsulation system, or approved equal.

D. Provide Butyl Sealant: Provide Press-Seal EZ Stick, or equal, for HDPE rings.

2.09 CORROSION RESISTANT MANHOLE MATERIALS

A. Where corrosion-resistant manholes are indicated on Drawings, refer to City of Houston Approved Product List for liner and/or coating materials.

2.10 BACKFILL MATERIALS

A. Conform to requirements of Section 02317 - Excavation and Backfill for Utilities.

2.11 NON-SHRINK GROUT
A. Provide prepackaged, inorganic, flowable, non-gas-liberating, non-metallic, cement-based grout requiring only addition of water.

B. Meet requirements of ASTM C 1107 and have minimum 28-day compressive strength of 7000 psi.

2.12 VENT PIPES

A. Provide external vent pipes for manholes where indicated on Drawings.

B. Buried Vent Pipes: Provide 3 inch or 4 inch PVC DWV pipe conforming to ASTM D2665. Alternatively, provide FRP pipe as specified for vent outlet assembly.

C. Vent Outlet Assembly: Provide vent outlet assembly as shown on Drawings, constructed of following specified materials:

1. FRP Pipe: Provide filament wound FRP conforming to ASTM D 2996 or centrifugally cast FRP conforming to ASTM D 2997. Seal cut ends in accordance with manufacturer’s recommendations.

2. Joints and Fittings: Provide epoxy bodied fittings and join pipe to fittings with epoxy adhesive.

3. Flanges: Provide socket-flange fittings for epoxy adhesive bonding to pipe ends where shown on Drawings. Meet bolt pattern and dimensions for ASME B 16.1, 125-pound flanges. Flange bolts shall be Type 304 stainless steel or hot-dip zinc coated, conforming to ASTM A 307, Class A or B.

4. Coating: Provide approved 2-component, aliphatic polyurethane coating using primer or tie coat recommended by manufacturer. Provide two or more coats to yield dry film thickness of at least 3 mils. Color shall be selected by Project Manager from manufacturer’s standard colors.

2.13 PROHIBITED MATERIALS

A. Do not use brick masonry for construction of sanitary storm sewer manholes, including adjustment of manholes to grade. Use only specified materials listed above.

2.14 MANHOLE LADDER FOR WATERLINE MANHOLES

A. Manhole Ladder: Fiberglass with 300-lb rating at appropriate length; conform to requirements of Occupational Safety and Health Standards (OSHA), U.S. Department of Labor except where shown on Drawings:
1. Use components, including rungs, made of fiberglass, fabricated with nylon or aluminum rivets and/or epoxy. Apply non-skid coating to ladder rungs. Mount ladder using manufacturer’s recommended hardware.

2. Provide ladder as manufactured by Saf-Rail or approved equal. Locate ladder as shown on Drawings.

3. Fiberglass: Premium type polyester resin, reinforced with fiberglass; constructed to provide complete wetting of glass by resin; resistant to rot, fungi, bacterial growth and adverse effects of acids, alkalis and residential and industrial waste; yellow in color.

B. Provide approved petroleum-based tape encapsulating bolts in access manhole.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that lines and grades are correct.

B. Determine if subgrade, when scarified and recompacted, can be compacted to 95 percent of maximum Standard Proctor Density, at ±3% optimum moisture content according to ASTM D 698 prior to placement of foundation material and base section. If it does not meet the moisture-density requirement, condition the subgrade until the required moisture-density requirement is met or treat as an unstable subgrade.

C. Do not build manholes in ditches, swales, or drainage paths unless approved by Project Manager.

3.02 PLACEMENT

A. Install precast manholes to conform to locations and dimensions shown on Drawings.

B. Place sanitary and storm manholes at points of change in alignment, grade, size, pipe intersections, and end of sewer unless otherwise shown on Drawings.

3.03 MANHOLE BASE SECTIONS AND FOUNDATIONS

A. Place precast base on 12 inch thick (minimum) foundation of crushed stone wrapped in filter fabric, cement stabilized sand, or concrete foundation slab. Compact cement-sand in accordance with requirements of Section 02321 - Cement Stabilized Sand.

B. Unstable Subgrade Treatment: When unstable subgrade is encountered, notify Project Manager for examination of subgrade to determine if subgrade has heaved upwards after being excavated. When heaving has not occurred, over-excavate subgrade to allow for 24-
inch-thick layer of crushed stone wrapped in filter fabric as foundation material under manhole base. When there is evidence of heaving, provide pile-supported concrete foundation, as detailed on Drawings, under manhole base.

C. For manholes located over large diameter water lines, place precast base on a foundation of cement stabilized sand extending from bottom of manhole to bottom of trench. Manhole base is to be a minimum of 12-inches above water line.

3.04 PRECAST MANHOLE SECTIONS

A. Install sections, joints, and gaskets in accordance with manufacturer's printed recommendations.

B. Install precast adjustment rings above tops of cones or flat-top sections as required to adjust finished elevation and to support manhole frame.

C. Seal any lifting holes with non-shrink grout.

D. Where PVC liners are required, seal joints between sections in accordance with manufacturer’s recommendations.

E. Place at least two precast concrete grade rings with thickness of 12 inches or less, under casting.

3.05 PIPE CONNECTIONS AT MANHOLES

A. Install approved resilient connectors at each pipe entering and exiting manholes in accordance with manufacturer's instructions.

1. Where smooth exterior pipes, i.e. steel, ductile iron or PVC pipes are connected to manhole base or barrel, space between pipe and manhole wall shall be sealed with an assembly consisting of rubber gaskets or links mechanically compressed to form watertight. Assemblies: “Press-Wedge,” “Res-Seal,” “Thunderline Link-Seals,” or approved equal. See Drawings for placement of assembly in manhole sections.

2. When connecting concrete or cement mortar coated steel pipes, or as an option for connecting smooth exterior pipes to manhole base or barrel, space between pipe and manhole wall may be sealed with an assembly consisting of stainless steel power sleeve, stainless steel take-up clamp and rubber gasket. Take-up clamp: Minimum of 9/16 inch wide. Provide PSX positive seal gasket system by Press-Seal Gasket Corporation or approved equal.

B. Grout storm sewer connections to manhole when connecting a rigid (concrete) pipe to a concrete manhole unless otherwise shown on Drawings. Grout pipe penetration in place on both inside and outside of manhole.
B. Install approved resilient connectors at each flexible (hdpe or cmp) pipe connection as per ASTM C-923 and/or ASTM F 2510 to a concrete manhole.

C. Ensure no concrete, cement stabilized sand, fill, or other rigid material is allowed to enter space between pipe and edge of wall opening at and around resilient connector on either interior or exterior of manhole. If necessary, fill space with compressible material to ensure full flexibility provided by resilient connector.

D. Where new manhole is constructed on existing sewer, rigid joint pipe may be used. Install waterstop gasket around existing pipe at center of cast-in-place wall. Join ends of split waterstop material at pipe springline using an adhesive recommended and supplied by waterstop manufacturer.

E. Test connection for watertight seal before backfilling.

3.06 INVERTS FOR SANITARY SEWERS

A. Construct invert channels to provide smooth flow transition waterway with no disruption of flow at pipe-manhole connections. Conform to following criteria:

1. Slope of invert bench: 1 inch per foot minimum; 1-1/2 inches per foot maximum

2. Depth of bench to invert:
 a. Pipes smaller than 15 inches: one-half of largest pipe diameter
 b. Pipes 15 to 24 inches: three-fourths of largest pipe diameter
 c. Pipes larger than 24 inches: equal to largest pipe diameter

3. Invert slope through manhole: 0.10 foot drop across manhole with smooth transition of invert through manhole, unless otherwise indicated on Drawings.

B. Form invert channels with concrete if not integral with manhole base section. For direction changes of mains, construct channels tangent to mains with maximum possible radius of curvature. Provide curves for side inlets and smooth invert fillets for flow transition between pipe inverts.

3.07 DROP CONNECTIONS FOR SANITARY SEWERS

A. Backfill drop assembly with crushed stone wrapped in filter fabric, cement stabilized sand, or Class A concrete to form solid mass. Extend cement stabilized sand or concrete encasement minimum of 4 inches outside bells.
B. Install drop connection when sewer line enters manhole higher than 24 inches above invert of manhole.

3.08 INVERTS FOR STORM SEWERS
A. When precast, square or rectangular structures are used for sewer manholes, construct invert channels to provide smooth flow transition waterway with no disruption of flow at pipe-manhole connections. Conform to following criteria:
 1. Slope of invert bench: 1 inch per foot minimum; 1½ inches per foot maximum
 2. Depth of bench to invert: one half of largest pipe diameter
 3. Invert slope through manhole: 0.10 foot drop across manhole with smooth transition of invert through manhole, unless otherwise indicated on drawings.

B. Form invert channels with concrete, after all connections have been made
 1. Use 5 sack premix (bag) concrete or Class A concrete for inverts, with minimum compressive strength of 4000 psi.

3.09 STUBS FOR FUTURE CONNECTIONS
A. In manholes, where future connections are indicated on Drawings, install resilient connectors and pipe stubs with approved watertight plugs.

3.010 MANHOLE FRAME AND ADJUSTMENT RINGS
A. Combine precast concrete or HDPE adjustment rings so elevation of installed casting cover matches pavement surface. Seal between concrete adjustment ring and precast top section with non-shrink grout; do not use mortar between adjustment rings. Apply latex-based bonding agent to precast concrete surfaces joined with non-shrink grout. Set cast iron frame on adjustment ring in bed of approved sealant material. Install sealant bed consisting of two beads of sealant, each bead having minimum dimensions of 1/2-inch and 1/2-inch wide.

B. Wrap manhole frame and adjustment rings with external sealing material, minimum 3 inches beyond joint between ring and frame and adjustment rings and precast section.

C. For manholes in unpaved areas, set top of frame minimum of 6 inches above existing ground line unless otherwise indicated on Drawings. In unpaved areas, encase manhole frame in mortar or non-shrink grout placed flush with face of manhole ring and top edge of frame. Provide rounded corner around perimeter.

3.11 BACKFILL
A. Place and compact backfill materials in area of excavation surrounding manholes in accordance with requirements of Section 02317 - Excavation and Backfill for Utilities. Provide embedment zone backfill material, as specified for adjacent utilities, from manhole foundation up to an elevation 12 inches over each pipe connected to manhole. Provide trench zone backfill, as specified for adjacent utilities, above embedment zone backfill.

B. Where rigid joints are used for connecting existing sewers to manhole, backfill under existing sewer up to springline of pipe with Class B concrete or flowable fill.

C. In unpaved areas, provide positive drainage away from manhole frame to natural grade. Provide minimum of 4 inches of topsoil conforming to requirements of Section 02911 - Topsoil. Seed in accordance with Section 02921 - Hydromulch Seeding. When shown on Drawings, sod disturbed areas in accordance with Section 02922 - Sodding.

3.12 FIELD QUALITY CONTROL

A. Conduct leakage testing of sanitary sewer manholes in accordance with requirements of Section 02533 - Acceptance Testing for Sanitary Sewers.

3.13 PROTECTION

A. Protect manholes from damage until work has been accepted. Repair damage to manholes at no additional cost to City.

END OF SECTION
PART 1 G E N E R A L

1.01 SECTION INCLUDES

A. Abandonment in place of existing sewers, junction structures, manholes, and force mains.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. Payment for grout fill and abandonment of existing sewers, including boxes and elliptical shaped sewers, is on linear foot basis for each diameter of sewer being abandoned. Measurement will be along centerline of sewer from centerline to centerline of manholes.

2. Payment for grout fill and abandonment of sewer manholes or junction structure is by each manhole or junction structure abandoned in conformance with this Section.

3. Payment will be full compensation for all material, equipment, and labor required for complete abandonment grouting, including air venting, testing, temporary plugs, fill lines, excavations, and incidentals.

4. No separate payment will be made for plugging and abandoning sewer force mains. Include cost of such abandonment in related work.

5. Refer to Section 01270 - Measurement and Payment for unit price procedures.

6. Acceptability of grout material is based on achieving average strength within range of 75 to 150 psi as defined in Paragraph 2.01B.1. Grout that is out of range after placement may be accepted with price adjustment of 1.0 percent price deduction for each psi average compressive strength below 75 psi and 0.5 percent price deduction for each psi average compressive strength above 150 psi, as applicable to material volume represented by test series. Shrinkage in grout material placements shall be remedied by Contractor according to Paragraph 3.04H without additional compensation.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for Work in this Section is included in total Stipulated Price.
1.03 DEFINITIONS

A. Abandonment. Sewer abandonment consists of demolition and removal of portion of manholes existing within specified depth of surface, and abandonment in place of sewer lines and manholes as specified in this Section.

B. Flowable Fill. Flowable fill (abandonment grout) shall be controlled low-strength material consisting of fluid mixture of cement, fly ash, aggregate, water and with admixtures as necessary to provide workable properties. Placement of flowable fill may be by grouting techniques in sewer pipes or other restricted areas, or as mass placement by chutes or tremie methods in unrestricted locations with open access. Long-term hardened strength shall be within specified range.

C. Ballast. Large aggregate either replaced with voids subsequently filled with flowable fill injected by grouting method; or in areas with open access, placed individually and sequentially at same time as flowable fill placement.

D. Backgrouting. Secondary stage pressure grouting to ensure that voids have been filled within abandoned sewer. Backgrouting will only be required at critical locations indicated on Drawings or if there is evidence of incomplete flowable fill placements.

1.04 REFERENCE STANDARDS

D. ASTM C 937 - Standard Specification for Grout Fluidifier for Pre-placed Aggregate Concrete.

F. ASTM C 1017 - Standard Specification for Chemical Admixture for Use in Producing Flowing Concrete.

G. ASTM C 1107 - Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)

1.05 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Flowable fill mix design report:
1. Flowable fill type and production method. Describe if fill will be mixed to final proportions and consistency in batch plant or if constituents will be added in transit mixer at placement location.

2. Use of ballast. Provide percentage of ballast of total placement and size limits for ballast if fill is intended to be used with ballast.

3. Aggregate gradation of fill. Aggregate gradation of mix (excluding ballast) shall be used as pilot curve for quality control during production.

4. Fill mix constituents and proportions including materials by weight and volume, and air content but excluding ballast. Give types and amounts of admixtures including air entrainment or air generating compounds.

5. Fill densities and viscosities, including wet density at point of placement.

6. Initial time of set.

7. Bleeding and shrinkage.

8. Compressive strength.

C. Technical information for equipment and operational procedures including projected slurry injection rate, grout pressure, method of controlling grout pressure, bulkhead and vent design, and number of stages of grout application.

D. Experience record for proposed crew, showing minimum of 100 cubic yards of flowable fill placed using proposed or similar equipment and methods.

E. At least 60 days prior to commencing abandonment activities, submit plan for abandonment, describing proposed grouting sequence, bypass pumping requirements and plugging, if any, and other information pertinent to completion of work.

PART 2 PRODUCTS

2.01 FLOWABLE FILL

A. Design Mix Criteria. Provide design of one or more mixes to meet design criteria and conditions for placement. Present information required by Paragraph 1.05B in mix design report including following:

1. Cement: ASTM C 150 Type I or II. Volume and weight per cubic yard of fill. Provide minimum cement content of 100 pounds per cubic yard.

2. Fly ash: ASTM C 618 Class C or F. Volume and weight per cubic yard of fill. Provide minimum Fly ash content of 200 pounds per cubic yard.
3. Potable water: Volume and weight per cubic yard of fill. Amount of water determined by mix design testing.

4. Aggregate gradation: 100 percent passing 3/8-inch sieve and not more than 10 percent passing No. 200 sieve. Mix design report shall define pilot gradation based on following sieve sizes 3/8-inch, Nos. 4, 8, 16, 30, 50, 100, and 200. Do not deviate from pilot gradation by more than plus or minus 10 percentage points for any sieve for production material.

5. Aggregate source material: Screened or crushed aggregate, pit or bank run fine gravels or sand, or crushed concrete. If crushed concrete is used, add at least 30 percent of natural aggregate to provide workability.

6. Admixtures: Use admixtures meeting ASTM C 494 and ASTM C 1017 as needed to improve pumpability, to control time of set, and reduce bleeding.

7. Fluidifier: Use fluidifier meeting ASTM C 937 as necessary to hold solid constituents in suspension. Add shrinkage compensator if necessary.

8. Performance additive: Use flowable fill performance additive, such as Darafill or approved equal, to control fill properties.

B. Flowable Fill Requirements

1. Unconfined compressive strength: minimum 75 psi and maximum 150 psi at 56 days as determined based on an average of three tests for same placement. Present at least three acceptable strength tests for proposed mix design in mix design report.

4. Water bleeding for fill to be placed by grouting method in sewers: not to exceed 2 percent according to ASTM C 940.

5. Minimum wet density: 90 pounds per cubic foot.

2.02 BALLAST

A. Ballast Material: Natural rock or concrete pieces with minimum size equal to at least 10 times maximum aggregate size of flowable fill and maximum size of 24 inches. Maximum dimension shall not be more than 20 percent of minimum dimension of space to be filled.

B. Ballast Composition: Free of regulated waste material.
2.03 PLUGS FOR FORCE MAINS

A. Grout Plugs: Cement-based dry-pack grout conforming to ASTM C 1107, Grade B or C.

B. Manufactured Plug: Commercially available plug or cap specifically designed and manufactured to be used with pipe being abandoned.

PART 3 EXECUTION

3.01 PREPARATION

A. Have fill mix design reports and other submittals required by Paragraph 1.05 accepted by Project Manager prior to start of placement. Notify Project Manager at least 24 hours in advance of grouting with flowable fill.

B. Select fill placement equipment and follow procedures with sufficient safety and care to avoid damage to existing underground utilities and structures. Operate equipment at pressure that will not distort or imperil portion of work, new or existing.

C. Clean sewer lines and video with closed circuit television to identify connections, locate obstructions, and assess condition of pipe. Locate previously unidentified connections, which have not been redirected and reconnected as part of this project, and report them to Project Manager. During placement of fill, compensate for irregularities in sewer pipe, such as obstructions, open joints, or broken pipe to ensure no voids remain unfilled.

D. Perform demolition work prior to starting fill placement. Clean placement areas of sewers and manholes of debris that may hinder fill placement. Remove excessive amounts of sludge and other substances that may degrade performance of fill. Do not leave sludge or other debris in place if filling more than 2 percent of placement volume. Dispose of waste material in compliance with Section 01576 - Waste Material Disposal.

E. Remove free water prior to starting fill placement.

3.02 EQUIPMENT

A. Mix flowable fill in automated batch plant and deliver it to site in ready-mix trucks. Performance additives may be added at placement site if required by mix design.

B. Use concrete or grout pumps capable of continuous delivery at planned placement rate.

3.03 DEMOLITION OF SEWER MANHOLES, PIPELINE STRUCTURES, AND FORCE MAINS PRIOR TO ABANDONMENT

A. Remove manhole frames and covers and castings from other existing pipeline structures. Deliver castings to nearest City of Houston maintenance facility for future use. Alternatively,
salvaged castings may be used upon approval by Project Manager, for constructing new manholes on this project.

B. Demolish and remove precast concrete adjustment rings and corner section, or brick and mortar corbel and chimney, or other pipeline structure, to minimum depth of 4 feet below finished grade. Structure may be removed to greater depth, but not deeper than 18 inches above crown of abandoned sewer.

C. When adjacent sewer lines are not to be filled, place temporary plugs in each line connecting to manhole, in preparation for filling manhole.

D. Excavate overburden from force mains to be abandoned at locations indicated on Drawings, conforming to Section 02317 - Excavation and Backfill for Utilities. Cut existing force main, when necessary, to provide an end surface perpendicular to axis of pipe and suitable for plug to be installed. Remove force main piping material remaining outside of segment to be abandoned.

3.04 INSTALLATION

A. Abandon sewer lines by completely filling sewer line with flowable fill. Abandon manholes and other structures by filling with flowable fill, together with ballast as applicable, within depth of structures left in place.

B. Place flowable fill to fill volume between manholes. Continuously place flowable fill from manhole to manhole with no intermediate pour points, but not exceeding 500 feet in length.

C. Have filling operation performed by experienced crews with equipment to monitor density of flowable fill and to control pressure.

D. Temporarily plug sewer lines which are to remain in operation during pouring/pumping to keep lines free of flowable fill.

E. Pump flowable fill through bulkheads constructed for placement of two 2-inch PVC pipes or use other suitable construction methods to contain flowable fill in lines to be abandoned. These pipes will act as injection points or vents for placement of flowable fill.

F. Place flowable fill under pressure flow conditions into properly vented open system until flowable fill emerges from vent pipes. Pump flowable fill with sufficient pressure to overcome friction and to fill sewer from downstream end, to discharge at upstream end.

G. Inject flowable fill through replaced ballast using grouting equipment and series of grout pipes discharging at bottom of placement, allowing fill to rise through ballast effectively filling all voids. Alternatively, sequentially place individual pieces of ballast at same time as flowable fill is placed. Do not fill with ballast more than 50 percent of volume at any level, to prevent nesting and void formation.
H. Remediate placement of flowable fill which does not fill voids in sewer, in manhole or other structures, or where voids develop due to excessive shrinkage or bleeding of fill, by using pressure grouting either from inside sewer or from surface. Pressure grout shall conform to Section 02431 - Tunnel Grout.

I. Plug each end of force main being abandoned.

J. Force main abandonment
 1. Clean inside surface of force main at least 12 inches from ends to achieve firm bond and seal grout plug or manufactured plug to pipe surface. Similarly, clean and prepare exterior pipe surface if manufactured cap is to be used.
 2. When using grout plug, place temporary plug or bulkhead approximately 12 inches inside pipe. Fill pipe end completely with dry-pack grout mixture.
 3. When using manufactured plug or cap, install fitting as recommended by manufacture's instructions, to form water tight seal.

K. Backfill to surface, above pipe or structures left in place, with flowable fill in restricted areas, compacted bank run sand in unrestricted areas to be paved or select fill in unrestricted areas outside of pavement. Place and compact backfill, other than flowable fill, in compliance with Section 02317 - Excavation and Backfill for Utilities.

L. Collect and dispose of excess flowable fill material and other debris in accordance with Section 01576 - Waste Material Disposal.

3.05 FIELD QUALITY CONTROL
A. Provide batch plant tickets for each truck delivery of flowable fill. Note on tickets addition of admixtures at site.

B. Check flow characteristics and workability of fill as placement proceeds.

C. Obtain at least three test cylinders for each placement area for determination of 56-day compressive strength and bleeding. Acceptance of placement will be based on average strength of three tests.

D. Record volume of ballast together with flowable fill placement for same space to demonstrate that voids have been filled.

3.06 PROTECTION OF PERSONS AND PROPERTY
A. Provide safe working conditions for employees throughout demolition and removal operations. Observe safety requirements for work below grade.
B. Maintain safe access to adjacent property and buildings. Do not obstruct roadways, sidewalks or passageways adjacent to work.

END OF SECTION
CITY OF HOUSTON
STANDARD SPECIFICATION
POLYVINYL CHLORIDE PIPE

Section 02506

POLYVINYL CHLORIDE PIPE

PART I G E N E R A L

1.01 SECTION INCLUDES

A. Polyvinyl chloride pressure pipe for water distribution, in nominal diameters 4 inches through 20 inches.

B. Polyvinyl chloride sewer pipe for gravity sewers in nominal diameters 4 inches through 48 inches.

C. Polyvinyl chloride pressure pipe for gravity sewers and force mains in nominal diameters 4 inches through 20 inches.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. No separate payment will be made for PVC pipe under this Section. Include cost in unit price for work included as specified in the following sections:

 a. Section 02511 - Water Lines

 b. Section 02531 - Gravity Sanitary Sewers

 c. Section 02532 - Sanitary Sewer Force Mains

 d. Section 02631 - Storm Sewers

2. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for work in this Section is included in total Stipulated Price.

1.03 REFERENCES

G. ASTM D 2680 - Specification for Acrylonitrile-Butadiene-Styrene (ABS) and Poly (Vinyl Chloride) (PVC) Composite Sewer Piping.

H. ASTM D 3034 - Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings.

M. ASTM F 794 - Standard Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter.

S. AWWA C 909 - Standard for Molecularly-Oriented Polyvinyl Chloride (PVCO) Pressure Pipe, 4 Inches through 12 Inches (100mm through 300 mm), for Water Distribution.

1.04 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit shop drawings showing design of new pipe and fittings indicating alignment and grade, laying dimensions, fabrication, fittings, flanges, and special details.

1.05 QUALITY CONTROL

A. Submit manufacturer's certifications that PVC pipe and fittings meet requirements of this Section and AWWA C 900, AWWA C 909 and AWWA C 905 for pressure pipe applications, or appropriate ASTM standard specified for gravity sewer pipe.

B. Submit manufacturer's certification that PVC pressure pipe for water lines and force mains has been hydrostatically tested at factory in accordance with AWWA C 900, AWWA C 909 and AWWA C 905, and this Section.

C. When foreign manufactured material is proposed for use, have material tested for conformance to applicable ASTM requirements by certified independent testing laboratory located in United States. Certification from other source is not acceptable. Furnish copies of test reports to Project Manager for review. Cost of testing paid by Contractor.

PART 2 PRODUCTS

2.01 MATERIAL

A. Use PVC compounds in manufacture of pipe that contain no ingredient in amount that has been demonstrated to migrate into water in quantities considered to be toxic.

B. Furnish PVC pressure pipe manufactured from Class 12454-A or Class 12454-B virgin PVC compounds as defined in ASTM D 1784. Use compounds qualifying for rating of 4000 psi for water at 73.4 F per requirements of PPI TR3. Provide pipe which is homogeneous throughout, free of voids, cracks, inclusions, and other defects, uniform as commercially practical in color, density, and other physical properties. Deliver pipe with surfaces free from nicks and scratches with joining surfaces of spigots and joints free from gouges and imperfections which could cause leakage.
C. PVC Restrained Pipe: Must be listed on City's current Product Approval List.

1. Pipe Material:
 a. DR 18: For restrained joints where shown on Drawings.
 b. DR 14: For alternate to offset pipe sections shown on Drawings. Do not use PVC for offset sections with depth of cover greater than 20 feet or less than 4 feet.

D. Water Service.

1. Provide self-extinguishing PVC pipe that bears Underwriters' Laboratories mark of approval and is acceptable without penalty to Texas State Fire Insurance Committee for use in fire protection lines.

2. Bear National Sanitation Foundation Seal of Approval (NSF-PW).

E. Gaskets:

1. Gaskets shall meet requirements of ASTM F 477. Use elastomeric factory-installed gaskets to make joints flexible and watertight.

2. Flat Face Mating Flange: Full faces 1/8-inch-thick ethylene propylene (EPR) rubber.

3. Raised Face Mating Flange: Flat ring 1/8-inch ethylene propylene (EDR) rubber, with filler gasket between OD of raised face and flange OD to protect flange from bolting moment.

F. Lubricant for rubber-gasketed joints: Water soluble, non-toxic, non-objectionable in taste and odor imparted to fluid, non-supporting of bacteria growth, having no deteriorating effect on PVC or rubber gaskets.

H. Do not use PVC in potentially or known contaminated areas.

I. Do not use PVC in areas exposed to direct sunlight.

2.02 WATER SERVICE PIPE

A. Pipe 4 inch through 12 inch: AWWA C 900, DR 18; AWWA C 909, Pressure Class 150 psi, AWWA C 900, DR 14 as alternate to offset pipe sections; nominal 20-foot lengths; cast-iron equivalent outside diameters.

B. Pipe 14 inch through 20 inch: AWWA C 905; 235 psi; DR 18; nominal 20-foot lengths; cast-iron equivalent outside diameter.
C. Provide Polyvinyl Chloride Pipe from approved manufacturers.

D. Make curves and bends by deflecting joints. Do not exceed maximum deflection recommended by pipe manufacturer. Submit details of other methods of providing curves and bends for review by Project Manager.

E. Hydrostatic Test: AWWA C 900, AWWA C 905, AWWA C 909, ANSI A 21.10 (AWWA C 110); at point of manufacture; submit manufacturer’s written certification.

2.03 GRAVITY SEWER PIPE

A. PVC gravity sanitary sewer pipe and storm sewer pipe shall be in accordance with provisions in following table: Refer to the City of Houston Approved Product List.

<table>
<thead>
<tr>
<th>WALL CONSTRUCTION</th>
<th>ASTM DESIGNATION</th>
<th>SDR (MAX.)/STIFFNESS (MIN.)</th>
<th>DIAMETER SIZE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>D3034</td>
<td>SDR 26 / PS 115</td>
<td>6” to 10”</td>
</tr>
<tr>
<td></td>
<td>D3034</td>
<td>SDR 35 / PS 46</td>
<td>12” & 15”</td>
</tr>
<tr>
<td></td>
<td>F679</td>
<td>SDR 35 / PS 46</td>
<td>18” to 27”</td>
</tr>
<tr>
<td></td>
<td>AWWA C900</td>
<td>DR 18 / N/A</td>
<td>4” to 12”</td>
</tr>
<tr>
<td></td>
<td>AWWA C909</td>
<td>DR 18 / N/A</td>
<td>4” to 12”</td>
</tr>
<tr>
<td></td>
<td>AWWA C905</td>
<td>DR 18 / N/A</td>
<td>14” to 16”</td>
</tr>
<tr>
<td></td>
<td>ASTM D2241</td>
<td>DR 18 / N/A</td>
<td></td>
</tr>
<tr>
<td>Truss (Gasketed)</td>
<td>D2680</td>
<td>N/A /200 psi</td>
<td>8” to 15”</td>
</tr>
<tr>
<td>Profile</td>
<td>F949</td>
<td>N/A / 46 psi</td>
<td>12” to 36”</td>
</tr>
<tr>
<td></td>
<td>F949</td>
<td>N/A / 115 psi</td>
<td>8” to 10”</td>
</tr>
<tr>
<td></td>
<td>F794</td>
<td>N/A / 46 psi</td>
<td>8” to 30”</td>
</tr>
<tr>
<td></td>
<td>F794</td>
<td>N/A / 46 psi</td>
<td>24” to 36”</td>
</tr>
</tbody>
</table>

B. When solid wall PVC pipe 18 inches to 27 inches in diameter is required in SDR 26, provide pipe conforming to ASTM F 679, except provide wall thickness as required for SDR 26 and pipe strength of 115 psi.

C. For sewers up to 12-inch diameter crossing over water lines, or crossing under water lines with less than 2-feet separation, provide minimum 150 psi pressure-rated pipe conforming to ASTM D 2241 with suitable pressure rated PVC adapter couplings.
D. Joints: Spigot and integral wall section bell with solid cross section elastomeric or rubber ring gasket conforming to requirements of ASTM D 3212 and ASTM F 477, or ASTM D 3139 and ASTM F 477. Gaskets shall be factory-assembled and securely bonded in place to prevent displacement. Manufacturer shall test sample from each batch conforming to requirements ASTM D 2444.

E. Fittings: Provide PVC gravity sewer sanitary bends, tee, or wye fittings for new sanitary sewer construction. PVC pipe fittings shall be full-bodied, either injection molded or factory fabricated. Saddle-type tee or wye fittings are not acceptable.

F. Conditioning. Conditioning of samples prior to and during tests is subject to approval by Project Manager. When referee tests are required, condition specimens in accordance with Procedure A in ASTM D 618 at 73.4 degrees F plus or minus 3.6 degrees F and 50 percent relative humidity plus or minus 5 percent relative humidity for not less than 40 hours prior to test. Conduct tests under same conditions of temperature and humidity unless otherwise specified.

G. Pipe Stiffness. Determine pipe stiffness at 5 percent deflection in accordance with Test Method D 2412. Minimum pipe stiffness shall be 46 psi. For diameters 4 inches through 18 inches, test three specimens, each a minimum of 6 inches (152 mm) in length. For diameters 21 inch through 36 inch, test three specimens, each a minimum of 12 inch (305 mm) in length.

H. Flattening. Flatten three specimens of pipe, prepared in accordance with Paragraph 2.04F, in suitable press until internal diameter has been reduced to 60 percent of original inside diameter of pipe. Rate of loading shall be uniform. Test specimens, when examined under normal light and with unaided eye, shall show no evidence of splitting, cracking, breaking, or separation of pipe walls or bracing profiles. Perform the flattening test in conjunction with pipe stiffness test.

I. Joint Tightness. Test for joint tightness in accordance with ASTM D 3212, except that joint shall remain watertight at minimum deflection of 5 percent. Manufacturer will be required to provide independent third party certification for joint testing each diameter of storm sewer pipe.

J. Purpose of Tests. Flattening and pipe stiffness tests are intended to be routine quality control tests. Joint tightness test is intended to qualify pipe to specified level of performance.

2.04 SANITARY SEWER FORCE MAIN PIPE

A. Provide approved PVC pressure pipe conforming to requirements for water service pipe, and conforming to minimum working pressure rating specified in Section 02532 - Sanitary Sewage Force Mains.

B. Acceptable pipe joints are integral bell-and-spigot, containing a bonded-in elastomeric sealing ring meeting requirements of ASTM F 477. In designated areas requiring restrained joint pipe
and fittings, use approved joint restraint device conforming to UNI-B-13, for PVC pipe 12-inch diameter and less.

C. Fittings: Provide approved ductile iron fittings as per Section 02501 - Ductile Iron Pipe and Fittings, Paragraph 2.04, except furnish fittings with one of following approved internal linings:

1. Nominal 40 mils (35 mils minimum) virgin polyethylene complying with ASTM D 1248, heat fused to interior surface of fitting
2. Nominal 40 mils (35 mils minimum) polyurethane
3. Nominal 40 mils (35 mils minimum) ceramic epoxy
4. Nominal 40 mils (35 mils minimum) fusion bonded epoxy

D. Exterior Protection: Provide polyethylene wrapping of ductile-iron fittings as required by Section 02528 - Polyethylene Wrap.

E. Hydrostatic Tests: Hydrostatically test pressure rated pipe in accordance with Paragraph 2.02E.

2.05 BENDS AND FITTINGS FOR PVC PRESSURE PIPE

A. Bends and Fittings: ANSI A 21.10 or ANSI A 21.53, ductile iron; ANSI A 21.11 single rubber gasket push-on type joint; minimum 150 psi pressure rating. Approved restrained joints, 250 psi, may be provided for up to 12 inches in diameter (water or sanitary).

B. Provide approved restrained joint fittings: Integral restrained joint fittings and pipe do not require secondary restraint.

PART 3 EXECUTION

3.01 PROTECTION

A. Store pipe under cover out of direct sunlight and protect from excessive heat or harmful chemicals in accordance with manufacturer's recommendations.

3.02 INSTALLATION

A. Conform to requirements of Section 02511 - Water Lines, Section 02531 - Gravity Sanitary Sewers, and Section 02532 - Sanitary Sewer Force Mains, as applicable.

B. Install PVC pipe in accordance with Section 02317 - Excavation and Backfill for Utilities, ASTM D 2321 for Sewer Pipe, and manufacturer's recommendations.
C. Install PVC water service pipe to clear utility lines and have minimum depth of cover below property line grade of street, unless otherwise required by Drawings:

1. Water service pipe 12 inches in diameter and smaller 4 feet of cover.
2. Water service pipe 16 inches in diameter and larger 5 feet of cover.

D. Avoid imposing strains that will overstress or buckle pipe when lowering pipe into trench.

E. Hand shovel pipe bedding under pipe haunches and along sides of pipe barrel and compact to eliminate voids and ensure side support.

F. Store PVC pipe under cover out of direct sunlight. Protect pipe from excessive heat or harmful chemicals. Prevent damage by crushing or piercing.

G. Allow PVC pipe to cool to ground temperature before backfilling when assembled out of trench to prevent pullout due to thermal contraction.

3.03 PVC RESTRAINED MECHANISM

A. Do not apply lubricant to spline or pipe or coupling spline grooves.

B. Do not use excessive force while inserting the spline through coupling.

C. Insert spline until it is fully seated around circumference of pipe.

D. Field Cutting of Pipe Ends:

1. Perform by workers certified by manufacturer.
2. Use a PVC pipe cutter and provide square ends.
3. Use manufacturer approved power routing and grooving tool to field fabricate required pipe groove.
Section 02531

GRAVITY SANITARY SEWERS

PART 1 G E N E R A L

1.01 SECTION INCLUDES

A. Gravity sanitary sewers and appurtenances, including stacks and service connections.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. Payment for gravity sanitary sewers by open-cut or within Potentially Petroleum Contaminated Area (PPCA) is on linear foot basis, complete in place, including sewer pipe, connections to existing manholes, post installation television inspection and testing. Measurement will be taken along centerline of pipe from centerline to centerline of manholes.

2. Payment for television inspection of existing gravity sanitary sewer will be on a linear foot basis. Measurement will be taken along centerline of pipe from centerline to centerline of manholes. See Section 02558 - Cleaning and Television Inspection.

3. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for work in this Section is included in total Stipulated Price.

1.03 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit proposed methods, equipment, materials and sequence of operations for sewer construction. Plan operations so as to minimize disruption of utilities to occupied facilities or adjacent property.

C. Test Reports: Submit test reports and inspection videos as specified in Part 3 of this Section. Video tapes become property of City.

1.04 QUALITY ASSURANCE

A. Qualifications. Install sanitary sewer that is watertight both in pipe-to-pipe joints and in pipe-to-manhole connections. Perform testing in accordance with Section 02533 - Acceptance Testing for Sanitary Sewers.
B. Regulatory Requirements.

1. Install sewer lines to meet minimum separation distance from potable water line, as scheduled below. Separation distance is defined as distance between outside of water pipe and outside of sewer pipe. When possible, install new sanitary sewers no closer to water lines than 9 feet in all directions. Where this separation distance cannot be achieved, new sanitary sewers shall be installed as specified in this section.

2. Make notification to Project Manager when water lines are uncovered during sanitary sewer installation where minimum separation distance cannot be maintained.

3. Lay gravity sewer lines in straight alignment and grade.

1.05 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Inspect pipe and fittings upon arrival of materials at job site.

B. Handle and store pipe materials and fittings to protect them from damage due to impact, shock, shear or free fall. Do not drag pipe and fittings along ground. Do not roll pipe unrestrained from delivery trucks.

C. Use mechanical means to move or handle pipe. Employ acceptable clamps, rope or slings around outside barrel of pipe and fittings. Do not use hooks, bars, or other devices in contact with interior surface of pipe to lift or move lined pipe.

PART 2 PRODUCTS

2.01 PIPE

A. Provide piping materials for gravity sanitary sewers of sizes and types indicated on Drawings or as specified.

B. Unlined reinforced concrete pipe is not acceptable.

2.02 PIPE MATERIAL SCHEDULE

A. Unless otherwise shown on Drawings, use pipe materials that conform to requirements specified in one or more of following Sections:

1. Section 02427 - Plastic Liner for Large-Diameter Concrete Sewers and Structures.

2. Section 02501 - Ductile Iron Pipe and Fittings.

3. Section 02504 - Fiberglass Reinforced Pipe.
4. Section 02505 - High Density Polyethylene (HDPE) Solid and Profile Wall Pipe.

5. Section 02506 - Polyvinyl Chloride Pipe.

7. Section 02611 - Reinforced Concrete Pipe.

B. Where shown on Drawings, provide pipe meeting minimum class, dimension ratio, or other criteria indicated.

C. Pipe materials other than those listed above shall not be used for gravity sanitary sewers.

2.03 APPURTENANCES

A. Stacks. Conform to requirements of Section 02534 - Sanitary Sewer Service Stubs or Reconnections.

B. Service Connections. Conform to requirements of Section 02534 - Sanitary Sewer Service Stubs or Reconnections.

C. Roof, street or other type of surface water drains shall not be connected or reconnected into sanitary sewer lines.

2.04 BEDDING, BACKFILL, AND TOPSOIL MATERIAL

A. Bedding and Backfill: Conform to requirements of Section 02317 - Excavation and Backfill for Utilities, Section 02320 - Utility Backfill Materials, and Section 02321 - Cement Stabilized Sand.

B. Topsoil: Conform to requirements of Section 02911 - Topsoil.

PART 3 EXECUTION

3.01 PREPARATION

A. Prepare traffic control plans and set up street detours and barricades in preparation for excavation when construction will affect traffic. Conform to requirements of Section 01555 - Traffic Control and Regulation.

B. Provide barricades, flashing warning lights, and warning signs for excavations. Conform to requirements of Section 01555 - Traffic Control and Regulation. Maintain barricades and warning lights where work is in progress or where traffic is affected by work.

C. Perform work in accordance with OSHA standards. Employ trench safety system as specified in Section 02260 - Trench Safety System for excavations over 5 feet deep.
D. Immediately notify agency or company owning utility line which is damaged, broken or disturbed. Obtain approval from Project Manager and agency or utility company for repairs or relocations, either temporary or permanent.

E. Remove old pavements and structures including sidewalks and driveways in accordance with requirements of Section 02221 - Removing Existing Pavements and Structures.

F. Install and operate dewatering and surface water control measures in accordance with Section 01578 - Control of Ground Water and Surface Water.

G. Do not allow sand, debris or runoff to enter sewer system.

3.02 DIVERSION PUMPING

A. Install and operate required bulkheads, plugs, piping, and diversion pumping equipment to maintain sewage flow and to prevent backup or overflow. Obtain approval for diversion pumping equipment and procedures from Project Manager.

B. Design piping, joints and accessories to withstand twice maximum system pressure or 50 psi, whichever is greater.

C. No sewage shall be diverted into area outside of sanitary sewer.

D. In event of accidental spill or overflow, immediately stop overflow and take action to clean up and disinfect spillage. Promptly notify Project Manager so that required reporting can be made to Texas Natural Resources Conservation Commission and Environmental Protection Agency by Project Manager.

3.03 EXCAVATION

A. Earthwork. Conform to requirements of Section 02317 - Excavation and Backfill for Utilities. Use bedding as indicated on Drawings.

B. Line and Grade. Establish required uniform line and grade in trench from benchmarks identified by Project Manager. Maintain this control for minimum of 100 feet behind and ahead of pipe-laying operation. Use laser beam equipment to establish and maintain proper line and grade of work. Use of appropriately sized grade boards which are substantially supported is also acceptable. Protect boards and location stakes from damage or dislocation.

C. Trench Excavation. Excavate pipe trenches to depths shown on Drawings and as specified in Section 02317 - Excavation and Backfill for Utilities.

3.04 PIPE INSTALLATION BY OPEN CUT
A. Install pipe in accordance with pipe manufacturer's recommendations and as specified in following paragraphs.

B. Install pipe only after excavation is completed, bottom of trench fine graded, bedding material is installed, and trench has been approved by Project Manager.

C. Install pipe to line and grade indicated. Place pipe so that it has continuous bearing of barrel on bedding material and is laid in trench so interior surfaces of pipe follow grades and alignment indicated. Provide bell holes where necessary.

D. Install pipe with spigot ends toward downstream end of flow such that water flows into bell and out the spigot.

E. Form concentric joint with each section of adjoining pipe so as to prevent offsets.

F. Keep interior of pipe clean as installation progresses. Remove foreign material and debris from pipe.

G. Provide lubricant, place and drive home newly laid sections with come-a-long winches so as to eliminate damage to sections. Install pipe to "home" mark where provided. Use of back hoes or similar powered equipment will not be allowed unless protective measures are provided and approved in advance by Project Manager.

H. Keep excavations free of water during construction and until final inspection.

I. When work is not in progress, cover exposed ends of pipes with approved plug to prevent foreign material from entering pipe.

J. Where gravity sanitary sewer is to be installed under existing water line with separation distance of at least 2 feet and less than 9 feet, install new sewer pipe so that one full 18 foot long pipe is centered on water line crossing. Embed sewer pipe in cement stabilized sand for minimum distance of 9 feet on each side of crossing.

K. Where gravity sanitary sewer is to be installed under existing water line with separation distance of less than 2 feet, install new sewer using pressure-rated pipe as shown on Drawings. Maintain minimum 1 foot separation distance.

L. Where the length of the stub is not indicated, install the stub to the right-of-way line and seal the free end with an approved plug.

3.05 PIPE INSTALLATION OTHER THAN OPEN CUT

A. For installation of pipe by augering, jacking, or tunneling, conform to requirements of specification sections on tunneling augering, jacking and microtunneling work as appropriate.

3.06 INSTALLATION OF APPURTENANCES
A. Service Connections. Install service connections to conform to requirements of Section 2534 - Sanitary Sewer Service Stubs or Reconnections.

B. Stacks. Construct stacks to conform to requirements of 02534 - Sanitary Sewer Service Stubs or Reconnections.

C. Construct manholes to conform to requirements of Section 02081 - Cast-in-Place Concrete Manholes, Section 02082 - Precast Concrete Manholes, and Section 02083 - Fiberglass Manholes, as applicable. Install frames, rings, and covers to conform to requirements of Section 02084 - Frames, Grates, Rings, and Covers.

3.07 INSPECTION AND TESTING

A. Visual Inspection: Check pipe alignment in accordance with Section 02533 - Acceptance Testing for Sanitary Sewers.

B. Mandrel Testing. Use Mandrel Test to test flexible pipe for deflection. Refer to Section 02533 - Acceptance Testing for Sanitary Sewers.

C. Pipe Leakage Test. After backfilling line segment and prior to tie-in of service connections, visually inspect gravity sanitary sewers where feasible, and test for leakage in accordance with Section 02533 - Acceptance Testing for Sanitary Sewers. Maintain piezometer installed to conform with Section 01578 - Control of Ground Water and Surface Water, until acceptance testing is completed.

3.08 BACKFILL AND SITE CLEANUP

A. Backfill and compact soil in accordance with Section 02317 - Excavation and Backfill for Utilities.

B. Backfill trench in specified lifts only after pipe installation is approved by Project Manager.

C. Repair and replace removed or damaged pavement, curbs, gutters, and sidewalks as specified in Section 02951 - Pavement Repair and Resurfacing.

D. Provide hydromulch seeding in areas of commercial, industrial or undeveloped land use over surface of ground disturbed during construction and not paved or not designated to be paved. Grade surface at uniform slope to natural grade as indicated on Drawings. Provide minimum of 4 inches of topsoil as specified in Section 02911 - Topsoil and apply hydromulch according to requirements of Section 02921 - Hydromulch Seeding.

E. Provide sodding in areas of residential land use over surface of ground disturbed during construction and not paved or not designated to be paved. Grade surface at uniform slope to natural grade as indicated on Drawings. Provide minimum of 4 inches of topsoil per Section 02911 - Topsoil. Sod disturbed areas in accordance with Section 02922 - Sodding.
3.09 POST-INSTALLATION TELEVISION INSPECTION

A. Prior to final acceptance of newly constructed gravity sanitary sewers, perform cleaning and closed circuit television inspection. Cleaning shall include utilizing variable pressure water nozzles (3000 psi) and collection, removal, transportation and disposal of sand, debris, and liquid wastes to legal disposal sites.

B. Select and use closed-circuit television equipment that will produce color video tape. Produce video tape using pan-and-tilt, radial viewing, pipe inspection camera that pans plus and minus 275 degrees and rotates 360 degrees. Use camera with accurate footage counter which displays on monitor exact distance of camera from starting manhole. Use camera with camera height adjustment so that camera lens is always centered at one-half inside diameter, or higher, in pipe being televised. Provide lighting system that allows features and condition of pipe to be clearly seen. Reflector in front of camera may be necessary to enhance lighting in dark or large diameter pipe.

C. Perform television inspection of gravity sanitary sewers as follows:

 1. Videos shall pan beginning and ending manholes to demonstrate that debris has been removed. Camera operator shall slowly pan each service connection and where sewer transitions from one pipe material to another.

 2. Video tapes shall be continuous for pipe segments between manholes. Do not leave gaps in video taping of segment between manholes and do not show single segment on more than one video tape.

 3. No flow is allowed in gravity sanitary sewer while performing post-installation television inspection.

D. Provide video tapes in VHS format, recorded at Standard Play (SP). Two labels are required. Place one label on spine and other on face of each video tape. Permanently label each video tape with following information.
Spine of Tape

Wastewater File No.: __________ Contractor's Name:
Inspection Type: [] Survey [] Pre-Installation [] Post-Installation
Tape No.: ________ Date Televised: _________ Date Submitted:
Basin No:

Face of Tape

<table>
<thead>
<tr>
<th>Manhole No. From</th>
<th>Manhole No. To</th>
<th>Pipe Diameter</th>
<th>Pipe Length</th>
<th>Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. For each video tape provide completed TV Inspection Report, as attached at end of this section. TV Inspection Report is written/narrated log of pipe conditions and service connections, indexed to footage counter.

F. Upon completion of video tape reviews by Project Manager, Contractor will be notified regarding final acceptance of sewer segment.

END OF SECTION
TELEVISION INSPECTION CODES

LOCATION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>STREET ROW, HEAVY TRAFFIC</td>
</tr>
<tr>
<td>B</td>
<td>STREET ROW, LIGHT TRAFFIC</td>
</tr>
<tr>
<td>C</td>
<td>EASEMENT, POOR ACCESS</td>
</tr>
<tr>
<td>D</td>
<td>EASEMENT, GOOD ACCESS</td>
</tr>
<tr>
<td>E</td>
<td>PARKING LOT, POOR ACCESS</td>
</tr>
<tr>
<td>F</td>
<td>PARKING LOT, GOOD ACCESS</td>
</tr>
<tr>
<td>G</td>
<td>ALLEY, POOR ACCESS</td>
</tr>
<tr>
<td>H</td>
<td>ALLEY, GOOD ACCESS</td>
</tr>
<tr>
<td>I</td>
<td>OPEN AREA, POOR ACCESS</td>
</tr>
<tr>
<td>J</td>
<td>OPEN AREA, GOOD ACCESS</td>
</tr>
</tbody>
</table>

SURFACE COVER

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ASPHALT STREET</td>
</tr>
<tr>
<td>B</td>
<td>CONCRETE STREET</td>
</tr>
<tr>
<td>C</td>
<td>SHELL STREET</td>
</tr>
<tr>
<td>D</td>
<td>SIDEWALK</td>
</tr>
<tr>
<td>E</td>
<td>TREES/SHRUBS</td>
</tr>
<tr>
<td>F</td>
<td>CLOSE TO FENCE</td>
</tr>
<tr>
<td>G</td>
<td>OPEN AREA</td>
</tr>
<tr>
<td>H</td>
<td>MOVABLE BUILDING</td>
</tr>
<tr>
<td>I</td>
<td>UNMOVABLE BUILDING</td>
</tr>
<tr>
<td>J</td>
<td>OVERHEAD UTILITIES</td>
</tr>
<tr>
<td>K</td>
<td>WATERWAY OR RAILWAY</td>
</tr>
<tr>
<td>L</td>
<td>HIGHWAY OR RUNWAY</td>
</tr>
<tr>
<td>M</td>
<td>PIPE ABOVE GROUND</td>
</tr>
</tbody>
</table>

PIPE TYPE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>ACRYLONITRILE BUTADIENE STYRENE</td>
</tr>
<tr>
<td>BRK</td>
<td>BRICK</td>
</tr>
<tr>
<td>CIP</td>
<td>CAST IRON PIPE</td>
</tr>
<tr>
<td>CMP</td>
<td>CORRUGATED METAL PIPE</td>
</tr>
<tr>
<td>CON</td>
<td>POURED IN PLACE CONCRETE</td>
</tr>
<tr>
<td>CPP</td>
<td>CURED IN PLACE PIPE</td>
</tr>
<tr>
<td>DIP</td>
<td>DUCTILE IRON PIPE</td>
</tr>
<tr>
<td>FRP</td>
<td>FIBERGLASS REINFORCED PIPE</td>
</tr>
<tr>
<td>PLP</td>
<td>PLASTIC LINED CONCRETE PIPE</td>
</tr>
<tr>
<td>PEP</td>
<td>POLYETHYLENE PIPE</td>
</tr>
<tr>
<td>PVC</td>
<td>POLYVINYLCHLORIDE PIPE</td>
</tr>
<tr>
<td>RCP</td>
<td>REINFORCED CONCRETE PIPE</td>
</tr>
<tr>
<td>RPM</td>
<td>REINFORCED PLASTIC MORTAR PIPE</td>
</tr>
<tr>
<td>URC</td>
<td>UNREINFORCED CONCRETE PIPE</td>
</tr>
<tr>
<td>VCP</td>
<td>VITRIFIED CLAY PIPE</td>
</tr>
</tbody>
</table>

WEATHER

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRY</td>
<td>DRY</td>
</tr>
<tr>
<td>WET</td>
<td>WET</td>
</tr>
</tbody>
</table>

CODE DESCRIPTION

CRACKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>1/2" W. < 1/2" L</td>
<td>CRK</td>
</tr>
<tr>
<td>B(2)</td>
<td>1/2" W. 1" - 2" L</td>
<td>CRK</td>
</tr>
<tr>
<td>C(3)</td>
<td>1/2" W. > 2" L</td>
<td>CRK</td>
</tr>
<tr>
<td>D(4)</td>
<td>> 1/2" W. < 1 F L</td>
<td>CRK</td>
</tr>
<tr>
<td>E(5)</td>
<td>> 1/2" W. > 1" - 2" L</td>
<td>CRK</td>
</tr>
<tr>
<td>F(6)</td>
<td>> 1/2" W. > 2" L</td>
<td>CRK</td>
</tr>
<tr>
<td>G(7)</td>
<td>HOLE IN PIPE - SMALL</td>
<td>CRK</td>
</tr>
<tr>
<td>H(8)</td>
<td>PIPE MISSING - < 60"</td>
<td>CRK</td>
</tr>
<tr>
<td>I(9)</td>
<td>PIPE MISSING > 60"</td>
<td>CRK</td>
</tr>
</tbody>
</table>

header information

JOINTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(3)</td>
<td>3" PIPE DET. - LIGHT DS</td>
<td>CS</td>
</tr>
<tr>
<td>B(6)</td>
<td>6" PIPE DET. - MEDIUM DS</td>
<td>CS</td>
</tr>
<tr>
<td>C(9)</td>
<td>9" PIPE DET. - HEAVY DS</td>
<td>CS</td>
</tr>
<tr>
<td>D(12)</td>
<td>OVAL > 10%</td>
<td>CS</td>
</tr>
<tr>
<td>E(15)</td>
<td>NO EVIDENCE</td>
<td>CS</td>
</tr>
<tr>
<td>F(18)</td>
<td>LEAKING AT JOINT</td>
<td>CS</td>
</tr>
<tr>
<td>G(21)</td>
<td>SEEING GASKET</td>
<td>CS</td>
</tr>
<tr>
<td>H(24)</td>
<td>VISIBLE GASKET</td>
<td>CS</td>
</tr>
<tr>
<td>I(27)</td>
<td>REPAIR SERVICE</td>
<td>CS</td>
</tr>
<tr>
<td>J(30)</td>
<td>FACTORY SERVICE</td>
<td>CS</td>
</tr>
<tr>
<td>K(33)</td>
<td>PLUMB. SERVICE</td>
<td>CS</td>
</tr>
</tbody>
</table>

LATERALS (L)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>1 1/4 PIPE WATER</td>
<td>CS</td>
</tr>
<tr>
<td>B(2)</td>
<td>1 1/2 PIPE WATER</td>
<td>CS</td>
</tr>
<tr>
<td>C(3)</td>
<td>2" PIPE ABOVE GROUND</td>
<td>CS</td>
</tr>
<tr>
<td>D(4)</td>
<td>3" PIPE ABOVE GROUND</td>
<td>CS</td>
</tr>
<tr>
<td>E(5)</td>
<td>4" PIPE ABOVE GROUND</td>
<td>CS</td>
</tr>
</tbody>
</table>

DEBRIS (D)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>DEBRIS - LIGHT</td>
<td>CS</td>
</tr>
<tr>
<td>B(2)</td>
<td>DEBRIS - MEDIUM</td>
<td>CS</td>
</tr>
<tr>
<td>C(3)</td>
<td>DEBRIS - HEAVY</td>
<td>CS</td>
</tr>
<tr>
<td>D(4)</td>
<td>GREASE - LIGHT</td>
<td>CS</td>
</tr>
<tr>
<td>E(5)</td>
<td>GREASE - MEDIUM</td>
<td>CS</td>
</tr>
<tr>
<td>F(6)</td>
<td>GREASE - HEAVY</td>
<td>CS</td>
</tr>
</tbody>
</table>

INFLOW/INfiltration (I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(3)</td>
<td>1 GPM DETERIORATED - OS</td>
<td>CS</td>
</tr>
<tr>
<td>B(6)</td>
<td>1-5 GPM DETERIORATED - OS</td>
<td>CS</td>
</tr>
<tr>
<td>C(9)</td>
<td>1-5 GPM DETERIORATED - OS</td>
<td>CS</td>
</tr>
<tr>
<td>D(12)</td>
<td>OVAL > 5%</td>
<td>CS</td>
</tr>
<tr>
<td>E(15)</td>
<td>OVAL > 10%</td>
<td>CS</td>
</tr>
<tr>
<td>F(18)</td>
<td>OVAL > 20%</td>
<td>CS</td>
</tr>
<tr>
<td>G(21)</td>
<td>NO EVIDENCE</td>
<td>CS</td>
</tr>
<tr>
<td>H(24)</td>
<td>LEAKING AT JOINT</td>
<td>CS</td>
</tr>
</tbody>
</table>

ALIGNMENT (A)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(3)</td>
<td>LINE DET - LIGHT DS</td>
<td>CS</td>
</tr>
<tr>
<td>B(6)</td>
<td>LINE DET - MEDIUM DS</td>
<td>CS</td>
</tr>
<tr>
<td>C(9)</td>
<td>LINE DET - HEAVY DS</td>
<td>CS</td>
</tr>
<tr>
<td>D(12)</td>
<td>OVAL > 10%</td>
<td>CS</td>
</tr>
<tr>
<td>E(15)</td>
<td>NO EVIDENCE</td>
<td>CS</td>
</tr>
<tr>
<td>F(18)</td>
<td>LEAKING AT JOINT</td>
<td>CS</td>
</tr>
</tbody>
</table>

STRUCTURAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Use In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(3)</td>
<td>PIPE DET. - LIGHT DS</td>
<td>CS</td>
</tr>
<tr>
<td>B(6)</td>
<td>PIPE DET. - MEDIUM DS</td>
<td>CS</td>
</tr>
<tr>
<td>C(9)</td>
<td>PIPE DET. - HEAVY DS</td>
<td>CS</td>
</tr>
<tr>
<td>D(12)</td>
<td>PIPE DET. - DETERIORATED</td>
<td>CS</td>
</tr>
<tr>
<td>E(15)</td>
<td>PIPE DET. - MEDIUM DS</td>
<td>CS</td>
</tr>
<tr>
<td>F(18)</td>
<td>PIPE DET. - HEAVY DS</td>
<td>CS</td>
</tr>
<tr>
<td>G(21)</td>
<td>NO EVIDENCE</td>
<td>CS</td>
</tr>
<tr>
<td>H(24)</td>
<td>VISIBLE GASKET</td>
<td>CS</td>
</tr>
<tr>
<td>I(27)</td>
<td>REPAIR SERVICE</td>
<td>CS</td>
</tr>
<tr>
<td>J(30)</td>
<td>FACTORY SERVICE</td>
<td>CS</td>
</tr>
<tr>
<td>K(33)</td>
<td>PLUMB. SERVICE</td>
<td>CS</td>
</tr>
</tbody>
</table>

02531-9
01/01/2011
PAGE INTENTIONALLY LEFT BLANK
Section 02533

ACCEPTANCE TESTING FOR SANITARY SEWERS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Acceptance testing of sanitary sewers including:
 1. Visual inspection of sewer pipes
 2. Mandrel testing for flexible sewer pipes.
 3. Leakage testing of sewer pipes.
 4. Leakage testing of manholes.
 5. Smoke testing of point repairs.
 6. Television and Video Inspection.

B. All tests listed in this Section are not necessarily required on this Project. Required tests are named in other Sections which refer to this Section for testing criteria and procedures.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.
 1. No payment will be made for acceptance testing under this Section. Include payment in unit price for work requiring acceptance testing.
 2. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for work in this Section is included in total Stipulated Price.

1.03 REFERENCES

B. ASTM C 924 - Standard Practice for Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method.

C. ASTM D 3034 - Standard Specification for Type PSM Polyethylene (Vinyl Chloride) (PVC) Sewer Pipe and Fittings.

D. ASTM F 794 - Specification for Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter.

F. ASTM C 1244 Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill.

1.04 PERFORMANCE REQUIREMENTS

A. Gravity flow sanitary sewers are required to have straight alignment and uniform grade between manholes.

B. Flexible pipe, including "semi-rigid" pipe, is required to show no more than 5 percent deflection. Test pipe no sooner than 30 days after backfilling of line segment but prior to final acceptance using standard mandrel to verify that installed pipe is within specified deflection tolerances.

C. Must meet Texas Commission on Environmental Quality (TCEQ) Testing Requirements Chapter-217-57.

1.05 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Test Plan: Before testing begins and in adequate time to obtain approval through submittal process, prepare and submit test plan for approval by Project Manager. Include testing procedures, methods, equipment, and tentative schedule. Obtain advance written approval for deviations from Drawings and Specifications.

C. Test Reports: Submit test reports for each test on each segment of sanitary sewer.

1.06 GRAVITY SANITARY SEWER QUALITY ASSURANCE

A. Repair, correct, and retest manholes or sections of pipe which fail to meet specified requirements when tested.
B. Provide testing reports and video tape of television inspection as directed by Project Manager.

C. Upon completion of tape reviews by Project Manager, Contractor will be notified regarding final acceptance of sewer segment.

1.07 SEQUENCING AND SCHEDULING

A. Perform testing as work progresses. Schedule testing so that no more than 1000 linear feet of installed sewer remains untested at one time.

B. Coordinate testing schedules with Project Manager. Perform testing under observation of Project Manager.

PART 2 PRODUCTS

2.01 DEFLECTION MANDREL

A. Mandrel Sizing. Rigid mandrel shall have outside diameter (O.D.) equal to 95 percent of inside diameter (I.D.) of pipe. Inside diameter of pipe, for purpose of determining outside diameter of mandrel, shall be average outside diameter minus two minimum wall thicknesses for O.D. controlled pipe and average inside diameter for I.D. controlled pipe, dimensions shall be per appropriate standard. Statistical or other "tolerance packages" shall not be considered in mandrel sizing.

B. Mandrel Design. Rigid mandrel shall be constructed of metal or rigid plastic material that can withstand 200 psi without being deformed. Mandrel shall have nine or more "runners" or "legs" as long as total number of legs is odd number. Barrel section of mandrel shall have length of at least 75 percent of inside diameter of pipe. Rigid mandrel shall not have adjustable or collapsible legs which would allow reduction in mandrel diameter during testing. Provide and use proving ring for modifying each size mandrel.

C. Proving Ring. Furnish "proving ring" with each mandrel. Fabricate ring of 1/2-inch-thick, 3-inch-wide bar steel to diameter 0.02 inches larger than approved mandrel diameter.

D. Mandrel Dimensions (5 percent allowance). Average inside diameter and minimum mandrel diameter are specified in Table 02533-5, Pipe vs. Mandrel Diameter, at end of this Section. Mandrels for higher strength, thicker wall pipe or other pipe not listed in table may be used when approved by Project Manager.

2.02 EXFILTRATION TEST
A. Water Meter: Obtain transient water meter from City for use when water for testing will be taken from City system. Conform to City requirements for water meter use.

B. Test Equipment:

1. Pipe plugs.
2. Pipe risers where manhole cone is less than 2 feet above highest point in pipe or service lead.

2.03 INFILTRATION TEST

A. Test Equipment:

1. Calibrated 90 degree V-notch weir.
2. Pipe plugs.

2.04 LOW PRESSURE AIR TEST

A. Minimum Requirement for Equipment:

1. Control panel
2. Low-pressure air supply connected to control panel.
3. Pneumatic plugs: Acceptable size for diameter of pipe to be tested; capable of withstanding internal test pressure without leaking or requiring external bracing.
4. Air hoses from control panel to:
 a. Air supply.
 b. Pneumatic plugs.
 c. Sealed line for pressuring.
 d. Sealed line for monitoring internal pressure.

B. Testing Pneumatic Plugs: Place pneumatic plug in each end of length of pipe on ground. Pressurize plugs to 25 psig; then pressurize sealed pipe to 5 psig. Plugs are acceptable when they remain in place against test pressure without external aids.
2.05 GROUND WATER DETERMINATION

A. Equipment: Pipe probe or small diameter casing for ground water elevation determination.

2.06 SMOKE TESTING

A. Equipment:

1. Pneumatic plugs.
2. Smoke generator as supplied by Superior Signal Company, or approved equal.

PART 3 EXECUTION

3.01 PREPARATION

A. Provide labor, equipment, tools, test plugs, risers, air compressor, air hose, pressure meters, pipe probe, calibrated weirs, or any other device necessary for proper testing and inspection.

B. Determine selection of test methods and pressures for gravity sanitary sewers based on ground water elevation. Determine ground water elevation using equipment and procedures conforming to Section 01578 - Control of Ground Water and Surface Water.

3.02 VISUAL INSPECTION OF GRAVITY SANITARY SEWERS

A. Check pipe alignment visually by flashing light between structures. Verify if alignment is true and no pipes are misplaced. In case of misalignment or damaged pipe, remove and relay or replace pipe segment.

3.03 MANDREL TESTING FOR GRAVITY SANITARY SEWERS

A. Perform deflection testing on flexible and semi-rigid pipe to confirm pipe has no more than 5 percent deflection. Mandrel testing shall conform to ASTM D 3034. Perform testing no sooner than 30 days after backfilling of line segment, but prior to final acceptance testing of line segment.

B. Pull approved mandrel by hand through sewer sections. Replace any section of sewer not passing mandrel. Mandrel testing is not required for stubs.

C. Retest repaired or replaced sewer sections.
3.04 LEAKAGE TESTING FOR GRAVITY COLLECTION SYSTEM PIPES

A. For a collection system pipe that will transport wastewater by gravity flow, test gravity sanitary sewer pipes for leakage by either exfiltration or infiltration methods, as appropriate, or with low pressure air testing.

B. Compensating for Ground Water Pressure:
 1. Where ground water exists, install pipe nipple at same time sewer line is placed. Use 1/2-inch capped pipe nipple approximately 10 inches long. Make installation through manhole wall on top of sewer line where line enters manhole.
 2. Immediately before performing line acceptance test, remove cap, clear pipe nipple with air pressure, and connect clear plastic tube to nipple. Support tube vertically and allow water to rise in tube. After water stops rising, measure height in feet of water over invert of pipe. Divide this height by 2.3 feet/psi to determine ground water pressure to be used in line testing.

C. Exfiltration test:
 1. Determine ground water elevation.
 2. Plug sewer in downstream manhole.
 3. Plug incoming pipes in upstream manhole.
 4. Install riser pipe in outgoing pipe of upstream manhole when highest point in service lead (house service) is less than 2 feet below bottom of manhole cone.
 5. Fill sewer pipe and manhole or pipe riser, when used, with water to point 2-1/2 feet above highest point in sewer pipe, house lead, or ground water table, whichever is highest.
 6. Allow water to stabilize for one to two hours. Take water level reading to determine drop of water surface, in inches, over one-hour period, and calculate water loss (1 inch of water in 4 feet diameter manhole equals 8.22 gallons) or measure quantity of water required to keep water at same level. Loss shall not exceed that calculated from allowable leakage according to Table 02533-1 at end of this Section.

D. Infiltration test: Ground water elevation must be not less than 2.0 feet above highest point of sewer pipe or service lead (house service).
 1. Determine ground water elevation.
2. Plug incoming pipes in upstream manhole.

3. Insert calibrated 90 degree V-notch weir in pipe on downstream manhole.

4. Allow water to rise and flow over weir until it stabilizes.

E. Low Air Pressure Test: When using this test conform to ASTM C 828, ASTM C 924, or ASTM F 1417, as applicable, with holding time not less than that listed in Table 02533-2.

1. Low Pressure Air testing for sections of pipe shall be limited to lines less than 36-inch average inside diameter. Refer to charts 02533-2 and 02533-3.

2. Lines 36-inch average inside diameter and larger shall be tested at each joint. Minimum time allowable for pressure to drop from 3.5 pounds per square inch gauge to 2.5 pounds per square inch during joint test shall be 10 seconds, regardless of pipe size.

F. Retest: Repair and retest any section of pipe which fails to meet requirements.

3.05 TEST CRITERIA TABLES

A. Exfiltration and Infiltration Water Tests: Refer to Table 02533-1, Water Test Allowable Leakage, at end of this Section.

B. Low Pressure Air Test:

1. Times in Table 02533-2, Time Allowed for Pressure Loss from 3.5 psig to 2.5 psig, at end of this Section, are based on equation from Texas Commission on Environmental Quality (TCEQ) Design Criteria 217.57

\[T = 0.0850(D)(K)/(Q) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>time for pressure to drop 1.0 pounds per square inch gauge in seconds</td>
</tr>
<tr>
<td>K</td>
<td>0.000419 DL, but not less than 1.0</td>
</tr>
<tr>
<td>D</td>
<td>average inside diameter in inches</td>
</tr>
<tr>
<td>L</td>
<td>length of line of same pipe size in feet</td>
</tr>
<tr>
<td>Q</td>
<td>rate of loss, 0.0015 ft³/min./sq. ft. internal surface</td>
</tr>
</tbody>
</table>
2. Since K value of less than 1.0 shall not be used, there are minimum testing times for each pipe diameter as given in Table 02533-3, Minimum Testing Times for Low Pressure Air Test.

Notes:
1. When two sizes of pipe are involved, compute time by ratio of lengths involved.
2. Lines with 27-inch average inside diameter and larger may be air tested at each joint.
3. Lines with average inside diameter greater than 36 inches must be air tested for leakage at each joint.
4. If joint test is used, perform visual inspection of joint immediately after testing.
5. For joint test, pipe is to be pressurized to 3.5 psi greater than pressure exerted by groundwater above pipe. Once pressure has stabilized, minimum times allowable for pressure to drop from 3.5 pounds per square inch gauge to 2.5 pounds per square inch gauge shall be 10 seconds.

3.06 LEAKAGE TESTING FOR MANHOLES

A. After completion of manhole construction, wall sealing, or rehabilitation, but prior to backfilling, test manholes for water tightness using hydrostatic or vacuum testing procedures.

B. Plug influent and effluent lines, including service lines, with suitably-sized pneumatic or mechanical plugs. Ensure plugs are properly rated for pressures required for test; follow manufacturer's safety and installation recommendations. Place plugs minimum of 6 inches outside of manhole walls. Brace inverts to prevent lines from being dislodged when lines entering manhole have not been backfilled.

C. Vacuum testing:

1. Install vacuum tester head assembly at top access point of manhole and adjust for proper seal on straight top section of manhole structure. Following manufacturer's instructions and safety precautions, inflate sealing element to recommended maximum inflation pressure; do not over-inflate.

2. Evacuate manhole with vacuum pump to 10 inches mercury (Hg), disconnect pump, and monitor vacuum for time period specified in Table 02533-4, Vacuum Test Time Table.

3. A manhole passes the test if after 2.0 minutes and with all valves closed, the vacuum is at least 9.0 inches of mercury (Hg).
D. Perform hydrostatic exfiltration testing as follows:

1. Seal wastewater lines coming into manhole with internal pipe plug. Then fill manhole with water and maintain it full for at least one hour.
2. The maximum leakage for hydrostatic testing shall be 0.025 gallons per foot diameter per foot of manhole depth per hour.
3. If water loss exceeds amount tabulated above, locate leaks, complete repairs necessary to seal manhole and repeat test procedure until satisfactory results are obtained.

3.07 SMOKE TEST PROCEDURES FOR POINT REPAIRS

A. Application: Perform smoke test to:

1. Locate points of line failure for point repair.
2. Determine when point repairs are properly made.
3. Determine when service connections have been reconnected to rehabilitated sewer.
4. Check integrity of connections to newly replaced service taps to liners and to existing private service connections.

B. Limitations: Do not backfill service taps until completion of this test. Test only those taps in single manhole section at one time. Keep number of open excavations to minimum.

C. Preparation: Prior to smoke testing, give written notices to area residents no fewer than 2 days, nor more than 7 days, prior to proposed testing. Also give notice to City of Houston Police and Fire Departments 24 hours prior to actual smoke testing.

D. Isolate Section: Isolate manhole section to be tested from adjacent manhole sections to keep smoke localized. Temporarily seal annular space at manhole for sliplined sections.

E. Smoke Introduction:

1. Operate equipment according to manufacturer's recommendation and as approved by Project Manager.
2. Conduct test by forcing smoke from smoke generators through sanitary sewer main and service connections. Operate smoke generators for minimum of 5 minutes.
3. Introduce smoke into upstream and downstream manhole as appropriate. Monitor tap/connection for smoke leaks. Note sources of leaks.

F. Repair and Retest: Repair and replace taps or connections noted as leaking and then retest. Taps and connections may be left exposed in only one manhole section at time. When repair or replacement, testing or retesting, and backfilling of excavation is not completed within one work day, properly barricade and cover each excavation as approved by Project Manager.

G. Service Connections: On houses where smoke does not issue from plumbing vent stacks to confirm reconnection of sewer service to newly installed liner pipe, perform dye test to confirm reconnection. Introduce dye into service line through plumbing fixture inside structure or sewer cleanout immediately outside structure and flush with water. Observe flow at service reconnection or downstream manhole. Detection of dye confirms reconnection.

3.08 TELEVISION AND VIDEO INSPECTION PROCEDURE

A. Refer to Document 02588- Cleaning and Television Inspection

Table 02533-1
WATER TEST ALLOWABLE LEAKAGE

<table>
<thead>
<tr>
<th>DIAMETER OF RISER OR STACK IN INCHES</th>
<th>VOLUME PER INCH OF DEPTH</th>
<th>ALLOWANCE LEAKAGE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCH</td>
<td>GALLONS</td>
</tr>
<tr>
<td>1</td>
<td>0.7854</td>
<td>.0034</td>
</tr>
<tr>
<td>2</td>
<td>3.1416</td>
<td>.0136</td>
</tr>
<tr>
<td>2.5</td>
<td>4.9087</td>
<td>.0212</td>
</tr>
<tr>
<td>3</td>
<td>7.0686</td>
<td>.0306</td>
</tr>
<tr>
<td>4</td>
<td>12.5664</td>
<td>.0506</td>
</tr>
<tr>
<td>5</td>
<td>19.6350</td>
<td>.0544</td>
</tr>
<tr>
<td>6</td>
<td>28.2743</td>
<td>.1224</td>
</tr>
<tr>
<td>8</td>
<td>50.2655</td>
<td>.2176</td>
</tr>
</tbody>
</table>

For other diameters, multiply square of diameters by value for 1" diameter. Equivalent to 50 gallons per inch of inside diameter per mile per 24 hours.
Allowable leakage rate must not exceed 10 gallons per inch of inside diameter per mile per 24 hours, when sewer is identified as located within 25-year flood plain.

Table 02533-2
ACCEPTANCE TESTING FOR SANITARY SEWERS

<table>
<thead>
<tr>
<th>Pipe Diam. (in)</th>
<th>Min. Time (min:sec)</th>
<th>Length for Min. Time (ft)</th>
<th>Time for Longer Length (sec)</th>
<th>Specification Time for Length (L) Shown (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 ft</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.8548</td>
<td>5:40</td>
</tr>
<tr>
<td>18</td>
<td>17:00</td>
<td>133</td>
<td>7.6928</td>
<td>17:00</td>
</tr>
</tbody>
</table>

*02533-11
01/01/2011*
Table 02533-3
MINIMUM TESTING TIMES FOR LOW PRESSURE AIR TEST

<table>
<thead>
<tr>
<th>PIPE DIAMETER (INCHES)</th>
<th>MINIMUM TIME (SECONDS)</th>
<th>LENGTH FOR MINIMUM TIME (FEET)</th>
<th>TIME FOR LONGER LENGTH (SECONDS/FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>340</td>
<td>398</td>
<td>0.855</td>
</tr>
<tr>
<td>8</td>
<td>454</td>
<td>298</td>
<td>1.520</td>
</tr>
<tr>
<td>10</td>
<td>567</td>
<td>239</td>
<td>2.374</td>
</tr>
<tr>
<td>12</td>
<td>680</td>
<td>199</td>
<td>3.419</td>
</tr>
<tr>
<td>15</td>
<td>850</td>
<td>159</td>
<td>5.342</td>
</tr>
<tr>
<td>18</td>
<td>1020</td>
<td>133</td>
<td>7.693</td>
</tr>
<tr>
<td>21</td>
<td>1190</td>
<td>114</td>
<td>10.471</td>
</tr>
<tr>
<td>24</td>
<td>1360</td>
<td>100</td>
<td>13.676</td>
</tr>
<tr>
<td>27</td>
<td>1530</td>
<td>88</td>
<td>17.309</td>
</tr>
<tr>
<td>30</td>
<td>1700</td>
<td>80</td>
<td>21.369</td>
</tr>
<tr>
<td>33</td>
<td>1870</td>
<td>72</td>
<td>25.856</td>
</tr>
</tbody>
</table>

Table 02533-4
VACUUM TEST TIME TABLE

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>TIME IN SECONDS BY PIPE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48"</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>*</td>
<td>5.0</td>
</tr>
</tbody>
</table>

*Add T times for each additional 2-foot depth.
(The values listed above have been extrapolated from ASTM C 1244*
<table>
<thead>
<tr>
<th>Material and Wall Construction</th>
<th>Nominal Size (Inches)</th>
<th>Average I.D. (Inches)</th>
<th>Minimum Mandrel Diameter (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC-Solid (SDR 26) 5.476</td>
<td>6</td>
<td>6</td>
<td>5.764</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.715</td>
<td>7.329</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.646</td>
<td>9.162</td>
</tr>
<tr>
<td>PVC-Solid (SDR 35) 11.150</td>
<td>12</td>
<td>12</td>
<td>11.737</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.374</td>
<td>13.655</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17.629</td>
<td>16.748</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20.783</td>
<td>19.744</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>23.381</td>
<td>22.120</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>26.351</td>
<td>25.033</td>
</tr>
<tr>
<td>PVC-Truss 7.363</td>
<td>8</td>
<td></td>
<td>7.750</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.750</td>
<td>9.263</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11.790</td>
<td>11.201</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.770</td>
<td>14.032</td>
</tr>
<tr>
<td>PVC-Profile (ASTM F 794)</td>
<td>12</td>
<td>11.740</td>
<td>11.153</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.370</td>
<td>13.652</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17.650</td>
<td>16.768</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20.750</td>
<td>19.713</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>23.500</td>
<td>22.325</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>26.500</td>
<td>25.175</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>29.500</td>
<td>28.025</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>35.500</td>
<td>33.725</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>41.500</td>
<td>39.425</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>47.500</td>
<td>45.125</td>
</tr>
<tr>
<td>HDPE-Profile</td>
<td>18</td>
<td>18.000</td>
<td>17.100</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21.000</td>
<td>19.950</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24.000</td>
<td>22.800</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>27.000</td>
<td>25.650</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30.000</td>
<td>28.500</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>36.000</td>
<td>34.200</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>42.000</td>
<td>39.900</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>48.000</td>
<td>45.600</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>54.000</td>
<td>51.300</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>60.000</td>
<td>57.000</td>
</tr>
<tr>
<td>Fiberglass (Class SN 46)</td>
<td>12</td>
<td></td>
<td>12.85</td>
</tr>
<tr>
<td>11.822</td>
<td>18</td>
<td>18.66</td>
<td>17.727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20.68</td>
<td>19.646</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24.72</td>
<td>23.484</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30.68</td>
<td>29.146</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36.74</td>
<td>34.903</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>42.70</td>
<td>40.565</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>48.76</td>
<td>46.322</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>54.82</td>
<td>52.079</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60.38</td>
<td>57.361</td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION
PART I GENERAL

1.01 SECTION INCLUDES

A. Installation of service stubs in sanitary sewers serving areas where sanitary sewer service did not previously exist.

B. Reconnection of existing service connections along parallel, replacement, or rehabilitated sanitary sewers.

C. Installation of sanitary sewer service stubs, within street right-of-way, terminating with a clean-out and a plug at the right-of-way to allow for future connection of a single service, on at a double-wye fitting plugged at both to allow for future connection to two services.

1.02 MEASUREMENT AND PAYMENT

A. Unit Prices.

1. Payment for sanitary sewer service stubs or service reconnections with stacks located within 5 feet of sanitary sewer main centerline is on unit price basis for each stub or reconnection. Payment will be made for each service stub or reconnection installed complete in place, including service connections, couplings, and adapters disconnecting existing services, reconnecting new service, fittings, excavation, and backfill.

2. Payment for sanitary sewer service stubs or service reconnections without stacks located within 5 feet of sanitary sewer main is on unit price basis for each stub or reconnection. Payment will be made for each service stub or reconnection installed complete in place, including service connections, couplings, and adapters disconnecting existing services, reconnecting new service, fittings, excavation, backfill and testing.

3. Payment for sanitary sewer service leads beyond 5 feet from the right-of-way and clean-outs shall be paid as follows:

 a. Payment for sanitary sewer service leads beyond 5 feet from the right-of-way shall be paid for on a linear foot basis. Measurement shall be taken along the centerline of the pipe from the centerline of the lead connection or stack at the sanitary sewer main and shall end 5 foot from the right-of-way. Payment will be made for each linear foot of pipe installed, complete in place, including sewer pipe, excavation, shoring, bedding, backfill, and accessories.
Auger pipe for service stubs will be paid as provided in Section 02448 – Pipe and Casing Augering.

b. Payment for standard 6-inch clean-out on service lead assembly for a single or double future service connection installed at end of lead is on a unit price basis for each assembly and shall include all portions of the lead and service connection with clean-out within 5 feet of the right-of-way. Payment will be made for each assembly installed and complete in place, including excavation, fittings, offsets, plugs, pipe sections, valve boxes, bedding, backfill, and testing.

4. Pay estimates for progress payments will be made as measured above according to following schedule:

a. An estimate for 95 percent payment will be authorized when reconnection is completely installed and backfilled.

b. An estimate for 100 percent payment will be authorized when reconnection has been tested as specified in Section 02732 - Acceptance Testing for Sanitary Sewers.

5. One or more connections discharging into common point are considered one service connection. Contractor shall not add service reconnections without approval of Project Manager. Project Manager may require connections to be relocated to avoid having more than two service connections per reconnection.

6. Protruding service connections which must be removed to allow liner insertion are paid as service reconnection when connected. If abandoned, they will be paid as abandoned connection.

7. Payment for abandonment of service connection is on unit price basis for each abandoned connection. No separate payment will be made for abandonment of service connection unless excavation is required. No separate payment will be made for excavation of sanitary sewer services within new or replacement sewer trench.

8. No separate payment will be made for removal of existing sanitary sewer service stubs. Include payment in unit price for Section 02534 - Sanitary Sewer Service Stubs or Reconnections.

9. No separate payment will be made for abandoned service connection when service to be abandoned is within 4 feet of active connection. Payment for only one abandoned service connection will be allowed when second abandoned connection is within 4 feet of first.

10. If faulty remote cut is later corrected using procedures specified for reconnection by excavation, only one reconnection will be allowed for payment.
11. Refer to Section 01270 - Measurement and Payment for unit price procedures.

B. Stipulated Price (Lump Sum). If Contract is Stipulated Price Contract, payment for work in this Section is included in total Stipulated Price.

1.03 REFERENCES

1.04 PERFORMANCE REQUIREMENTS

A. Accurately locate in field all proposed service stubs along new sanitary sewer main.

B. Accurately locate in field existing service connections and proposed service stubs along alignment of new parallel or replacement sewer main.

1.05 SUBMITTALS

A. Conform to requirements of Section 01330 - Submittal Procedures.

B. Submit product data for each pipe product, fitting, coupling and adapter.

C. Show reconnected services on record drawings. Give exact distance from each service connection to nearest downstream manhole.

PART 2 PRODUCTS

2.01 PVC SERVICE CONNECTION

A. As stub outs, use PVC sewer pipe of 4-inch through 10-inch diameter, conforming to ASTM D 1784 and ASTM D 3034, with cell classification of 12454-B. SDR (ratio of diameter to wall thickness) shall be 26 for pipe 10 inches in diameter or less.

B. PVC pipe shall be gasket jointed with gasket conforming to ASTM D 3212.

C. Provide service connection pipe in sizes shown on Drawings. For reconnection of existing services, select service connection pipe diameter to match existing service diameter.
Reconnections to rehabilitated sanitary sewer mains shall be limited to following maximum service connection diameter:

<table>
<thead>
<tr>
<th>Sewer Diameter</th>
<th>Maximum Service Connection Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8" or less</td>
<td>4"</td>
</tr>
<tr>
<td>10" or greater</td>
<td>6"</td>
</tr>
</tbody>
</table>

D. Subject to above limits, provide 6-inch service connection when more than one service discharges into single pipe.

E. Connect service pipes to parallel or replacement sewer mains with prefabricated, full-bodied tee or wye fittings conforming to specifications for sewer main pipe material as specified in other Sections for sewers up to 18 inches in diameter.

F. Where sewers are installed using pipe augering or tunneling, or where sewer is greater than 18 inches in diameter, use Fowler "Inserta-Tee" to connect service to sewer main.

2.02 PIPE SADDLES

A. Use pipe saddles only on rehabilitated sanitary sewer mains. Comply with Paragraph 2.01E for new parallel and replacement sanitary sewer mains.

B. Supply one-piece prefabricated saddle, either polyethylene or PVC, with neoprene gasket to accomplish complete seal. Use saddle fabricated to fit outside diameter of connecting pipe. Protruding lip of saddle must be at least 5/8-inch long with grooves or ridges to retain stainless steel band clamps.

C. Use 1/2-inch stainless steel band clamps for securing saddles to liner pipe.

2.03 COUPLINGS AND ADAPTERS

A. For connections between new PVC pipe stubouts and existing service, 4-, 6-, or 8-inch diameter, use flexible adapter coupling consisting of neoprene gasket and stainless steel shear rings with 1/2-inch stainless steel band clamps:

1. Fernco Pipe Connectors, Inc. Series 1055 with shear ring SR-8

2. Band Seal by Mission Rubber Co., Inc.

3. Approved equal.

B. For connections between new PVC pipe stubout and new service, use rubber-gasket adapter coupling:
1. GPK Products, Inc.
2. IPS & Sewer Adapter
3. Approved equal.

2.04 STACKS

A. Provide stacks for service connections wherever crown of sewer is 8 feet or more below finished grade.

B. Construct stacks of same material as sanitary sewer and as shown on Drawings.

C. Provide stacks of same nominal diameter at sanitary service line.

2.05 PLUGS AND CAPS

A. Seal upstream end of unconnected sewer service stubs with rubber gasket plugs or caps of same pipe type and size. Provide plugs or caps by GPK Products, Inc., or approved equal.

PART 3 EXECUTION

3.01 PERFORMANCE REQUIREMENTS

A. Provide minimum of 72 hours notice to customers whose sanitary sewer service will potentially be interrupted.

B. Accurately field locate service connections, whether in service or not, along rehabilitated sanitary sewer main. For parallel and replacement sewers, service connections may be located as pipe laying progresses from downstream to upstream.

C. Properly disconnect existing connections from sewer and reconnect to rehabilitated liner, as described in this Section.

D. Reconnect service connections, including those that go to unoccupied or abandoned buildings or to vacant lots, unless directed otherwise by Project Manager.

E. Complete reconnection of service lines within 24 hours after cured-in-place liner installation and within 72 hours after disconnection for sliplining, parallel, or replacement sanitary sewer mains.

F. Reconnect services on cured-in-place liner at 12 feet depth or less by excavation method. Project Manager reserves right to require service connections by excavation when remote cut service connection damages lines.
G. Reconnection by excavation method shall include stack and fittings and required pipe length to reconnect service line.

H. Connect services 8 inches in diameter and larger to sewer by construction of manhole. Refer to appropriate Section on manholes for construction and payment.

3.02 PROTECTION

A. Provide barricades, warning lights, and signs for excavations created for service connections. Conform to requirements of Section 01504 - Temporary Facilities and Controls.

B. Do not allow sand, debris, or runoff to enter sewer system.

3.03 PREPARATION

A. Determine existing sewer locations and number of existing service connections from closed-circuit television (CCTV) inspection tapes or from field survey. Accurately field locate existing service connections, whether in service or not. Use existing service locations to connect or reconnect service lines or liner.

B. For rehabilitated sanitary sewer mains, allow liner to normalize to ambient temperature and recover from imposed stretch. For cured-in-place liners, verify that liner is completely cured.

C. For new parallel and replacement sanitary sewer mains, complete testing and acceptance of downstream sewers as applicable. Provide for compliance with requirements of Paragraph 3.01E.

3.04 EXCAVATION AND BACKFILL

A. Excavate in accordance with Section 02317 - Excavation and Backfill for Utilities.

B. Perform work in accordance with OSHA standards. Employ Trench Safety System as specified in Section 02260 - Trench Safety System for excavations requiring trench safety.

C. Install and operate necessary ground water and surface water control measures in accordance with requirements of Section 01578 - Control of Ground Water and Surface Water.

D. Determine locations where limited access, buildings or structure preclude use of mechanical excavation equipment. Obtain approval from Project Manager for hand excavation.

3.05 RECONNECTION BY EXCAVATION METHOD

A. Remove portion of existing sanitary sewer main or carrier pipe to expose liner pipe. Provide sufficient working space for installing prefabricated pipe saddle.

B. Carefully cut liner pipe making hole to accept stubout protruding from underside of saddle.
C. Strap on saddle using stainless steel band on each side of saddle. Tighten bands to produce watertight seal of saddle gasket to liner pipe.

D. Remove and replace cracked, offset, or leaking service line for up to 5 feet, measured horizontally, from center of new liner.

E. Make up connection between liner and service line using PVC sewer pipe and approved fittings and couplings.

F. Encase entire service connection in cement stabilized sand as shown on Drawings.

G. Test service connections before backfilling.

3.06 RECONNECTION BY REMOTE METHOD

A. Make service reconnections using remote-operated cutting tools on cured-in-place liners at depth greater than 12 feet.

B. Employ method and equipment that restore service connection capacity to not less than 90 percent of original capacity.

C. Immediately open missed connections and repair holes drilled in error using method approved by Project Manager.

3.07 RECONNECTION ON PARALLEL OR REPLACEMENT SEGMENTS

A. Install service connections on sewer main.

B. Remove and replace cracked, offset or leaking service line for up to 5 feet, measured horizontally, from centerline of sanitary sewer main.

C. Make up connection between main and existing service line using PVC sewer pipe and approved couplings, as shown on Drawings.

D. Test service connections before backfilling.

E. Embed service connection and service line as specified for sanitary sewer main as shown on Drawings. Place and compact trench zone backfill in compliance with Section 02317 - Excavation and Backfill for Utilities.

3.08 INSTALLATION OF NEW SERVICE STUBS

A. Install service connections on sanitary sewer main for each service connection. Provide length of pipe required to allow sufficient room for standard 6-inch clean-out service lead assembly in accordance with detail 02534-05. Install plug(s) or cap on the upstream end(s) of service stub(s) as needed.
B. Test service connections before backfilling.

C. Embed service connection and service line as specified for sanitary sewer main, and as shown on Drawings. Place and compact trench zone backfill in compliance with Section 02317 - Excavation and Backfill for Utilities. Install minimum 2-foot length of magnetic locating tape along axis of service stub and 9 inches to 12 inches above crown of pipe, at end of stub.

3.09 TESTING

A. Test service reconnections and service stubs. Follow applicable procedures given in Section 02533 - Acceptance Testing for Sanitary Sewers to perform smoke testing to confirm reconnection.

B. Perform post installation CCTV inspection as specified in Section 02558 - Cleaning and Television Inspection to show locations of service connection.

3.10 CLEANUP

A. Backfill excavation as specified in Section 02317 - Excavation and Backfill for Utilities.

B. Replace pavement or sidewalks removed or damaged by excavation in accordance with Section 02951 - Pavement Repair and Resurfacing. In unpaved areas, bring surface to grade and slope surrounding excavation. Replace minimum of 4 inches of topsoil and seed according to requirements of Section 02921 - Hydro-mulch Seeding.

END OF SECTION